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Abstract. Acute brain diseases such as acute stroke and transit ischemic attacks
are the leading causes of mortality and morbidity worldwide, responsible for 9%
of total death every year. ‘Time is brain’ is a widely accepted concept in acute
cerebrovascular disease treatment. Efficient and accurate computational frame-
work for hemodynamic parameters estimation can save critical time for throm-
bolytic therapy. Meanwhile the high level of accumulated radiation dosage due to
continuous image acquisition in CT perfusion (CTP) raised concerns on patient
safety and public health. However, low-radiation will lead to increased noise and
artifacts which require more sophisticated and time-consuming algorithms for
robust estimation. We propose a novel efficient framework using tensor total-
variation (TTV) regularization to achieve both high efficiency and accuracy in
deconvolution for low-dose CTP. The method reduces the necessary radiation
dose to only 8% of the original level and outperforms the state-of-art algorithms
with estimation error reduced by 40%. It also corrects over-estimation of cerebral
blood flow (CBF) and under-estimation of mean transit time (MTT), at both nor-
mal and reduced sampling rate. An efficient computational algorithm is proposed
to find the solution with fast convergence.

1 Introduction

As the second leading cause of death worldwide, stroke is responsible for 4.4 million
(9 percent) of the total 50.5 million deaths each year [1]. It affects more than 700,000
individuals annually in the United States (approximately one person every 45 seconds).
It is also the No. 1 cause of disability among adults in US. Fast and accurate diagnosis
and treatment for acute stroke is critical for the survival rate and life quality. Computed
tomography perfusion (CTP) is the most widely used imaging modality for acute cere-
brovascular disease diagnosis and detection, due to its widespread availability, rapid
acquisition time, high spatial resolution and low cost. However, the elevated radiation
dosage issue has raised significant public concerns regarding its potential biological ef-
fects, such as hair loss, skin damage, cataract formation, very small but definite increase
of cancer risk [2].

The low-dose protocols, on the other hand, are leading to higher photon and imag-
ing noise, which is compensated by more complicated and time-consuming algorithms
with spatial smoothing, reduced matrix reconstruction and/or thick-slices, with the cost



of longer processing time, lowering spatial resolution and accuracy [3, 4]. While edge-
preserving filtering algorithms are relatively slow in computation, HighlY constrained
back-PRojection (HYPR) and Markov Random Fields (MRF) require motion-free im-
ages across the scan duration. Furthermore, these algorithms attempt to reduce the noise
in the reconstructed CT image series, instead of improving the deconvolution process
or the quantification of perfusion maps.

In this work, we propose an efficient and accurate deconvolution algorithm to im-
prove the perfusion parameter estimation at low dose by tensor total variation (TTV)
regularized deconvolution. All the previously mentioned noise reduction algorithms for
CT image sequences can complement our model to further reduce the noise and im-
prove the image quality. Total variation has been proposed for low-dose CT image re-
construction [5], while here we address a different problem of deconvolution to estimate
the perfusion parameters.

The contribution of our work is three-fold. First, we propose to regularize the im-
pulse residue functions instead of the perfusion parameter maps. Second, the optimiza-
tion is performed globally on the entire spatio-temporal data, instead of each patch
individually. Third, total variation regularizer is extended into the three dimensional
sequence to consider the regional effect and temporal correlation of the tissue. The
method reduces the necessary radiation dose to only 8% of the original level and outper-
forms the state-of-art algorithms with estimation error reduced by 40%. It also corrects
over-estimation of cerebral blood flow (CBF) and under-estimation of mean transit time
(MTT), at both normal and reduced sampling rate. An efficient computational algorithm
is proposed to find the solution with fast convergence.

2 Tensor Total Variation Regularized Deconvolution

2.1 CT Perfusion Convolution Model

The physiological model of blood flow in CTP is built on tracing the intravenously
injected contrast agent using X-ray scans. For a volume under consideration Vvoi, let
AIF (arterial input function) be the contrast agent concentration at the artery inlet, and
Cvoi be the average contrast agent concentration in Vvoi. ρvoi is the mean density of the
volume Vvoi. The residue function R(t) quantifies the relative amount of contrast agent
that is still inside the volume Vvoi of interest at time t after a contrast agent bolus has
entered the volume at the arterial inlet at time t = 0.

CBF is defined as the blood volume flow normalized by the mass of the volume
Vvoi and is typically measured in mL/100g/min. MTT, usually measured in seconds, is
defined as the first moment of the probability density function h(t) of the transit times.

The convolution model can be expressed as follows:

Cvoi(t) = (AIF ⊗K)(t) (1)

where the flow-scaled residue function K(t) is introduced:

K(t) = CBF · ρvoi ·R(t) (2)



By forming the matrix-vector notation, the convolution can be formulated as matrix
multiplication. For a volume of interest with N voxels, we have

C = AK (3)

where C = [c1, . . . , cN ] ∈ RT×N , K = [k1, . . . , kN ] ∈ RT×N represent the contrast
agent concentration and scaled residue function for the N voxels in the volume of in-
terest. To overcome the inaccuracies due to delay and dispersion of the contrast agent,
block-circulant version of A and C are adopted [6] to make the algorithm insensitive
to the tracer arrival time. The perfusion parameters CBF and MTT can be determined
from K [7].

2.2 Tensor Total Variation Regularized Deconvolution

The least square solution of Eq. (3) is equivalent to minimizing the squared Euclidean
residual norm of the linear system given by Eq. (3) as

Kls = argmin
K∈RT×N

(‖AK − C‖22) (4)

However, for the ill-conditioned Toeplitz matrix A, the least-square solution Kls

does not represent a proper solution. A small change in C (e.g. due to projection noise
or low-dose scan) can cause a large change in Kls. Regularization is necessary to avoid
the strong oscillation in the solution due to small singular values of matrix A.

Since the voxel dimensions in a typical CTP image are much smaller than tissue
structures, changes in perfusion are regional effects rather than single voxel effects. Our
assumption is that within extended voxel neighborhoods the perfusion parameters will
be constant or of low-variation. Meanwhile, it is also important to identify edges be-
tween different regions where tissues undergo perfusion changes, particularly ischemic
regions. In the temporal dimensional, the residue functions are continuous, while the
rapid rise and slow decay of contrast agent should also be preserved.

We introduce the tensor total variation regularizer to the data fidelity term in Eq. (4)
as

K = argmin
K∈RT×N

(
1

2
‖AK − C‖22 + γ‖K‖TV ) (5)

where γ is a positive parameter. It is based on the assumption that the piecewise smooth
residue functions in CTP should have small total variation in both the temporal and
spatial domain. Here we use a same γ = 1 for the spatial and temporal dimension,
which yields satisfactory results. The tensor total variation term is defined as

‖K‖TV =
∑
t,i,j,k

(|K̃t+1,i,j,k − K̃t,i,j,k|+ |K̃t,i+1,j,k − K̃t,i,j,k|

+|K̃t,i,j+1,k − K̃t,i,j,k| + |K̃t,i,j,k+1 − K̃t,i,j,k|)
(6)

where K̃ ∈ RT×N1×N2×N3 is the 4-D volume obtained by reshaping matrix K based
on the spatial and temporal dimensions. Here N = N1 × N2 × N3 and T is the time



Algorithm 1 The framework of TTV algorithm.
Input: Regularization parameters γ
Output: Flow-scaled residue functions K ∈ RT×N1×N2×N3 .
K0 = 0
t1 = r1 = K0

for n = 1, 2, . . . , N do
(1) Steepest gradient descent: Kg = rn + sn+1(AT (C −Arn))
where sn+1 = QTQ

(AQT )(AQ)
, Q ≡ AT (Arn − C)

(2) Proximal map: Kn = proxγ(2‖K‖TV )(Kg),

where proxρ(g)(x) := argmin
u

{
g(u) + 1

2ρ
‖u− x‖2

}
(3) Update t, r: tn+1 = (1+

√
1 + 4(tn)2)/2, rn+1 = Kn+((tn−1)/tn+1)(Kn−Kn−1)

end for

duration. The tensor total variation term here uses the forward finite difference operator
with L1 norm. The regularization parameter γ controls the regularization strength, and
the larger the γ, the more smoothed the residue functions.

Since the TV term is non-smooth, this problem is difficult to solve. Conjugate gra-
dient (CG) and partial differential equation (PDE) methods could be used to attack it,
but they are very slow and impractical for real CTP images. Motivated by the effec-
tive acceleration scheme in Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)
[8, 9], we propose a total variation regularization algorithm (Algorithm 1) to efficiently
solve the problem in Eq. (5). We extended the 2-dimensional TV regularizer in [8] to
4-dimensional and adapted the algorithm to tensor total variation, to impose both tem-
poral and spatial edge-preserving regularization.

2.3 Implementation Details

All algorithms were implemented using MATLAB 2013a (MathWorks Inc, Natick,
MA) on a MacBook Pro with Intel Core i7 2.8G Hz Duo CPU and 8GB RAM. Four
baseline methods were compared: standard truncated singular value decomposition (sSVD)
[7], block-circulant truncated SVD (bSVD) [6], Tikhonov regularization (Tikh) [10] and
sparse perfusion deconvolution (SPD)[11]. Perfusion maps are computed on the high-
dose 190 mA and the simulated low-dose 15 mA images by adding correlated statistical
noise [12] with standard deviation of σa = 25.54, which yields PSNR=40. The maps
calculated using bSVD from the 190 mA high-dose CTP data is regarded as the “gold
standard” or reference images in clinical experiments. A threshold value λ is empiri-
cally chosen as 0.1 (10% of the maximum singular value) to yield optimal performance
for SVD-based algorithms. One-tail student test is used to determine whether there is
significant difference between the evaluation metrics of the comparing algorithms. A
α level of .05 is used for all statistical tests to indicate significance. Two metrics were
used to evaluate the image fidelity to the reference: Root mean-squared-error (RMSE)
and Lin’s Concordance Correlation Coefficient (CCC). Low RMSE and high Lin’s CCC
indicate high accuracy for the perfusion maps.



3 Experiments

3.1 Synthetic Studies

Because the clinical CTP does not have ground truth perfusion parameter values for
comparison, we first use synthetic data to evaluate the proposed algorithm, following
the synthetic experiment setup in [13].
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Fig. 1. (a) The noise power spectrum is of the scanned phantom image at 15 mA and simulated
statistical correlated Gaussian noise at 15 mA. (b)-(f) recovered residue functions by baseline
methods and TTV. The parameters used for residue function recovery are the simulation is CBV
= 4 mL/100 g, CBF = 20 mL/100 g/min, PSNR=25. SPD is not included since it optimizes the
perfusion maps directly.

Residue Recovery: The simulated noise power spectrum (NPS) at 15 mA is com-
pared with the NPS of the real scanned phantom image at 15 mA, as shown in Fig-
ure 1(a). The residue function recovered by the baseline methods and TTV are shown
in Figure 1(b-f). The baseline methods show severe oscillation and elevated peak value,
while the residue function recovered by TTV is in agreement with the reference.

Uniform Region Estimation: From the recovered residue function, perfusion pa-
rameters CBF and MTT can be estimated. We generate a small region containing 40×40
voxels with the same perfusion characteristics, and compute the mean and standard de-
viation of the perfusion parameters over this region. 1) Fig. 2 (a)-(b) show the estimated
CBF and MTT values when the true perfusion parameter values vary. All the baseline
methods overestimate the CBF values and under-estimate the MTT values while TTV
yields accurate CBF and MTT estimations. 2) To explore the effect of noise levels on
the performance of perfusion parameter estimation, we simulate different levels of noise
(PSNR varies from 5 to 60) and fix CBF at 20 mL/100 g/min and MTT at 12 s. Fig. 2
(c)-(d) show the estimation results. When the accuracy of the baseline methods degrades
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Fig. 2. Comparison of the accuracy in estimating CBF and MTT by sSVD, bSVD, Tikhonov, SPD
and TTV deconvolution methods. True CBV = 4 mL/100 g. The error bar denotes the standard
deviation. (a) Estimated CBF values at different true with PSNR=15. (b) Estimated MTT values
at different true MTT with PNSR=15. (c) Estimated CBF values at different PSNRs with true
CBF=20 mL/100 g/min. (d) Estimated MTT values at different PSNRs with true MTT = 12 s.

Table 1. Quantitative evaluation of the perfusion param-
eters in Fig. 2. ‘Estimated’ mean the perfusion parameter
to be estimated. ‘Condition’ means the varying condition.
The best performance is highlighted in bold font.

Estimated CBF MTT

Varying CBF PSNR MTT PSNR
Method/Metric RMSE Lin’s CCC RMSE RMSE Lin’s CCC RMSE

sSVD 23.52 0.6878 52.07 6.056 0.4283 6.278
bSVD 15.05 0.8129 52.01 5.827 0.4567 6.309

Tikhonov 19.94 0.7198 43.92 5.64 0.4748 6.015
SPD 15.02 0.8294 44.36 5.804 0.4586 3.3323
TTV 0.993 0.9991 0.7954 0.6847 0.9945 0.294

Table 2. Quantitative comparison of
five methods on ten patients in terms
of RMSE, Lin’s CCC and linear re-
gression. The best performance is
highlighted in bold font. * P < .001
in one-tail student test compared to
the four baseline methods.

Method RMSE Lin’s CCC

sSVD 25.69 0.049
bSVD 7.60 0.185

Tikhonov 11.27 0.161
SPD 6.03 0.267
TTV 3.63* 0.505*

dramatically as the noise level increases, TTV method appears to be more robust. Ta-
ble 1 shows the quantitative evaluation of the different methods in terms of RMSE and
Lin’s CCC while the ground truth parameter or the PSNR varies.

3.2 Clinical Studies

Retrospective review of consecutive CTP exams performed on aneurysmal subarach-
noid hemorrhage patients enrolled in an IRB-approved and HIPAA-compliant clinical
trial from August 2007-July 2013 was used. Ten consecutive patients (9 women, 1 men)
admitted to the Weill Cornell Medical College, with mean age (range) of 54 (35-83)
years were included. 5 patients had brain deficits shown in the CTP images and the
other 5 patients had normal brain images.

Visual Comparison: At normal sampling rate, Fig. 3 shows significant differences
visually between the CBF maps of the different deconvolution methods, where sSVD,
bSVD, Tikhonov and SPD overestimate CBF, while TTV estimates accurately. At re-
duced temporal sampling rate by downsampling 2 times, the errors in the four baseline
methods increase, while TTV maintains accurate estimation, with the potential to fur-
ther minimize the radiation dosage level by increasing sampling intervals.
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Fig. 3. The CBF maps with zoomed ROI regions of a patients calculated using different methods
at normal sampling rate (first two rows) and reduced rate by downsampling 2 times (bottom row).
Baseline methods sSVD, bSVD and Tikhonov overestimate CBF values, while SPD and TTV
correspond with the reference. At reduced rate, the difference is more significant. (Color image)

Quantitative Comparison: There is significant improvement in image fidelity be-
tween the low-dose CBF maps and the high-dose CBF maps by using the TTV algo-
rithm compared to the baseline methods. On average, the RMSE decreases by 40%,
Lin’s CCC increases by 89% from the best performance by using the baseline methods
(Table 2).

Computation Time: It takes approximately 25 s to process a clinical dataset of
512 × 512 × 118 by TTV method with 5 iterations, and approximately 0.83 s, 2.04 s
and 1.35 s for sSVD, bSVD and Tikhonov algorithms. For SPD, it takes 80.6 s for the
whole image. The TTV algorithm usually converges within 5 iterations. Though SVD
and Tikhonov based methods are faster, the over-estimation, low spatial resolution, less
differentiable tissue types and graining in the image in the perfusion maps generated
by these baseline methods for the low-dose data are not acceptable. SPD reduces the
variation in the smooth region to certain extent, however, TTV takes only 30% of the
computation time compared to the time for SPD and yields more accurate estimation.

4 Conclusion

In this study, a new tensor total variation regularized deconvolution algorithm is pro-
posed to improve the quality and quantification of the low-dose CTP perfusion maps and
extensively compared with the existing widely used algorithms, e.g. sSVD, bSVD and
Tikhonov regularization, as well as SPD for low-dose deconvolution. Synthetic evalua-



tion with accurate ground truth data is used to compare the quality of the residue func-
tions, uniform regions, sensitivity to hemodynamic conditions and noise levels. Clinical
evaluation using high-dose perfusion maps as the reference image is conducted to show
the visual quality and data fidelity at normal and reduced sampling rate. The proposed
TTV method is able to achieve both high accuracy and computational efficiency to save
critical time for the clinical diagnosis.
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