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Abstract

Stroke is the leading cause of long-term disability and the second leading cause

of mortality in the world, and exerts an enormous burden on the public health.

CT remains one of the most widely used imaging modality for stroke diagnosis.

However when coupled with CT perfusion, the excessive radiation exposure in

repetitive imaging to assess treatment response and prognosis has raised signif-

icant public concerns regarding its potential hazards to both short- and long-

term health outcomes. Tensor total variation has been proposed to reduce the

necessary radiation dose in CT perfusion without comprising the image quality

by fusing the information of the local anatomical structure with the temporal

blood flow model. However the local search in the framework fails to leverage

the non-local information in the spatio-temporal data. In this paper, we propose

TENDER, an efficient framework of non-local tensor deconvolution to maintain

the accuracy of the hemodynamic parameters and the diagnostic reliability in

low radiation dose CT perfusion. The tensor total variation is extended using

non-local spatio-temporal cubics for regularization to integrate contextual and

non-local information. We also propose an efficient framework consisting of fast

nearest neighbor search, accelerated optimization and parallel computing to im-
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prove the efficiency and scalability of the non-local spatio-temporal algorithm.

Evaluations on clinical data of subjects with cerebrovascular disease and nor-

mal subjects demonstrate the advantage of non-local tensor deconvolution for

reducing radiation dose in CT perfusion.

Keywords: low radiation dose, CT perfusion, tensor non-local deconvolution,

total variation, stroke

1. Introduction

Stroke remains the leading cause of disability and second leading cause of

mortality worldwide, thus exerting an enormous public health burden for long-

term disability care costing $34 billion annually. Timely diagnosis is crucial

to inform treatment decisions in acute stroke as “time is brain”. Therefore,

it is critical to develop reliable in-vivo quantitative imaging markers for stroke

for diagnosis and guiding treatment decisions. Computed tomography perfu-

sion (CTP) is an ideal imaging modality to assess hemodynamic changes in the

brain given its widespread availability, speed, affordability and high spatial res-

olution. Despite these benefits, CTP delivers one of the highest radiation doses

of noninvasive imaging studies, and as a result, has raised significant public con-

cerns because of its potential short- and long-term biological effects including

cancer induction, skin damage and early cataract formation [1, 2, 3, 4]. This is

especially concerning in stroke patients whose disease requires serial monitor-

ing of hemodynamic status with perfusion imaging to assess treatment response

and prognosis [5]. Lowering the radiation exposure would reduce the potential

health hazard, improve healthcare quality and safety, and make CTP modality

fully utilized for a wider population. However, a major challenge in dose reduc-

tion strategies in CTP is that such approaches inevitably lead to an increase in

noise and therefore less accurate hemodynamic parameter quantification given

the methods used today.

In this paper, we propose an efficient framework TENDER (TEnsor Non-

local Deconvolution Enabled Radiation reduction) to minimize the radiation
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exposure without compromising the image quality, especially the perfusion pa-

rameter accuracy. This fast deconvolution method extends the prior work of

tensor total variation (TTV) [6, 7] with non-local regularization to improve the

image quality and interpretation of low-dose CTP. Instead of restricting the reg-

ularization of residue functions to the adjoining voxels in the spatial domain and

neighboring frames in the temporal domain, we consider both long-range depen-

dency and the global connections in the spatial and temporal dimensions. We

propose to integrate the state-of-art low-dose deconvolution method together

with the non-local regularization to increase the robustness of the method with

efficient algorithm. To the best of our knowledge, this integration of two ap-

proaches in a spatio-temporal framework to regularize the flow-scaled residue

impulse functions has never been proposed, and it can make significant im-

provement in the perfusion parameter estimation. Furthermore, the efficient

algorithm to accelerate TENDER computation and optimization would make

the proposed algorithm clinically valuable.

2. Related Work

There are two major steps in hemodynamic parameter estimation for per-

fusion imaging: reconstruction and deconvolution. Therefore there are mainly

two types of approaches to reduce the radiation exposure.

2.1. Reconstruction

Current state-of-the-art methods to reduce radiation exposure from CTP

are problematic because they mainly focus on the reconstruction step which

does not improve the parameter estimation process [8, 9, 10, 11, 12]. However,

the stability and accuracy of the parameter estimation step is critical for the

precise quantitative estimation of hemodynamic parameters. Among the few

methods to improve the deconvolution step in low-dose CTP, the improvement

in performance been limited without leveraging the existing high-dose data [13].

With the advent of big medical data, a data-driven mathematical approach

employing a spatio-temporal model has the potential to significantly reduce the

radiation exposure in CTP.
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2.2. Deconvolution

While the first class of approaches does not solve the inherent instability

problem in the quantification (deconvolution) process of CTP, the second class

of approaches directly addresses this instability issue. Among these methods,

the information redundancy and sparsity is a property that has shed light into

medical image analysis, ranging from deformable models [14, 15, 16], segmen-

tation [17], fast MRI quantification [18], and low-dose quantification problems

[19, 20, 21], but the sparsity frameworks need training data for dictionary learn-

ing. In another line of work, tensor total variation (TTV) deconvolution [6, 7]

has been recently proposed to significantly reduce the radiation dosage in CTP

with improved robustness and quantitative accuracy by integrating the anatom-

ical structure correlation and the temporal blood flow model. The anatomi-

cal structure of the brain encompasses long-range similarity of the same tissue

classes, as shown in Fig. 1(a). However the locality property of the current

TTV algorithm limits the search for similar patterns in the 4-connected adja-

cent neighborhood, neglecting the long-range or global correlations of the entire

brain structure. This locality limitation has led to noticeable absence or artifact

of the delicate structures, such as the capillary, the insula and the parietal lobe,

which are critical indicators for the clinical diagnosis of cerebrovascular diseases.

Fig. 1(b) shows the importance of accurate depiction of hemodynamic param-

eters. The delicate vascular and cerebral structures are critical biomarkers of

the existence and severity of the cerebrovascular diseases. Naturally, integrating

non-local correlation into the estimation process of the hemodynamic parame-

ters would yield more precise depiction of the pathological regions in the brain

[22, 23]. As an extension of [22], this work significantly extend introduction,

related work and experimental parts.

2.3. Contributions

The contribution of this work is three-fold: First, the non-local connections

are explored to leverage the anatomical and structural similarity of the same

tissue classes in both the spatial and the temporal dimensions. Second, effi-
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Figure 1: (a) The illustration of long-range similarity in the brain. The red and yellow boxes
show the non-local regions which have similar patterns. (b) Perfusion parameter maps (CBF
- cerebral blood flow, CBV - cerebral blood volume, and MTT - mean transit time) of a 22-
year old with severe left middle cerebral artery (MCA) stenosis. Arrows indicate the regions
with altered hemodynamic function represented as abnormally decreased CBF and prolonged
MTT. This pattern is indicative of ischemic tissue at risk of stroke in the left hemisphere
(right side of the image).

cient parallel implementation and similarity computation using window offsets

reduce the computational time of the non-local algorithm. Third, extensive

experiments on low-dose CTP clinical data of subjects with cerebrovascular dis-

eases and normal subjects are performed. The experiments demonstrate the

superiority of the non-local framework, compared with the local TTV method.

The advantages include more accurate preservation of the fine structures and

higher spatial resolution for the low-dose data.

This paper is organized as follows. Section 3 presents the current tensor total

variation model for low-dose CTP deconvolution with its limitations. Section 4

introduces our proposed TENDER model for tensor non-local deconvolution to

overcome the locality constraints in the TTV model, followed by Section 5 on the

efficiency method for this spatio-temporal optimization problem, including fast

nearest neighbor search in the non-local neighborhood, efficiency optimization,

and parallel computing. Section 6 and 7 describes the experiment setup and

shows the experimental results on clinical data. The paper is concluded with

Section 9.
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3. Tensor Total Variation Model

In this section, we will first briefly review the tensor total variation (TTV)

model for the low-dose CTP and discuss its deficiency in accurate estimation of

delicate structure and exaiming pattern complexities.

To reduce the radiation dose in CT perfusion imaging, tensor total variation

(TTV) [6] is recently proposed to efficiently and robustly estimate the hemo-

dynamic parameters. It integrates the anatomical structure correlation and the

temporal continuation of the blood flow signal. The TTV algorithm optimizes a

cost function with one linear system for the deconvolution and one smoothness

regularization term, as below:

KTTV = arg
K∈RT×N

min(
1

2
‖AK − C‖22 + ‖K‖γTTV ). (1)

The first term is the temporal convolution model. In this term, A ∈ RT×T is

a block-circulant matrix representing the arterial input function (AIF), which

is the input signal to the linear time-invariant system of the capillary bed. The

block-circulant format makes the deconvolution insensitive to delays in the AIF.

C ∈ RT×N is the contrast agent concentration (CAC) curve of all the voxels in

the volume of interest (VOI). Both A and C are extracted from the CTP data.

K ∈ RT×N is the unknown of this optimization problem - the flow-scaled residue

functions of the VOI. Here T is the duration of the signal, and N = N1×N2×N3

is the total number of voxels in the sagittal, coronal and axial directions.

The second term is the tensor total variation regularizer. The TTV regular-

ization is defined as

‖K‖γTTV =
∑

d=t,x,y,z

√√√√ 4∑
d=1

(γd∇dK̃t,x,y,z)2, (2)

where ∇d is the forward finite difference operator in the dth dimension, and K̃ ∈

RT×N1×N2×N3 is the 4-dimensional volume reshaped from matrix K with tem-

poral signal for one dimension and spatial signal for three dimensions. t, x, y, z

are the indices for the temporal and spatial dimensions. The outside sum-

mation means that the square root of the sum of the first order derivative is
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summed over all the temporal points t and spatial voxels x, y, z of K̃. L1 norm

is used in the forward finite difference operator ∇d to preserve the edges, and

the regularization parameters γd designates the regularization strength for each

dimension. In [6], the temporal regularization parameter γt = 10−8, while the

spatial regularization parameter γx,y,z = 10−4. Larger γd with d = t, x, y, z will

lead to higher smoothing regularization for the flow-scaled residue functions K̃

in the dth dimension. Cerebral blood flow (CBF) maps can be computed from

K as the maximum value at each voxel over time. More details about the TTV

framework can be found in [6].

TTV has achieved significant performance improvement on the digital brain

phantom and low- and ultra-low dose clinical CTP data at 30, 15 and 10 mAs

[6]. However the locality property of the tensor total variation regularization

limits the capability of preserving the small and fine anatomical structures,

details and texture in the brain. These structures include the vessels, gray-

white matter junction, insular and basal ganglia regions. They are essential

indicators of the location and severity of the ischemia or acute stroke. It may

also create new distortions, such as blurring, staircase effect and wavelet outliers

due to the regularization on the adjacent voxels, as shown in Fig. 2.

4. TENDER Model

Due to the locality limit of the TTV model, we introduce the TENDER

model, along with an efficient algorithm to compute the spatio-temporal cubic

similarity. We will also discuss the time complexity of the TENDER model.

First introduced by [24], non-local total variation has been studied to address

the limitations of conventional total variation model, including the blocky effect,

the missing of the small edges and the lack of long-range information sharing [25,

26, 27]. It has also been applied to 4D computed tomography [28] and magnetic

resonance imaging reconstruction [29]. This work is the first attempt to integrate

non-local tensor total variation with the spatio-temporal deconvolution problem

in 4D CTP.
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Figure 2: Illustration of TENDER model in a 2D image. TENDER regularization term for
voxel i (red dot) is a weighted summation of the difference between voxel i and the most
similar voxels (yellow dots) in the search window with width W (red box). The weight w(i, j)
depends on the patches around the voxels. Compared to local-TTV, which only considers the
4-connected local neighborhood, TENDER preserves the accuracy and contrast of the vascular
structure with higher fidelity of the reference patch. The actual TENDER regularization is
imposed on 4D spatio-temporal flow-scaled residue impulse functions across different slices
and time points.

The TENDER model links each voxel in the volume with the long-range

voxels using a weighted function. For every voxel i, instead of computing the

forward finite difference on the 4-connected neighbors, we search in a neighbor-

hood window N(i) with window size W , and minimize the weighted differences

between the target voxel and all voxels in the window. Specifically, the non-local

tensor total variation can be formulated as:

‖K‖TENDER =
∑
i

√∑
j

(K(i)−K(j))2w(i, j). (3)

Here K(i) denotes the value of flow-scaled residue impulse function K at spatio-

temporal voxel i, and w(i, j) is a similarity function between the voxel i and j.

The more similar the voxels i and j, the higher the weight function w(i, j) is.

We use an exponential function of the patches surrounding the two voxels to

model their similarity

w(i, j) =
1

Z(i)
e−
‖K(Pi)−K(Pj)‖

2
2

σ2 , (4)

where Z is a normalization factor, with Z(i) =
∑
j w(i, j) and σ is a filter
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parameter that controls the shape of the similarity function. Pi is a small patch

around voxel i with radius d. In this way, when two patches are identical or

similar, the weight w will be close to 1; when the two patches are very different,

the weight w will approach 0. Non-local total variation has shown superior

performance signal reconstruction and denoising [25, 26], and by fusing it with

the temporal convolution model with a weight α for the non-local spatial term,

we get

KTENDER = arg
K∈RT×N

min(
1

2
‖AK − C‖22 + α‖K‖TENDER). (5)

The TENDER model searches for the similar patches in a larger window

instead of the adjacent 4-connected neighbors in the local TTV. In this way,

the similar tissue patterns of the same tissue types in the long-range regions

of the brain can assist to reduce the artifact and noise in the deconvolution

process. This allows the TENDER model to deconvolve the low-dose CTP

volume using non-local dependency by removing the noise without distorting

the salient structures, as shown in Fig. 2.

For the weighting parameter α, we find that in the experimental results,

α = 1 give descent results for the TENDER model, while the optimization

result is robust to the parameter α and does not vary significantly at different

values of α.

It is worthy to note that because the voxel i is any voxel in the spatio-

temporal domain of the flow-scaled residue impulse function K ∈ RT×N , TEN-

DER is searching the similar patches in the spatio-temporal domain, which

includes the multiple slices in the axial direction and the various time points in

the temporal sequences.

5. Efficient Optimization and Time Complexity

We implement this algorithm by MATLAB and C++ using mex in MATLAB

2013a environment (MathWorks Inc, Natick, MA) and Windows 8 operating

system with an Intel Core i5 with 4 cores and 32GB RAM.
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5.1. Notations

Let’s define some parameters first. Let N be the total number of voxels in

the entire volume. W be the search window size for the similar voxels around

voxel i. d is the radius of the patch around the voxel. Nb is the number of similar

voxels chosen to regularize the voxel i in order to speed up the computation. m

is the dimension of the spatio-temporal tensor. σ is the Gaussian parameter to

control the shape of the similarity function.

In this work, for a 2D slice in the brain CTP data of 512 × 512 voxels, 120

seconds of scanning duration, W = 5 voxels, d = 4 voxels, Nb = 15, σ = 0.5.

m = 4 because the flow-scaled residue impulse functions are spatio-temporal

tensor with 4 dimensions.

5.2. Brute-Force Search

The TENDER model has a higher time complexity compared to the local

TTV. For each voxel i in the volume, we need to calculate the patch difference

between the target voxel and every other voxel in the search window. Then we

rank all the patch differences in voxel i’s search window in an ascending order,

and pick up the first Nb patches for optimizing the value of i.

The time complexity of the brutal force non-local TTV is O(N · ((2W +

1)(2d + 1))m + N · (2W + 1)m log(Nb)). For the parameters above, the com-

putational time reaches up to nearly 10 hours, which is unrealistic in clinical

applications.

5.3. Fast Nearest Neighbor Search

An efficient method to compute the intensity difference between two patches

is used to accelerate the non-local TTV is needed. Specifically, at each offset

~w = (wx, wy, wz, wt) in the search window W , a new matrix D of the same size

to the brain volume is created to precompute the patch differences, with D~w =∑
i (K(i+ ~w)−K(i))2. This matrix keeps the sum of the squared differences

from the upper left corner to the current voxel. When computing the differences

between the two patches at location j and offset w, we only need to compute

the value D(jx + d, jy + d) − D(jx + d, jy) − D(jx, jy + d) + D(jx, jy). This
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accelerating method to find the nearest neighbors reduced the time complexity

to O(N · (2W + 1)m + log(Nb)). The space complexity is N · (2W + 1)m.

5.4. Efficient Optimization Algorithm

Due to the relatively slow update in the non-local TTV term, we propose

a fast TENDER algorithm to optimize the objective function in Eq. (5), as

outlined in Algorithm 1. The efficient algorithm consists of three major steps:

(1) Gradient descent to update the temporal convolution term; (2) Proximal

map to update the spatial non-local total variation term; (3) Parameter update

to control the learning rate.

Here we illustrate each step in the proposed efficient algorithm in detail:

(1) Steepest gradient descent: Let’s denote f(rn) = 1
2‖Ar

n − C‖2, then

the gradient of function f at point rn is ∇f(rn) = AT (Arn − C). This step

only costs time complexity of O(p log(p)), where p is the total number of spatio-

temporal pixels of the residue impulse functions. Since the Teoplitz matrix A is

ill-posed, we design a steepest gradient descent method that updates the step

size s adaptively to avoid the issue with a constant step size.

(2) Proximal map: The proximal map associated with a continuous convex

function g(x) and any scalar ρ > 0 is defined as [30]

proxρ(g)(x) := arg min
u
{g(u) +

1

2ρ
‖u− x‖2} (6)

In this step, Kn = proxρ(2α‖K‖TENDER)(fold(Kg)) has a closed form solution

and can be computed in time O(p log(p)), where fold(Kg) folds the matrix Kg

into a tensor K̃ ∈ RT×N1×N2×N3 . We set ρ = 1 in our implementation.

(3) Parameter update. Parameters r and t can be updated by adding up

scalars or vectors, costing O(p) and O(1) respectively.

Therefore, the total cost of each iteration in the proposed TENDER al-

gorithm is approximately O(p log(p)). Compared to the local total variation

method proposed in [6, 7], the proposed TENDER model can effectively lever-

age the contextual information to avoid the blocky artifacts and preserve the

fine structures.
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Algorithm 1 The framework of TENDER algorithm.

Input: K0 = r1 = 0, t1 = C = 0, τ
Output: Flow-scaled residue functions K ∈ RT×N1×N2×N3 .
for n = 1, 2, . . . , N do
C = C + 1
(1) Steepest gradient descent Kg = rn + sn+1AT (C −Arn)

where sn+1 = vec(Q)T vec(Q)
vec(AQ)T vec(AQ)

, Q ≡ AT (Arn − C), vec(·) vectorizes a ma-
trix
(2) Proximal map:
if C = τ (Acceleration Step) then
Kn = proxγ(2α‖K‖TENDER)(fold(Kg)), C = 0

end if
(3) Update t, r tn+1 = (1 +

√
1 + 4(tn)2)/2, rn+1 = Kn + ((tn −

1)/tn+1)(Kn −Kn−1)
end for

Another key feature of the proposed algorithm is the acceleration step. In the

accelerated step, instead of alternating between the non-local TTV term and the

temporal convolution term once each iteration, we update the non-local TTV

term fewer times than updating the temporal convolution term. Specifically, a

counter C controls the frequency of non-local TTV term update. Only when the

temporal convolution term is updated τ times in the steepest gradient descent

step (1), the non-local TTV term is updated once in the proximal map step

(2) in Algorithm 1. This acceleration scheme saves the computation time by

avoiding frequently updating the non-local TTV term, and has shown sufficient

accuracy in the experimental results.

5.5. Parallel Computing

The intrinsic nature of non-local TTV algorithm allows for multi-threading

and parallel computing on the multi-core clusters or grids. We divide the entire

brain volume into sub-volumes, with each of them processed by one processor.

The patch difference computation for every voxel i and the weight calculation

for all the voxels after selecting the top Nb neighbors can be paralleled.
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6. Experiments

The goal of our proposed method is to accurately estimate the hemodynamic

parameters in low-dose CTP by robust deconvolution. To reach this goal, we

first simulate the low-dose CTP data from the high-dose data by adding cor-

related Gaussian noise, and then apply the compared deconvolution methods

on the high- and low-dose CTP data. Finally we compare the quantitative and

visual results of the estimated perfusion parameter maps. The procedure is

illustrated in Fig. 3.

Add 
noise 

Decon
volve 

Decon 
volve 

Compare 

High-dose Simulated low-dose Reference CBF 
Map 

Low-dose CBF Map 

Figure 3: Simulation of low-dose CTP data from high-dose CTP data and the evaluation
framework

6.1. Low-Dose Simulation

Due to the ethical issues and potential health risk associated with scanning

the same subject twice using different radiation doses, we follow the experimen-

tal setting in [6] to simulate low-dose CTP data at 15 mAs by adding correlated

Gaussian noise with standard deviation of σ = 25 [31]. Note that this low-dose

simulation technique is a widely method for CT algorithm evaluation in the

medical field [32, 33]. The deconvolution methods are evaluated on the sim-

ulated low-dose CTP data. The quality of the CBF maps of all methods are

evaluated by comparing with the reference maps (high-dose CTP) using peak

signal-to-noise ratio (PSNR). While PSNR may not be the best evaluation met-

ric for the clinical dataset, it is an objective quantitative reflection of the fidelity

between the perfusion maps of the low-dose and the high-dose CTP data.
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6.2. Clinical Dataset

Our method is evaluated on a clinical dataset of 10 subjects admitted to the

NewYork-Presbyterian Hospital/Weill Cornell Medical College with mean age

(range) of 53 (42-63) years and four of them had brain deficits due to aneurysmal

subarachnoid hemorrhage (aSAH) or ischemic stroke, and the rest were normal.

CTP images were collected with a standard protocol using GE Lightspeed Pro-

16 scanners (General Electric Medical Systems, Milwaukee, WI) with cine 4i

scanning mode and 60 second acquisition at 1 rotation per second, 0.5 sec per

sample, using 80 kVp and 190 mA. Four 5-mm-thick sections with pixel spacing

of 0.43 mm between centers of columns and rows were assessed at the level of the

third ventricle and the basal ganglia, yielding a spatio-temporal tensor of 512×

512×4×118 where there are 4 slices and 119 temporal samples. Approximately

45 mL of nonionic iodinated contrast was administered intravenously at 5 mL/s

using a power injector with a 5 second delay.

6.3. Competing Methods

To evaluate the efficacy of the proposed TENDER model in perfusion map

quantification of low-dose CTP, we evaluate the performance on multiple sub-

jects using a number of state-of-art quantification methods, including:

1. sSVD [34]: Standard Singular Value Decomposition is the foundation of

non-parametric estimation methods for perfusion imaging, which applies

singular value decomposition (SVD) to the matrix remove the noise in

small singular values.

2. bSVD [35]: Block-circulant SVD decomposes the block-circulant matrix

of arterial input function to overcome the error caused by bolus delay. It

has been one of the most effective methods for CTP quantification.

3. Tikhnov [36]: Tikhonov regularization approach uses a smooth weighting

function for the singular values to minimize the impact of noise.

4. TTV [6]: Tensor total variation exploits the spatio-temporal correlation

of the tissue in a small neighborhood region, which has already shown

excellent performance in low-dose CTP quantification.
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7. Experimental Results

In this section, we demonstrate the visual and quantitative results of CBF

map estimation using our proposed TENDER model and the compared meth-

ods.

7.1. The Normal Case

We first assess the compared methods on a normal subject (Fig. 4). For

each subject, from left to right it shows the reference map, the low-dose maps

of standard singular value decomposition (sSVD), block-circulant singular value

decomposition (bSVD), Tikhonov, TTV, and our proposed TENDER. Obvi-

ously, the singular valude-based methods (sSVD, bSVD, Tikhonov) tend to

over-estimate the CBF map and lead to large variance in the homogeneous

areas in the white matter and cerebrospinal fluid (CSF). In comparison, spatio-

temporal model-based methods (TTV and TENDER) maintains the fidelity of

the CBF map, with clear-cut boundary between the vessel and the non-vessel

tissues (shown in the ROI images), without over-estimation of the perfusion pa-

rameters. However, TTV still over-estimates the CBF value, and the vessles in

the close-up view are dilated due to the local smoothing using the tensor total

variation regularization. TENDER overcomes both issues. The quantitative

accuracy of the perfusion maps improves significantly, and more noticeably, the

small vessels in the brain are precisely preserved without dilation or rupture, as

we can observe in the local TTV results.

7.2. The Ischemic Case

We then apply the compared methods on a subject with right frontoparietal

craniotomy and ischemia in the right anterior cerebral artery (RACA) and right

middle cerebral artery (RMCA) territories (Fig. 5). The entire brain image and

the close-up views demonstrate significant improvement in the overall accuracy

and preservation of the delicate anatomical structures using the non-local TTV

method for both the deficit and the normal subjects. sSVD tends to severely

over-estimate CBF, while SVD-based methods also over-estimate perfusion pa-

rameters. TTV performs better than the SVD-based methods in preserving
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Figure 4: Results from a normal subject. From left to right shows the reference map (high-dose
CTP), the low-dose maps of standard singular value decomposition (sSVD), block-circulant
singular value decomposition (bSVD), Tikhonov, TTV, and our proposed TENDER. The first
row is the whole brain CBF map and the second row is the closeup view of a selected region.

the quantitative accuracy and the contrast resolution between different tissue

classes, but still with severe noise and artifacts compared to the reference. Due

to the non-local search to fully utilize the far-reaching neighborhood informa-

tion, TENDER model is not confined to the 4-connected neighborhood for the

spatio-temporal regularization and achieves the best performance in quantifying

the CBF map and preserving image quality in the ischemic subject.
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Figure 5: Results from a subject with right frontoparietal craniotomy and ischemia in the
right anterior cerebral artery (RACA) and right middle cerebral artery (RMCA) territories.
From left to right shows the reference map (high-dose CTP), the low-dose maps of standard
singular value decomposition (sSVD), block-circulant singular value decomposition (bSVD),
Tikhonov, TTV, and our proposed TENDER. The first row is the whole brain CBF map and
the second row is the closeup view of a selected region.
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7.3. Quantitative Evaluation

Finally we demonstrate the quantitative comparison in terms of PSNR for

all the 10 subjects, as shown in Table 1. As there are both normal and abnormal

subjects with aSAH or ischemic stroke, the large variation of the subject pop-

ulation help to demonstrate the robustness of the proposed TENDER model.

In every case, TENDER model outperforms the compared methods, and overall

TENDER gains over 6 dB in PSNR compared to SVD-based methods, and 3 dB

over TTV. Box-plot revealing the central tendency of the compared methods

is shown in Fig. 6. Our proposed method significantly outperforms all other

comparison methods (p < 0.05) using one-tail Student’s t test.

Subject sSVD bSVD Tikh TTV TENDER

1 10.83 19.66 19.32 24.04 26.55
2 8.75 17.14 17.67 21.25 22.38
3 6.65 15.85 15.74 19.91 21.89
4 2.16 19.25 19.24 15.55 22.17
5 15.26 27.21 26.66 22.96 37.70
6 10.59 18.46 18.79 23.31 27.22
7 9.81 18.32 19.69 24.32 25.45
8 9.45 19.09 18.90 23.09 24.72
9 13.69 22.57 22.79 27.54 28.81
10 10.99 19.29 19.61 20.04 21.12

Average 9.82 19.68 19.84 22.20 25.79

Table 1: Peak signal-to-noise ratio (PSNR) in dB of cerebral blood flow compared with the
ground truth at high radiation dose of 10 subjects using the baseline methods and the proposed
TENDER model. The best performance in terms of average PSNR is highlighted with bold
font.

7.4. Running Time

Using the accelerated optimization algorithm, efficient search in the non-

local spatio-temporal neighborhood and the parallel computing technique, our

proposed TENDER model is nearly 20 times faster than the non-local regular-

ization method without acceleration.
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Figure 6: Boxplot of PSNR and SSIM for the 10 clinical subjects. The proposed TENDER
method significantly outperforms all other comparison methods (p < 0.05).
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8. Discussion

The history of perfusion imaging dates back to 1980 when Leon Axel pro-

posed the original framework and principles of CT perfusion [37]. Perfusion

imaging started with neuroimaging of a pre-selected region of the brain using

a dynamic sequential scanning after the injection of contrast agent as it travels

through the capillary bed of the brain [38, 39]. Recently, whole brain imag-

ing [40] and perfusion imaging of other parts of the body such as heart [41],

kidney [42], liver [43], pancreas [44] and prostate [45] have played a central

role in vascular disease diagnosis. CT perfusion imaging has led to numerous

quantification methods to model the perfusion flow and estimate the dynamic

perfusion parameters such as cerebral blood flow (CBF), cerebral blood volume

(CBV), mean transit time (MTT) and time-to-peak (TTP) [46, 46]. The basic

model builds on indicator-dilution theory [47], and the first models quantify

the hemodynamic parameters by evaluating the contrast concentration curves

of each voxel individually [34, 48]. We call this type of model “voxel indepen-

dent model”. This classic model has been widely adopted in clinical practice

to estimate the perfusion parameters for vascular diseases such as stroke and

subarachnoid hemorrhage [49, 50].

However the independent assumption in this classic model entirely ignores

the fact that the “brain is connect”, in both spatial domain and the temporal

passage. The neglect of this spatio-temporal connection may not be an enor-

mous issue at sufficient radiation dose when the signal-to-noise ratio is high

enough for accurate computation of the perfusion parameters, but can render

the quantification accuracy a severe problem when the radiation dose is reduced

for safer medical imaging [32, 51].

While a number of approaches have been attempted to improve the per-

fusion map estimation in low-dose or ultra-low dose CTP using spatial filter-

ing or noise removal in the reconstructed serial CT images [8, 52, 11, 9], the

oscillatory nature and unstable deconvolution CTP perfusion map estimation

remain the bottleneck for accurate quantification. Spatio-temporal regulariza-
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Figure 7: Illustration of the evolution of deconvolution algorithms for CTP, from independent
voxel to local neighborhood, and to non-local regions. In the left independent model, every
voxel is computed without consideration of spatial and temporal context. In the middle
local TTV model, only the local neighborhoods (6 connected in 3D space and 2 connected in
temporal domain) are used for robust deconvolution. In the right non-local TENDER model,
non-local search of the broader neighborhood regions enable more robust estimation of the
perfusion parameters.

tion has been developed to stabilize the deconvolution process, via patch-based

dictionaries learned from high-dose perfusion maps [20, 19], tissue-specific [53],

spatio-temporal deconvolution [13, 54, 6, 18]. This is an important step towards

leveraging the contextual information of the connected brain tissue, yet the limi-

tation of these methods is that the connection is confined to local neighborhood,

usually the directly connected voxels, which confines the contextual information

in limited region. Since the voxels dimensions in a typical CTP spatial-temporal

data are much smaller compared to the tissue anatomy, the variation of blood

perfusion should have regional effects rather than single or directly-connected

voxel effects. Therefore, within the extended voxel neighborhood the perfusion

parameters are expected to be of low variation or even constant. Based on these

observations, the non-local TENDER model leverages the extended neighbor-

hood of the voxel to find similar spatio-temporal patterns for regularization in

low-dose data. The evolution of the deconvolution algorithms described above

is illustrated in Fig. 7.

Furthermore, while the non-local search and similarity computation leads
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Figure 8: Convergence curve of the cost function for TENDER algorithm.

to higher computational cost, our efficient optimization and fast nearest neigh-

bor search schema demonstrates fast convergence and reasonable computational

time. Specifically, the algorithm converges within 10 iterations (Fig. 8) after

our accelerated optimization. Since the algorithm is implemented in MATLAB

platform and run on a single PC desktop, grid or cluster computing and imple-

mentation in C++ are expected to speed up the experiments.

9. Conclusion

Reducing the radiation exposure in ionizing radiation based imaging without

compromising the image quality remains a critical challenge in medical imaging,

especially for perfusion imaging with repetitive high-dose scans. In this paper,

we proposed an efficient TENDER model to reduce the radiation dose in CT

perfusion via non-local tensor total variation regularization. The non-local simi-

larities of the same tissue classes in the brain structure are leveraged to stabilize

the spatio-temporal residue functions. The overall quantitative accuracy is sig-
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nificantly improved with the delicate anatomical structures such as vessels are

well preserved to assist clinical diagnosis. Fast optimization and implementation

schemes are presented to reduce the time complexity and computational cost.

Extensive evaluations with comparison to the state-of-art algorithms, including

sSVD, bSVD, Tikhonov and TTV, demonstrate the superior performance of

the non-local TTV method in low-dose deconvolution and perfusion parameter

estimation.
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