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ABSTRACT  

    In current computed tomography (CT) examinations, the associated X-ray radiation dose is of significant concern to 
patients and operators, especially CT perfusion (CTP) imaging that has higher radiation dose due to its cine scanning 
technique. A simple and cost-effective means to perform the examinations is to lower the milliampere-seconds (mAs) 
parameter as low as reasonably achievable in data acquisition. However, lowering the mAs parameter will unavoidably 
increase data noise and degrade CT perfusion maps greatly if no adequate noise control is applied during image 
reconstruction. To capture the essential dynamics of CT perfusion, a simple spatial-temporal Bayesian method that uses 
a piecewise parametric model of the residual function is used, and then the model parameters are estimated from a 
Bayesian formulation of prior smoothness constraints on perfusion parameters. From the fitted residual function, reliable 
CTP parameter maps are obtained from low dose CT data. The merit of this scheme exists in the combination of 
analytical piecewise residual function with Bayesian framework using a simpler prior spatial constrain for CT perfusion 
application. On a dataset of 22 patients, this dynamic spatial-temporal Bayesian model yielded an increase in signal-to-
noise-ratio (SNR) of 78% and a decrease in mean-square-error (MSE) of 40% at low dose radiation of 43mA. 
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1. INTRODUCTION  
Radiation exposure from computed tomography (CT) has raised considerable public concern regarding its potential 
adverse effects on patients, especially for cancer induction and birth defects. Specifically, CT perfusion (CTP) is a 
functional imaging study that has higher radiation dose due to its cine scanning technique resulting in numerous images 
performed repetitively on a focused region of the body. In brain CTP, the cine scanning technique captures the first pass 
of contrast through the brain to assess its hemodynamic properties at the capillary level, including the cerebral blood 
flow (CBF), cerebral blood volume (CBV) and mean transit time (MTT). 

The tube current used in CTP protocols may range from 150 - 200 mA. High radiation doses used in CTP have been 
reported to cause biological effects, particularly hair loss1.  Other disadvantages of CTP include its narrow scanning 
range and contrast reactions2,3. However, CTP is still clinically indispensable compared to other perfusion techniques 
such as magnetic resonance perfusion (MRP)4,5 due to its widespread availability, rapid acquisition time and superior 
spatial resolution. In addition, CTP provides absolute quantitative data based on the relationship between the CT value, 
known as the Hounsfield unit, and the iodine concentration. Sasaki et al.6 provide a comprehensive overview on the 
advantages of CTP, which has been widely applied in evaluating perfusion abnormalities of acute stroke patients7,8,9. 

Therefore, recent efforts have been focused on promoting safe and appropriate utilization of CT scanning techniques to 
reduce the radiation exposure while maintaining the quality of images. However, reduction of tube current and therefore 
radiation dose results in image artifacts and noise. This quality degradation becomes more obvious in perfusion maps 
that already have low SNR because it measures the dynamic change of the contrast concentration in the blood. Hence 
inordinate dose reduction could potentially lead to inaccurate diagnosis and even erroneous clinical decisions. 
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In this paper, we tackle the problem of restoring noisy CTP parameters resulting from ultra-low radiation dose by 
proposing a simple explicit piecewise model to capture the essential dynamics of CT perfusion. Then we estimate the 
model parameters in a Bayesian framework using prior spatial smoothness constraints. Finally we relate model 
parameters to conventional CTP measures. Our proposal is unique in both the dynamic model and in the form of the 
constraints to be minimized.  

2. APPROACH 
2.1 Conventional Approach to Perfusion Parameter Estimation 

Meier and Zieler10 proved that the time concentration curve (TCC) is the product of CBF and the artery input function 
(AIF) convolved with the impulse residual function (IRF) : 

  (1)  

where is the convolution operator, and  is the time step. In this equation,  and AIF are measured directly from 
TCC.  

Methods to compute CBF and MTT from  and AIF include the non-deconvolution based max slope method11, 
deconvolution based Fourier transform (FT) approach12,13,14, singular value decomposition (SVD)15,16 and block circulant 
SVD17. In our work, we used block circulant SVD which corrects for delay and dispersion of the AIF with a trace-arrival 
time-insensitive technique. CBF and MTT maps were computed by deconvolving the block circulant AIF matrix. CBV 
was calculated by multiplying CBF and MTT based on the central volume theory10. Although the deconvolution 
approach is widely used, it suffers from noise amplification and ill-conditioning present in the inversion of any linear 
system.  

2.2 A New Dynamic Model-Based Approach 

In order to recover useful information from noisy and inadequate raw data, it is usually necessary to impose additional 
constraints on the solution being sought. We now propose an approach that relies on both a simple model for the residual 
function as well as additional spatial-temporal constraints on the parameters to be determined.  

We model the unit impulse residual function  by an analytical piecewise function 

  (2)  

given perfusion parameters  and the delay time . This exponential model for the impulse residue function has been 
proposed by Østergaard et. al.12 and has been successfully used for modeling the delaying contrast in the vessels. Using 
the convolution formula (1) we relate the observed data to the model via an additive noise term . 

  (3)  

where  is the position of the tissue.  

2.3 Energy Function 

Following previous work in Bayesian image denoising18,19, we model the additive noise with a white Gaussian 
, and propose the likelihood function 

  (4)  

This basically encodes the expectation that after the residual model at any location in the image has convolved with AIF, 
the resulting signal should be different from the observation only by the amount of additive noise present in the 
instrumentation. A direct maximization of the above likelihood will result in a conventional least squares minimization 
problem, which is easily solvable by a linear pseudo-inverse operation20.  



 
 

 
 

However, due to the highly noisy scenarios in low dose CTP, it is necessary to impose additional constraints in the form 
of prior knowledge about the parametric images we wish to obtain. Specifically, we wish the solution to have both 
temporal and spatial coherence observed in real brain data, whereby the perfusion parameters ( , t0, etc) change 
smoothly across the image as well as across the temporal acquisition window. However, we must apply these constraints 
adaptively in order to avoid indiscriminate smoothing across tissue boundaries.  

Here we propose a simpler model that nevertheless is highly effective for CTP data. Since the voxel dimensions in a 
typical CTP image are much smaller than tissue structures of interest, it is reasonable to assume that within extended 
neighborhoods the perfusion parameters will be constant. In reality, perfusion parameters are spatially variable due to the 
combined effect of scanner blurring, reconstruction algorithm, physiological noise and natural tissue variability. While 
most of these sources of variability are local, scanner blurring is best captured in terms of a convolution kernel across 
several neighboring voxels.  

Unfortunately, these kinds of priors will lead to extended neighborhood interactions which might necessitate MRF 
approaches �– something we wish to avoid. Therefore we propose a much simpler prior formulation, which is nonetheless 
physically and clinically realistic. The perfusion parameter  at any location , at the center of a spatially homogeneous 
neighborhood , is given by the Gaussian distribution 

  (5)  

where  and are the mean and standard deviation of  within the neighborhood . Similarly we define  

  (6)  

  (7)  

By allowing the local mean and variance to change across the image, the simple Gaussian model is able to capture the 
essential variability of the data, but in the process it introduces additional quantities which must be estimated from the 
true distribution of , which in turn is unknown a priori. This necessitates an Expectation Maximization (EM)21 style 
approach whereby the Gaussian parameters and the underlying quantity are estimated alternately. It is well known that 
EM algorithms have guaranteed convergence starting from arbitrary initial estimates. Given a sufficiently large local 
neighborhood , we expect that the local Gussian parameters can be estimated accurately.  

Bayesian estimation using Eqs (4-7) is a well known problem, and involves maximizing the posterior distribution 

  (8)  

Here we have assumed that the parametric processes  are independent of each other for computational 
tractability. This is easily converted to an equivalent minimization problem 

  (9) 

Unfortunately, the joint minimization of even this simplified model is challenging due to the large number of variables, 
non-convexity, and unknown local Gaussian parameters. We will now make several simplifying observations and 
propose a realistic algorithm for (approximately) solving Eq. 9. 



 
 

 
 

2.4 A Fast EM-style Algorithm for Spatial-Temporal Bayesian Method 

We first note that a robust estimate of the delay  is in fact 
easy to calculate from the tissue concentration peak location 
(Fig 1), and its value should not change significantly due to 
other unknowns. Of course, additive noise can cause spurious 
peaks; however, this is easily corrected by a simple temporal 
smoothing operation on  before peak detection. 
Therefore our first simplification is to estimate directly 
from observed data (after upsampling and smoothing 
operations) and henceforth remove it from the equation.  

Another simplification results from the observation that 
 is simply the �“height�” of the residual function, and is 

roughly given by dividing the peak value of the observed 
tissue concentration curve by the peak value of 

 at each voxel. Finally, we noted that 
estimates of variance from current estimates of perfusion 
parameters is usually under-estimated by sample standard 
deviation, necessitating a minor correction for unusually 
small variances. Putting these points together, we propose the 
following algorithm  

Algorithm: Fast EM-style Algorithm for Spatial-Temporal Bayesian Method 

�• Start iteration  with  estimated by conventional deconvolution technique 

�• Then for  

1.  

2. Draw a circular neighborhood Nr of radius R around each point r and estimate local Gaussian 
parameters  from samples of  in each neighborhood 

3.  

4.                  

       under the constraint 

 

�• Repeat until convergence 

Table 1. Algorithm of fast EM-style spatial-temporal Bayesian method 

Note here we add a small constant to avoid very large terms in case of very small estimates of standard deviation of 
the local Gaussians. Here we set to be 1. Since the noise variance  is essentially unknown in realistic situations we 
subsume it within the new global �“regularization�” parameters  and . The Gaussian fits over an extended local 
neighborhood allows for the imposition of spatial coherence without resorting to MRF approaches that are 
computationally prohibitive. The radius  of the neighborhood, as well as spatial coherence weight  are important 
algorithmic parameters whose optimal value is not known a priori. A larger  and larger  will both cause smoother 
perfusion maps. Once best parameters of the model in Eq. 9 are known, the clinically relevant perfusion parameters are 
directly calculated: 

Fig. 1. Delay between Artery Input Function (AIF) and
tissue concentration curve(TCC) 



 
 

 
 

  (10)  

  (11)  

where the last relation comes from the central volume theory17, 22. 

3. EXPERIMENTAL DETAILS 

3.1 CTP Scanning Protocol and Data Processing 

CTP was performed on aneurysmal subarachnoid hemorrhage patients under an existing IRB-approved clinical trial with 
our standard scanning protocol for CTP at our institution using GE Lightspeed or Pro-16 scanners (General Electric 
Medical Systems, Milwaukee, WI) with cine 4i scanning mode and 45 second acquisition at 1 rotation per second using 
80 kVp and 190 mA.  

Post-processing of the acquired images into CBF, CBV and MTT maps were performed on a GE Advantage Workstation 
using CTP software version 3.0 (General Electric Medical Systems). This software employs a deconvolution method 
involving the block circulant SVD approach, which is considered most accurate for low contrast injection rates23. Both 
data at the standard radiation dose of 190mA and from the simulated low dose of 10mA were processed.   
3.2 Noise Simulation 

Repetitive scanning at different tube current levels on the same patient was not appropriate given the ethical issues raised 
with the cumulative amount of radiation exposure that would occur. Therefore we simulated images at lower tube 
current levels by adding statistical noise in a manner similar to methods described by Britten et al.24. This model was 
based on the inverse relationship between the tube current (I) and the noise standard deviation ( ) in CT images 

  (12)  

We compute the value of K by analyzing the Gaussian noise in the CTP images of 22 patients under  dosage, 
and find the average K value of 103.09 mA1/2. The standard deviation of Gaussian noise ( ) at low mA exposure setting 
( ) is simulated by adding statistical noise to the CT images scanned at  mA with noise standard deviation of  using 
the modified equation 

  (13)  

The noise distribution is statistically independent, so the standard deviation of the noise distribution to be added ( ) can 
be computed from 

  (14)  

We add statistical noise with standard deviation at  and the corresponding radiation exposure is  

  (15)  

3.3 Implementation of EM-Style Algorithm 

We implemented the EM-style using MATLAB 2010b. For the energy minimization in Step 3 of our proposed EM-style 
algorithm, we use trust-region-reflective algorithm to handle the bound constraints of the perfusion parameters. This 
algorithm is a subspace trust-region method and it is based on the interior-reflective Newton method. Each iteration 
involves the approximate solution of a large linear system using the method of preconditioned conjugate gradients 
(PCG). The maximum number of iterations for the trust-region-reflective is 40, however it usually takes only around 10 
iterations to reach the desired minimum value, i.e. change in the residual was less than the specified tolerance. The 



 
 

 
 

termination tolerance we use for the function value is 10-6, and the termination tolerance for x is also 10-6. The number of 
PCG iterations is zero for most voxels in the data. We do not provide user-defined Jacobian information and the 
algorithm approximates the Jacobian using finite difference. On a Windows desktop with Intel Core 3G Hz Duo CPU 
and 3GB RAM, the program takes 20 minutes to run for the entire 512×512×118 3D volumetric brain CTP data of one 
patient.  

The upper bound of MTT and CBF were empirically determined from the CTP data performed at a standard dose. The 
normal range of MTT is between 0 to 5 seconds, and can be up to 20 seconds at specific areas of the brain, especially in 
disease states. The range of CBF is between 0 and 80 mL/100g/min, and can be up to 100-150 mL/100g/min in specific 
areas of hyper-vascular flow. 

3.4 Parameter Tuning 

The three parameters ,  and neighborhood radius  are tuned by a full-search on a validation set of five patients' data. 
We use two metrics to evaluate the quality of the perfusion maps in the parameter search: Mean Square Error (MSE) and 
Peak Signal-to-Noise Ratio (PSNR). The optimal parameters found are ,  and . We assume the 
parameters are applicable to other patients' data, because the underlying noise model is the same for all low-dose CTP.  

4. EXPERIMENTAL RESULTS 

4.1 Evaluation Metrics 

Our proposed spatial-temporal Bayesian method is validated on CTP images of 22 patients stored on the Research 
Picture Archiving and Communications System (PACS) at our institution. Three visual quality assessments are used to 
examine the restored MTT maps: mean square error (MSE), noise quality measure (NQM) and signal-to-noise ratio 
(SNR). These three metrics reflect different aspects of the visual quality of static images with addictive noise. In 
combination, they provide a complementary quantitative evaluation of the perfusion maps. MSE represents the 
difference between optimized MTT maps and the 190mA reference MTT maps. SNR reflects the ratio of signal power to 
the noise power that corrupts the signal. NQM depicts the image quality by computing the nonlinear weighted signal-to-
noise ratio of the restored image with respect to the reference image.  

4.2 Baselines 

Three image denoising techniques to restore static images with additive noise are compared with our proposed Spatial-
temporal Bayesian (STB) method. These denoising methods include Gaussian smoothing filter, median filter and 
anisotropic diffusion (AD) 25,26. The parameters for each method are tuned on a training set of 5 patients' data, and 
remain constant for all the experiments. The window size for Gaussian filter is 6×6. The window size for the median 
filter is 7×7. Anisotropic diffusion is performed with a maximum of 15 iterations, an integration constant of 1/7, and a 
gradient modulus threshold of 30.  

4.3 Quantitative Results 

Table 2 shows the average quantitative visual assessments on 22 patients. STB is compared with the three baseline 
methods using the aforementioned assessment metrics, with relative changes from the pre-processed maps reported. A 
one-tail statistical t-test is performed to analyze the difference between the improvements using our proposed method 
and the other three denoising methods. STB outperforms the three existing denoising methods on all three visual quality 
assessment metrics, in spite of the variations in different patients. The overall average performance and the individual 
cases of 22 patients all demonstrate the advantages of STB. This is because both the temporal consistency and the spatial 
coherence information are used for noise removal. T-test also reveals that STB is significantly better than the other three 
methods. 

On further analysis, we reveal the relative changes with regard to the unenhanced low dose MTT maps in the brackets. 
STB reduces MSE by 39% on average, while the Gaussian filter, the median filter, and the anisotropic diffusion reduce 
MSE by 14%, 26% and 19% respectively. There is an even greater difference seen in the SNR. STB achieves an increase 
of 78.50%, while the Gaussian filter improves by only 25.60%, the median filter by 53.24% and the anisotropic diffusion 
by 24.47%. In terms of NQM, STB also performs better than the three other denoising methods that only consider 



 
 

 
 

spatial coherence. STB improves NQM by 9.3% while the Gaussian filter increases by 2.68%, the median filter by 
7.69% and the anisotropic diffusion by 6.78%. 

4.4  Qualitative Evaluations 

Figure 2 displays the qualitative comparison of the pre- 
and the post- processing MTT maps using our proposed 
method and the other three baseline methods in 
comparison with the standard 190mA maps. The 
enhanced spatial coherence and resolution using our 
proposed method (STB) largely improve the quality of 
the MTT map, and enhance the clinical applicability of 
CTP at lower radiation dose. In spite of the variations in 
patients, anatomical structures and cerebral 
hemodynamic patterns, both quantitative and qualitative 
comparisons demonstrate the improvement in the spatial 
and contrast resolution and the decrement in image noise 
and artifacts that can potentially enhance the clinical 
value of perfusion images for diagnosis of diseases such 
as acute stroke. 

4.5 Evaluation on Regions of Interest 

We also analyzed the denoising effect on different ROIs 
of the brain in order to understand the effectiveness of our denoising algorithm on various anatomical brain tissues, 
including white matter, gray matter (cortex), and deep gray matter. The qualitative and quantitative comparison of noisy 
and optimized low dose CBF, CBV and MTT maps compared with standard 190mA maps are shown in Figure 3 and 
Table 3. The post-processed perfusion maps on ROIs capture the salient information of CBF, CBV and MTT maps, 
improve the spatial and contrast resolution, while removing the noise caused by the low radiation dose. 

 
Fig. 3. Comparisons of low dose, high dose and optimized low dose CBF, CBV and MTT maps on regions of interest: White Matter, 
Gay Matter, and Deep Gray Matter (corntex). (Best viewed in color) 

Metrics Pre STB Change Gaussian Change Median Change Diffusion Change 
MSE (sec2) 27.40 16.57 -39.53% 23.50 -14.23% 20.16 -26.42% 22.20 -19.00% 
NQM (dB) 25.37 27.73 9.30% 26.05 2.68% 27.32 7.69% 27.09 6.78% 
SNR (dB) 2.93 5.23 78.50% 3.68 25.60% 4.49 53.24% 3.94 24.47% 

 
Table 2. Quantitative evaluations comparing STB to three baseline methods 

Fig. 2. Analysis of low radiation dose MTT map before and after 
optimization using our algorithm, Gaussian filter, median filter and 
anisotropic diffusion, compared to the 190mA standard map. (Best viewed 
in color) 



 
 

 
 

 

5. LIMITATIONS 
Some limitations of this study include limited validation on a small number of in vivo data, and lack of clinical 
variability in our subjects, all of whom suffer from aneurysmal subarachnoid hemorrhage. Further work is planned using 
a larger study population with various types of ischemic disease or disease of the systemic circulation �– this will provide 
a better handle on the clinical significance of our method. In the near future, we plan to use spatial-temporal Bayesian 
model involving MRFs.  

6. CONCLUSION 
We proposed a simple piecewise parametric model of the residual function, whose parameters are estimated from a 
spatial-temporal Bayesian formulation. The resulting optimization problem is solved via a non-linear least square solver. 
From the fitted residual function, reliable CTP parameter maps are obtained from low radiation dose CT data. Both 
quantitative and qualitative evaluation results for CBF, CBV and MTT maps are presented. The optimized MTT map has 
a decrease in MSE of 39% and an increase in SNR of 78.50% at low radiation dose estimated at 43 mA. An analysis of 
specific regions of interest indicates significantly improved quality in both the grey and white matter. These results 
indicate clinically significant improvement over conventional deconvolution and SVD based approach.  
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