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Robust Low-dose CT Perfusion Deconvolution via
Tensor Total-Variation Regularization
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Abstract—Acute brain diseases such as acute strokes and
transit ischemic attacks are the leading causes of mortality and
morbidity worldwide, responsible for 9% of total death every
year. ‘Time is brain’ is a widely accepted concept in acute
cerebrovascular disease treatment. Efficient and accurate com-
putational framework for hemodynamic parameters estimation
can save critical time for thrombolytic therapy. Meanwhile the
high level of accumulated radiation dosage due to continuous
image acquisition in CT perfusion (CTP) raised concerns on
patient safety and public health. However, low-radiation leads to
increased noise and artifacts which require more sophisticated
and time-consuming algorithms for robust estimation. In this
paper, we focus on developing a robust and efficient framework
to accurately estimate the perfusion parameters at low radiation
dosage. Specifically, we present a tensor total-variation (TTV)
technique which fuses the spatial correlation of the vascular
structure and the temporal continuation of the blood signal flow.
An efficient algorithm is proposed to find the solution with fast
convergence and reduced computational complexity. Extensive
evaluations are carried out in terms of sensitivity to noise levels,
estimation accuracy, contrast preservation, and performed on
digital perfusion phantom estimation, as well as in-vivo clinical
subjects. Our framework reduces the necessary radiation dose
to only 8% of the original level and outperforms the state-of-art
algorithms with peak signal-to-noise ratio improved by 32%. It
reduces the oscillation in the residue functions, corrects over-
estimation of cerebral blood flow (CBF) and under-estimation of
mean transit time (MTT), and maintains the distinction between
the deficit and normal regions.

Index Terms—Computed tomography perfusion, radiation
dose safety, low-dose, tensor total variation, regularization, de-
convolution.

I. INTRODUCTION

Computed tomography perfusion (CTP) has important ad-
vantages in clinical practice due to its widespread availability,
rapid acquisition time, high spatial resolution and few patient
contraindications. Brain CTP has been proposed for improving
the detection of ischemic stroke and evaluation of the extent
and severity of hypoperfusion [1], [2]. Recently, the radiation
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exposure associated with CTP has raised significant public
concerns regarding its potential biologic effects, including hair
and skin damage, cataract formation and very small but finite
risk of cancer induction [3], [4]. Consensus has been reached
that the “as low as reasonably achievable” (ALARA) principle
should be executed more consistently. The low-dose protocols
are unfortunately leading to higher image noise, which is
compensated by using spatial smoothing, reduced matrix re-
construction and/or thick-slices, at the cost of lowering spatial
resolution [5], [6].

Recent efforts have focused on reducing radiation exposure
in CTP while maintaining the spatial resolution and the
quantitative accuracy. Various algorithms have been proposed
to reduce the noise in the reconstructed CT image series,
including the low-pass filtering, edge-preserving filtering such
as anisotropic diffusion [7], bilateral filtering [8], non-local
means [9], total variation regularization [10], spatio-temporal
filtering such as highly constrained back projection (HYPR)
[11] and multi-band filtering (MBF). These algorithms attempt
to reduce the noise in the reconstructed CT image series
(first step in Fig. 1), instead of improving the deconvolution
algorithms or the quantification of perfusion maps (second step
in Fig. 1). While improving the reconstructed CT images is
an important step towards robust and accurate hemodynamics
quantification, the deconvolution process itself to quantify
the hemodynamic parameter maps is an essential procedure
that generates the perfusion maps for disease diagnosis and
treatment assessment. A good preprocessing step to reduce
the noise combined with an unstable deconvolution algorithm
is not good enough for accurate parameter estimation. Thus,
perfusion parameter estimation via robust deconvolution is the
task we are tackling in this paper.

In this work, we propose a new robust deconvolution
algorithm to improve the quantification of the perfusion pa-
rameter estimation at low-dose by tensor total variation (TTV)
regularized optimization. All the previously mentioned noise
reduction algorithms for CT image series can complement our
model to further reduce the noise and improve the image
quality. While previous deconvolution methods have treated
each voxel’s concentration signal independently, efforts have
been put forward in recent years to take the spatial correlation
of the vascular structure and the temporal continuation of
the signal flow simultaneously. Spatio-temporal regularization
methods to stabilize the residue functions in the deconvolution
process have been proposed, including weighted derivative
[12], sparse perfusion deconvolution using learned dictio-
naries [13]–[16], tensor total variation [17], and Bayesian
hemodynamic parameter estimation [18] (these methods are
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Fig. 1. Framework of perfusion map estimation in CT perfusion.

reviewed in Section II). However these approaches lack a
strong convergence guarantee for the global optimal solution
to be reached, which is critical for perfusion quantification in
clinical practice.

The purpose of this original research is to develop and
evaluate the TTV regularized deconvolution framework for
low dose CTP data. The method is retrospectively evaluated in
terms of image quality and signal characteristics of low dose
brain CTP on both synthetic and clinical data.

The contribution of our work is six-fold: (i) we propose
to regularize the impulse residue functions instead of the
perfusion parameter maps; (ii) the optimization is performed
globally on the entire spatio-temporal data, instead of each
patch individually; (iii) total variation regularizer is extended
into the four dimensional sequence with distinction between
the temporal and spatial dimensions to couple their strength
with the optimal coalition; (iv) we provide a globally conver-
gent algorithm with a strong convergence guarantee to solve
the convex cost function; (v) there is no need of training data
or the learning stage, and (vi) our approach is able to compute
all the common perfusion parameters, including cerebral blood
flow (CBF), cerebral blood volume (CBV), mean transit time
(MTT) and time-to-peak (TTP). Finally we show that our
proposed approach reduces the necessary radiation dose to
only 8% of the original level and outperforms the state-of-art
algorithms with peak signal-to-noise ratio (PSNR) improved
by 32%. It also corrects over-estimation of CBF and under-
estimation of MTT, and maintains the distinction between the
deficit and normal regions.

II. RELATED WORK

In this section, we review recent robust deconvolution
algorithm for CT or MR perfusion (MRP) [10], [12], [13],
[15], [16], [18], [19], with an emphasis on the differences
between the previous contributions and our approach.

In [12], a 4-D spatio-temporal data structure is modeled as
a piecewise-smooth function with no distinction between the
temporal and spatial dimensions. There are two regularization
terms: one to penalize the gradient within the homogeneous
regions; another to control the weights of the gradient of the
edge fields. Though their formulation is inspired by [20], the
actual cost function does not have a convergence guarantee.
Contrary to their formulation, our proposed approach has the
following advantages: (i) the temporal and spatial components
are distinguished by assigning different weights and allowing

for optimal fusion of their strength; and (ii) it has a conver-
gence guarantee of the convex optimization function.

In [19], the low-dose residue functions are sparsely repre-
sented by a linear combination of high-dose residue functions
from the repository to remove the noise. The sparsity prior
restricts the number of selected candidate residue functions
and encourages high-fidelity data restoration. However this
approach requires residue functions computed from high-dose
perfusion data for learning a dictionary, and the patch-wise
sparse representation of the spatio-temporal representations is
computational expensive. In contrast, our proposed approach
requires no high-quality data for training or learning the
dictionary, and performs on the entire 4-D data structure si-
multaneously with an efficient algorithm and fast convergence
rate.

In [13], [15], [16], a patch-wise sparse perfusion deconvo-
lution approach is proposed for low-dose deconvolution. It has
two regularization terms: the first one penalizes the error of
perfusion map reconstruction from the dictionary patches, the
second one penalizes the number of non-zeros in the selection
coefficient from the dictionary. The data fidelity term is based
on the basic kinetic flow model. Extensions with tissue-specific
dictionaries and different perfusion parameters such as blood-
brain-barrier permeability are also proposed. However, this
line of work needs a training stage on the high-dose data, and
the patch-based computation of the perfusion parameters are
relatively slow. Each perfusion map also needs to be optimized
separately, instead of being computed from one joint model.
On the other hand, our proposed approach does not require
data and time for training, and the global optimization on the
entire 4-D data yields residue functions that can generate all
the common perfusion parameter maps in one shot.

In [18], a Bayesian probabilistic framework is proposed to
estimate hemodynamic parameters, delays, theoretical residue
functions and concentration time curves. Multiple stationary
assumptions and new parameters need to be introduced. More-
over the computation of the Bayesian maximum likelihood
takes about 10 min on a 256 × 256 × 25 instances. On
the contrary, our proposed method does not need complex
Bayesian framework and only take less than one minute for
computation on a 512× 512× 118 spatio-temporal data.

The deconvolution approach proposed in this paper is also
distinct from the previous work which uses edge-preserving
total variation [10] in low-dose CT reconstruction. [10] focuses
on the reconstruction procedure from sinogram to images
using inverse Radon transform while our work addresses the
deconvolution procedure from image sequences to perfusion
maps based on the Indicator dilution theory [21]. Besides this,
both the data term and the regularization terms in our paper
have substantially different meanings from their definitions.
For CT reconstruction, the data term is a projection process,
while for deconvolution, it is a spatial-temporal convolution.
The TV regularization term is a regularization on 2D CT
images for CT reconstruction, while we extended it to 4D
tensor regularization involving both the temporal and the
spatial correlation information in the deconvolution. To our
knowledge, this is the first research proposing tensor total-
variation to stabilize the deconvolution process.
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III. MATERIALS AND METHODS

A. Data acquisition and preprocessing

Clinical dataset

Retrospective review of consecutive CTP exams in an IRB-
approved and HIPAA-compliant clinical trial from August
2007-June 2014 was used. Twelve consecutive patients (10
women, 2 men) admitted to the Weill Cornell Medical College,
with mean age (range) of 53 (35-83) years were included.
6 subjects (1-6) had brain deficits caused by aneurysmal
subarachnoid hemorrhage (aSAH) or ischemic stroke, and the
other 6 subjects (7-12) had normal brain images. CTP was
performed with a standard protocol using GE Lightspeed Pro-
16 scanners (General Electric Medical Systems, Milwaukee,
WI) with cine 4i scanning mode and 60 second acquisition at
1 rotation per second, 0.5 sec per sample, using 80 kVp and
190 mA. Four 5-mm-thick sections with pixel spacing of 0.43
mm between centers of columns and rows were assessed at
the level of the third ventricle and the basal ganglia, yielding
a spatio-temporal tensor of 512× 512× 4× 118 where there
are 4 slices and 119 temporal samples. Approximately 45 mL
of nonionic iodinated contrast was administered intravenously
at 5 mL/s using a power injector with a 5 second delay.
These acquired CTP data at high-dose were considered the
reference standard for comparison to lower-dose CTP. For data
analysis, vascular pixel elimination was applied by using a
previously described method [22], in which the threshold for a
vascular pixel was 1.5 times the average CBV of the unaffected
hemisphere.

Low-dose simulation

To avoid the unethical repetitive scanning of the same
patient at different radiation doses, we follow the practice in
[23], [24] to simulate low-dose CT scan by adding spatially
correlated statistical noise to the reconstructed CT images (be-
fore deconvolution). The tube current-exposure time product
(mAs) varies linearly with the radiation dosage level. The
dominant source of noise in CT imaging is quantum mottle
and it is inversely proportional to the square root of mAs
(1/
√

mAs).
The standard deviation of the added noise is computed by

σa = K · (1

I
− 1

I0
)

1
2 (1)

where I and I0 are the tube current-exposure time product
(mAs) at low-dose and normal dose. K is calibrated on 22
patients and the average value of K = 103.09mA

1
2 . Gaussian

noise is convolved with the noise autocorrelation function
(ACF) generated from scanned low-dose phantom and scaled
to the desired σa. For low-dose tube current of 30, 15 and 10
mAs gives the standard deviation σa = 17.27, 25.54, 31.73.
The noise spectrum of any simulated noise added to any image
by this procedure is guaranteed to have the spectral property
observed in an actual CT scan of the phantom on the same
scanner.

Synthetic dataset

Because the clinical CTP does not have ground truth per-
fusion parameter values for comparison, we first use synthetic
data to evaluate the proposed algorithm. The arterial input
function (AIF) is simulated using a gamma-variant function
[25] with the analytical form of:

cart(t) =

{
0 if t ≤ ta
a(t− ta)be−(t−ta)/c if t > ta

(2)

where ta is bolus arrival time to any given region. Generally,
a = 1, b = 3, c = 1.5 s, ta = 0 are used to generate
AIF typically obtained for a standard injection scheme. The
transpose function h(t) is

h(t;α, β) =
1

βαΓ(α)
tα−1e−t/β α, β > 0 (3)

We set β = MTT/α to satisfy the central volume the-
orem [26]. Three types of experiments were performance
on synthetic data: residue function recovery, uniform region
estimation and contrast preserving.

Digital brain perfusion phantom

To provide a more authentic evaluation of the deconvolution
algorithms on brain perfusion data, we use the Digital Brain
Perfusion Phantom package1 provided by Pattern Recognition
Lab, FAU Erlangen-Nurnberg, Germany. The package offers
data and MATLAB tools to create a realistic digital 4D brain
phantom with user-input regions of infarct core and ischemic
penumbra in the white and gray matters, as well as the healthy
tissue. Since the classical digital CT perfusion phantoms
usually consist of homogeneous structures and therefore have a
very sparse representation in transformed domains, this digital
phantom derived from a human volunteer with additionally
created spatial variation allows a more realistic evaluation
platform for non-linear regularization of perfusion CT with
regions with high intrinsic variability.

B. Computation of perfusion parameters using deconvolution

The computational framework of the perfusion parameters
in CTP has been well explained in a review paper by [27].
We briefly introduce the mathematic functionals here and lay
the foundation for our proposed algorithm. For a volume
under consideration vvoi, let cart be the local contrast agent
concentration at the artery inlet, and cvoi be the average
contrast agent concentration in vvoi. ρvoi is the mean density
of the volume vvoi. CBF is defined as the blood volume flow
normalized by the mass of the volume vvoi and is typically
measured in mL/100g/min. CBV quantifies the blood volume
normalized by the mass of vvoi and is typically measured in
mL/100g. MTT usually measured in seconds, is defined as
the first moment of the probability density function h(t) of
the transit times. TTP of the time-concentration curve is the
time for the contrast concentration to reach its maximum.

Furthermore, the (dimensionless) residue function R(t)
quantifies the relative amount of contrast agent that is still
inside the volume vvoi of interest at time t after a contrast

1http://www5.cs.fau.de/data
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agent bolus has entered the volume at the arterial inlet at time
t = 0, as

R(t) =

{
1−

∫ t
0
h(τ)dτ if t ≥ 0

0 if t < 0
(4)

Due to the various transit times within the capillary bed, the
contrast will leave the volume gradually overtime. According
to the indicator-dilution theory, the time attenuation curve
(TAC) cvoi can be computed by

cvoi(t) = CBF · ρvoi ·
∫ ∞
−∞

cart(τ)R(t− τ)dτ

= CBF · ρvoi · (cart ⊗R)(t)

(5)

where ⊗ denotes the convolution operator. Here the variables
cvoi(t) and cart(t) can be measured and are known, whereas
the values of CBF, R(t) and ρvoi are unknown. To compute
the perfusion parameters, an intermediate variable, the flow-
scaled residue function K(t) is introduced:

K(t) = CBF · ρvoi ·R(t) (6)

which is given in units of 1/s. The function cart(t) is usually
replaced by a global arterial input function (AIF) measured in
a larger feeding artery in order to achieve a reasonable signal-
to-noise ratio (SNR). In brain perfusion imaging, the anterior
cerebral artery is often selected. Thus, Eq. (4) can be rewritten
as

cvoi(t) = (AIF ⊗K)(t) (7)

Hence K(t) can be computed from the measured data
AIF (t) and cvoi(t) using a deconvolution method, and the
perfusion parameters may be determined as

CBF =
1

ρvoi
·max (K(t))

MTT =
1

max (K(t))
·
∫ ∞
0

K(τ)dτ

CBV = MTT · CBF =
1

ρvoi
·
∫ ∞
0

K(τ)dτ

TTP = arg max
t

cvoi(t) = arg max
t

(AIF ⊗K)(t)

(8)

Here using max (K(t)) instead of K(0) has particular
practical advantages due to bolus delay, defined as the delay
time between the contrast arrival at tissue and the artery due
to disease or other reasons.

In practice, AIF and cvoi(t) are sampled at discrete time
points, ti = (i − 1) · ∆t with i = 1, . . . , T . Eq. (7) can be
discretized as

cvoi(ti) =

∫ ∞
0

AIF (τ)K(t− τ)dτ

≈ ∆t

T∑
j=1

AIF (tj)K(ti−j+1)

= ∆t

T∑
j=1

AIF (ti−j+1)K(tj)

(9)

Here we assume that the values of AIF (t) can be neglected
for t > T . The end of summation index can also be set to i

instead of T since K(t) = 0 for t < 0. For a voxel of interest,
Eq. (9) can be abbreviated as

c = Ak (10)

where ∆t and AIF (ti) are incorporated in the matrix A ∈
RT×T , cvoi(ti) and K(ti) represent the entries in vectors c ∈
RT and k ∈ RT . For a volume of interest with N voxels, we
have

C = AK (11)

where C = [c1, . . . , cN ] ∈ RT×N , K = [k1, . . . , kN ] ∈
RT×N represent the contrast agent concentration and scaled
residue function for the N voxels in the volume of interest.

In practice, the causality assumption in Eq. (9), i.e. the voxel
signal cannot arrive before the AIF, may not hold. The AIF
can lag cvoi(t) by a time delay td in practice because the
measured AIF is not necessarily the true AIF for that voxel,
thus resulting in AIF (t) = cart(t− td). For instance, this lag
can happen when the chosen AIF comes from a highly blocked
vessel. Thus the calculated R′(t) should be R(t + td) to
yield cvoi(t) at the voxel. However the causuality assumption
in Eq. (9) makes the estimation of R′(t) improper. Circular
deconvolution has been introduced to reduce the influence of
bolus delay [28], where R′(t) can be represented by time
shifting R(t) circularly by td.

Specifically, cart(t) and cvoi(t) are zero-padded to length
L, to avoid time aliasing in circular deconvolution, where
L ≥ 2T . We denote the zero-padded time series as c̄art ∈
RL×1 and c̄voi ∈ RL×1. Matrix A is replaced with its block-
circulant version Acirc, with the elements (acirc)i,j of the
block-circulant matrix Acirc ∈ RL×L defined as in [27] with
the form of

(acirc)i,j =

{
cart(ti−j+1), for j ≤ i
cart(tL+i−j+1), for j > i

(12)

In this paper, we set L = 2T , and Eq. (10) can be replaced
by

c̄ = Acirck̄ (13)

and Eq. (11) can be replaced by

C̄ = AcircK̄ (14)

where c̄ ∈ RL×1 and k̄ ∈ RL×1 are the zero-padded time
series of c and k, as

c̄ = [c1, c2, . . . , cN , 0, 0, . . . , 0]T (15)

k̄ = [k1, k2, . . . , kN , 0, 0, . . . , 0]T

Similarly, C̄ ∈ RL×N and K̄ ∈ RL×N are the zero-padded
time series of C and K. For simplicity, we use C, A and K
to represent the block-circulant version in Eq. (14) in the rest
of the paper.
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C. Tensor total variation regularized deconvolution

The least square solution of Eq. (11) is equivalent to
minimizing the squared Euclidean residual norm of the linear
system given by Eq. (11) as

Kls = arg min
K∈RT×N

(‖AK − C‖22) (16)

However, for the ill-conditioned Toeplitz matrix A, the least-
square solution Kls does not represent a suitable solution.
A small change in C (e.g. due to projection noise or low-
dose scan) can cause a large change in Kls. Regularization is
necessary to avoid the strong oscillation in the solution due to
small singular values of matrix A.

Our assumption is that since the voxel dimensions in a
typical CTP image are much smaller than tissue structures
and changes in perfusion are regional effects rather than single
voxel effects. Within extended voxel neighborhoods the per-
fusion parameters will be constant or of low-variation, while
it is also important to identify edges between different regions
where tissues undergo perfusion changes, particularly deficit
regions. Specifically the pixel spacing of our clinical data is
0.43 mm between the centers of adjacent rows and columns.
In comparison, the tissue structure of the white matter and
gray matter usually in the range of 10-50 pixels with relatively
similar perfusion parameters or residue functions.

We introduce the tensor total variation regularizer to the
data fidelity term in Eq. (16) as

Kttv = arg min
K∈RT×N

(
1

2
‖AK − C‖22 + ‖K‖TV ) (17)

It is based on the assumption that the piecewise smooth
residue functions in CTP should have small total variation.
The tensor total variation term is defined as

‖K‖γTTV =
∑
i,j,k,t

√√√√ 4∑
d=1

(γd∇dK̃)2 (18)

where ∇d is the forward finite difference operator in di-
mension d, and K̃ ∈ RT×N1×N2×N3 is the 4-D volume
obtained by reshaping matrix K based on the spatial and
temporal dimension sizes. Here N = N1 × N2 × N3 is the
total number of voxels in the entire CTP data and T is the
time duration of the whole sampling sequence. Note that the
computation is performed on the entire spatio-temporal data
in one shot, instead of splitting the data into patches. So
there is no parameter for the neighborhood size in the TTV
regularization. The forward finite difference is computed based
on the difference between two adjacent voxels only, just as
in the standard TV. Non-local total variation with difference
between non-adjacent voxels would be an interesting research
direction in the future. The tensor total variation term here
uses the forward finite difference operator using L1 norm.
The regularization parameter γi, i = t, x, y, z controls the
regularization strength for the temporal and spatial dimension.
The larger the γi, the more smoothing the TV term imposes
on the residue function in ith dimension.

Since the TV term is non-smooth, this problem is difficult to
solve. The conjugate gradient (CG) and PDE methods could be

Algorithm 1 The framework of TTV algorithm.
Input: Regularization parameters γi, i = t, x, y, z
Output: Flow-scaled residue functions K ∈
RT×N1×N2×N3 .
K0 = 0
t1 = r1 = K0

for n = 1, 2, . . . , N do
(1) Steepest gradient descent

Kg = rn + sn+1AT (C −Arn)

where sn+1 = vec(Q)T vec(Q)
vec(AQ)T vec(AQ)

, Q ≡ AT (Arn − C)
(2) Proximal map:

Kn = proxγ(2‖K‖TV )(foldt(Kg))

where proxρ(g)(x) := arg min
u

{
g(u) + 1

2ρ‖u− x‖
2
}

(3) Update t, r

tn+1 = (1 +
√

1 + 4(tn)2)/2

rn+1 = Kn + ((tn − 1)/tn+1)(Kn −Kn−1)

end for

used to attack it, but they are very slow and impractical for real
CTP images. Motivated by the effective acceleration scheme
in Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)
[29], we propose an algorithm to efficiently solve the problem
in Eq. (17) based on the framework of [29], which uses FISTA
for TV regularization.

The proposed scheme include the following well-known
important algorithms:

FISTA: FISTA considers minimizing the following prob-
lem:

min f(x) + g(x), x ∈ Rp (19)

where f is a smooth convex function with Lipschitz constant
Lf and g is a convex function which may be non-smooth. An
accelerated scheme is conceived in FISTA to obtain ε-optimal
solution in O( 1√

ε
) iterations.

Steepest gradient descent: To find a local minimum of
a function, steepest gradient descent takes steps proportional
to the negative of the gradient of the function at the current
point. An adaptive step size s [30] is used because the ill-
conditioned matrix A makes the solution sensitive to the noise
in the observation C. In Algiorithm 1, vec(x) means stacking
the values in x as a vector.

The proximal map: Given a continuous convex function
g(x) and any scalar ρ > 0, the proximal map associated to
function g is defined as follows [29]

proxρ(g)(x) := arg min
u

{
g(u) +

1

2ρ
‖u− x‖2

}
(20)

For the proximal map, we extended the 2-dimensional TV
regularizer in [29] to 4-dimensional and adapted the algorithm
to tensor total variation regularization. The entire algorithm is
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shown in Algorithm 1. Since the cost function in Eq. (17)
is convex, global optimal solution can be reached using the
proposed algorithm.

IV. EXPERIMENTS

A. Baseline methods

There are four baseline deconvolution methods we com-
pare against: standard truncated singular value decomposition
(sSVD) [25], block-circulant truncated SVD (bSVD) [28],
Tikhonov regularization [27] and sparse perfusion deconvo-
lution (SPD) [13]. A threshold value λ is empirically chosen
as 0.15 (15% of the maximum singular value) to yield optimal
performance for SVD-based and Tikhonov algorithms. The
first three methods are the most widely used regularized decon-
volution methods for CTP, and widely adopted by commercial
medical software [31]. SPD is the state-of-art algorithm for
low-dose CTP deconvolution. We also further compare with
the state-of-art noise reduction method - time-intensity profile
similarity (TIPS) bilateral filter [8] - as a preprocessing step
before deconvolution. TIPS reduces noise in 4D CTP scans
while preserving the time-intensity profiles that are essential
for determining the perfusion parameters. The parameters of
TIPS filtering are set as recommended in [8], with half width
= 5, and the standard deviation = 3 for the spatial dimension
and 0.1 for the temporal dimension. We compare with two
combinations of TIPS with deconvolution algorithms: TIPS +
bSVD and TIPS + TTV, to examine the strength of TIPS in
improving the accuracy of perfusion parameters by reducing
the noise in preprocessing. We choose these two combinations
as typical examples because bSVD is the mostly widely used
deconvolution algorithm in commercial software, and TTV is
the proposed robust deconvolution algorithm. Thus in total
there are seven algorithms to compare with: sSVD, bSVD,
TIPS+bSVD, Tikhonov, SPD, TTV and TIPS+TTV, in the
following experiments.

B. Implementation details

All algorithms were implemented using MATLAB 2013a
(MathWorks Inc, Natick, MA) on a MacBook Pro with Intel
Core i7 2.3G Hz Duo CPU and 16GB RAM. One-tail student
test is used to determine whether there is significant difference
between the evaluation metrics of the comparing algorithms.
A α level of .05 is used for all statistical tests to indicate
significance.

C. Initialization

The initialization of the TTV algorithm is important for
efficient optimization. Since the TTV algorithm is globally
optimal, a good initialization would expedite the process to
find the optimal solution. In Algorithm 1, we initialize the TTV
algorithm with r1 = 0 because there is no need to compute any
initial solution from existing deconvolution algorithms, and
therefore improves the efficiency. We perform an experiment
on the digital perfusion brain phantom using TTV algorithm
initialized with zero, the solution of bSVD, and TIPS+TTV
initialized with zero. Fig. 2 shows the convergence of the cost
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Fig. 2. (a) Convergence of cost function over iterations using TTV initialized
with zeros, solution of bSVD and TIPS+TTV. (b) Enlarged convergence curve
of first five iterations.

function of TTV algorithm. It demonstrates that though TTV
initialized with the solution of bSVD does have a relatively
lower cost to start with, the improvement is minor and by the
third iteration, the difference of initialization has disappeared.
The plot also shows that TIPS preprocessing does not further
improve the optimization to a lower cost. Therefore, initialize r
with zero is a practical and efficient option for TTV algorithm.

D. Evaluation metrics

Three metrics were used to evaluate the image fidelity to the
reference: Root mean-squared-error (RMSE), PSNR and Lin’s
Concordance Correlation Coefficient (CCC). RMSE evaluates
the variability of the estimated low-dose maps compared to the
reference. A value close to 0 indicates a smaller difference of
data compared to the reference. PSNR reflects the signal-to-
noise relationship of the result, and a higher PSNR indicates
higher data quality. It is also used in the paper to describe
the noise level. Lin’s CCC measures how well a new set of
observations reproduce an original set, or the degree to which
pairs of observations fall on the 45 line through the origin.
Values of ±1 denote perfect concordance and discordance; a
value of zero denotes its complete absence. In clinical CTP
data, the maximum value in CT data is around 2600 HU, and
simulated low-dose of 15 mAs yields σa = 25.54, which gives
PSNR=40 for the noise level. In the synthetic evaluations, we
conducted experiments at much lower PSNRs to highlight the
differences between algorithms at even lower radiation.

V. RESULTS

In this section, we describe our experiment design and
results on three types of data: synthetic, digital brain phan-
tom, and clinical subjects. The three types of data provide
complementary evaluation of the proposed method compared
to various baseline methods. The synthetic data gauge the
fundamental properties of TTV in residue function recovery,
uniform region estimation, contrast preservation, and accuracy
at varying perfusion parameter values and noise levels. The
digital brain phantom allows for a more authentic evalua-
tion by providing a brain model based on real physiological
data and avoiding sparsity by continuously varying perfusion
parameters and anatomical structures of MR data. Finally
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the clinical in-vivo data provides realistic evaluation at vary-
ing radiation dosage levels. The subjects with normal brain,
aneurysmal subarachnoid hemorrhage (aSAH) and acute stroke
also allow the evaluation of diagnosis accuracy based on the
perfusion maps computed from the deconvolution algorithms.
Overall, the three types of data with the comprehensive ex-
periment designs give a thorough assessment of the proposed
method, as compared to the state-of-art. The MATLAB source
code will be publicly available at the authors’ webpage2.

A. Synthetic Data

Due to the lack of ground truth perfusion parameter values
in clinical data, we first evaluate the proposed method on
synthetic data.

1) Noise Power Spectrum: To prove that the simulated
noise is comparable to the real noise in the low-dose scans,
we generate low-dose phantom by adding correlated Gaussian
noise on a CT phantom with a uniform circular region in
the background. The noise power spectrum of the simulated
and real low-dose phantoms at 10 mA are shown in Fig. 3
(a). From the figure, we could observe that the simulated and
real low-dose phantoms have highly comparable noise power
spectrum, indicating that the low-dose simulating method
adopted in this paper is valid.

2) Residue Function Recovery: We first evaluate the decon-
volution methods in residue function recovery. We produce the
AIF and residue functions according to Eq. (2) and (4). Then
cvoi is generated using Eq. (5), followed by adding correlated
Gaussian noise to cvoi to simualted low-dose contrast curve at
10 mA. Finally all the competing algorithms are performed on
cvoi and AIF to compare their ability in recovering the ideal
residue functions.

The residue function recovered by the baseline methods and
TTV are shown in Fig. 3(b-f). The baseline methods show
unrealistic oscillation with negative values and elevated peaks,
while the residue function recovered by TTV and TIPS+TTV
are more in agreement with the reference. Since the maximum
value of the residue function is defined as CBF, all the baseline
methods over-estimate CBF while TTV-based algorithms has
nearly accurate estimation of CBF. Because TTV already has
noise removal property, preprocessing with TIPS does not
further improve the residue function recovery. On the other
hand, even with TIPS preprocessing to remove the noise in
the low-dose CTP data, the popular bSVD algorithm still fails
to recover the ground truth residue function or the perfusion
parameters accurately. This indicates that preprocessing steps
of the noisy CTP data can not surrogate a robust deconvolution
algorithm to recover the residue functions.

3) Uniform region estimation: Once the residue function
are recovered, perfusion parameters CBF, CBV, MTT and TTP
can be estimated using Eq. (8). To analyze the perfusion pa-
rameter accuracy in the homogeneous region, we first experi-
ment on a small uniform region of 40×40 voxels with the same
perfusion characteristics, and compute the mean and standard
deviation of the perfusion parameters over this region. We set
CBV = 4 mL/100 g, and vary CBF and MTT values or PSNR

2http://users.cs.fiu.edu/∼rfang/software.html

0 50 100 1500

5

10

15 x 106

(a) Frequency (Hz)

N
oi

se
 P

ow
er

 

 

Reference
Simulated

0 20 40 60−10

0

10

20

30

(b) t(s)

C
BF

.R
(t)

sSVD

0 20 40 60−10

0

10

20

30

(c) t(s)

C
BF

.R
(t)

bSVD

0 20 40 60−10

0

10

20

30

(d) t(s)

C
BF

.R
(t)

TIPS+bSVD

0 20 40 60−10

0

10

20

30

(e) t(s)

C
BF

.R
(t)

Tikhonov

0 20 40 60−10

0

10

20

30

(f) t(s)

C
BF

.R
(t)

TTV

0 20 40 60−10

0

10

20

30

(g) t(s)

C
BF

.R
(t)

TIPS+TTV

0 20 40 60−10

0

10

20

30

(h) t(s)

BF
.R

(t)

Reference

0 50 100 1500

2

4

6

8

10x 106

(a) Frequency (Hz)

N
oi

se
 P

ow
er

 

 

Reference
Simulated

0 20 40 60−10

0

10

20

30

(b) t(s)

BF
.R

(t)

Reference

0 20 40 60−10

0

10

20

30

(c) t(s)

C
BF

.R
(t)

sSVD

0 20 40 60−10

0

10

20

30

(d) t(s)

C
BF

.R
(t)

bSVD

0 20 40 60−10

0

10

20

30

(e) t(s)

C
BF

.R
(t)

Tikhonov

0 20 40 60−10

0

10

20

30

(f) t(s)

C
BF

.R
(t)

TTV

Fig. 3. The Noise power spectrum and the recovered residue functions by
baseline methods and TTV. (a) The noise power spectrum is of the scanned
phantom image at 10 mAs and simulated statistical correlated Gaussian noise
at 10 mA. (b)-(f) The parameters used for residue function recovery are the
simulation is CBV = 4 mL/100 g, CBF = 20 mL/100 g/min, PSNR=25. SPD
is not included since it optimizes the perfusion maps directly.
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Fig. 4. Visual comparison in a uniform region of perfusion parameter (CBF,
CBV, MTT, TTP) estimation using baseline methods and TTV. The ideal
variation is 0. The reference is the ground truth at CBV = 4 mL/100 g, CBF
= 15 mL/100 g/min, MTT = 16 s, TTP = 12 s, PSNR = 15.

values to gauge the performance of competing deconvolution
algorithms at a wide range of possible conditions. The standard
deviation of each algorithm is also computed to judge their
stability. Quantitative results are reported to give a detailed
comparison using a number of evaluation metrics.

Visual comparison: The ideal variability of the perfusion
maps in the uniform region should be zero while the esti-
mated perfusion parameters should be close to ground truth.
Fig. 4 shows the estimated perfusion maps of the reference
and four methods on the uniform region. While the SVD-
based methods (sSVD, bSVD, Tikhonov) behave poorly in
recovering the smooth region, TTV yields accurate estimation
of the perfusion maps for all four maps. SPD reduces the
noise level in estimating CBF and TTP, but is unable to
well recover CBV and MTT. It also over-estimate CBF and
under-estimate MTT. TIPS preprocessing reduces the noise to
certain extent and does improve the perfusion map accuracy
and homogeneity when deconvolved with bSVD, yet the noise
and artifacts still remain the CBF, MTT and TTP maps.
In comparison, TTV not only decreases the noise standard
deviation in the estimated perfusion maps, but also restores
the accurate quantitative parameters for all maps. TIPS does
not further improve the performance of TTV except for TTP,
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Fig. 5. Comparison of the accuracy in estimating CBF and MTT by sSVD, bSVD, Tikhonov and TTV deconvolution methods. True CBV = 4 mL/100 g.
The error bar denotes the standard deviation. (a) Estimated CBF values at different true with PSNR=15. (b) Estimated MTT values at different true MTT with
PNSR=15. (c) Estimated CBF values at different PSNRs with true CBF=15 mL/100 g/min. (d) Estimated MTT values at different PSNRs with true MTT =
16 s.
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Fig. 6. Comparisons of reducing variations over homogeneous region of (a) CBF at different CBF values with PSNR = 15. (b) MTT at different true MTT
values with PSNR = 15. (c) CBF at different PSNR values with true CBF = 15 mL/100 g/min. (d) MTT at different PSNR values with true MTT = 16 s.

TABLE I
AVERAGE RMSE AND LIN’S CCC OF THE PERFUSION MAPS (CBF, MTT AND TTP) IN A SYNTHETIC UNIFORM REGION OF FIG. 5. ‘ESTIMATED’ MEAN
THE PERFUSION PARAMETER TO BE ESTIMATED, ‘VARYING’ MEANS THE VARYING CONDITION IN THE EVALUATION. WHEN THE VARYING PARAMETER IS
CBF/MTT, THE RMSE AND LIN’S CCC ARE AVERAGED OVER DIFFERENT TRUE CBF/MTT VALUES. WHEN THE VARYING PARAMETER IS PSNR, THE

RMSE IS AVERAGED OVER DIFFERENT PSNR VALUES. THE BEST PERFORMANCE IS HIGHLIGHTED IN BOLD FONT.

Estimated CBF (mL/100 g/min) MTT (s) TTP (s)

Varying CBF/MTT PSNR CBF/MTT PSNR CBF/MTT PSNR
Method/Metric RMSE Lin’s CCC RMSE RMSE Lin’s CCC RMSE RMSE Lin’s CCC RMSE

sSVD 11.69 0.888 36.38 3.60 0.785 10.86 0.47 0.985 2.80
bSVD 7.56 0.931 36.24 3.65 0.772 10.92 0.56 0.977 5.73

TIPS+bSVD 7.04 0.941 4.60 1.08 0.984 3.19 0.57 0.976 0.84
Tikhonov 7.96 0.919 31.57 3.44 0.791 10.64 0.68 0.967 1.98

SPD 7.52 0.931 36.16 3.65 0.773 10.92 5.24 0.977 7.87
TTV 1.60 0.997 0.29 0.71 0.994 0.36 0.52 0.978 0.63

TIPS+TTV 1.60 0.997 0.29 0.71 0.994 0.36 0.52 0.978 0.63

which is more sensitive to noise since it finds the time stamp
of the curve peak. The conclusion from this experiment agrees
with the residue function recovery result, where TTV performs
the best among all deconvolution algorithms, and purely using
TIPS for preprocessing could not solve the issues embedded
in the deconvolution algorithms.

Varying perfusion parameters: To evaluate the robustness
of the deconvolution algorithms at different perfusion parame-
ter values (such as in different tissue types or diseased/healthy
regions), we vary the CBF value while keeping CBV the same.
Fig. 5 (a)-(b) show the estimated CBF and MTT values at
varying CBF values. Obviously, while sSVD tends to over-
estimate CBF in all cases, other baseline methods overestimate

CBF when CBF is less than 60 mL/100 g/min, and under-
estimate CBF when CBF is greater than 60 mL/100 g/min.
For MTT, the baseline methods tend to under-estimate MTT.
TIPS help to adjust the estimated perfusion parameters to
the reference with certain extent, but still deviates from the
ground truth. By comparison, TTV has a robust performance
in estimating the perfusion parameters at varying CBF values.

Varying PSNR: To explore the effect of noise levels on the
performance of perfusion parameter estimation, we simulate
different levels of noise (PSNR varies from 5 to 60) and
fix CBF at 15 mL/100 g/min, MTT at 16 s and CBV at
4 mL/100 g. Fig. 5 (c)-(d) show the estimation results. As
PSNR decreases, the baseline methods over-estimate CBF
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and under-estimate MTT. TIPS, as shown in the previous
experiments, helps to improve the accuracy to some degree
but not perfectly. TTV consistently generates more accurate
estimation of CBF than the baseline methods across a broad
rage of noise levels. Moreover, while the accuracy of the
baseline methods degrades dramatically as the noise level
increases, TTV method appears to be remarkably stable.

Stability: Stability refers to the standard deviation of the es-
timated perfusion parameters in repetitive experiments. Stable
algorithms is capable of reproducing the same result every
time, while unstable algorithms may yield highly distinct
output even for the same setup. Thus, stability is a desired
property of a robust deconvolution algorithm. As shown in
Fig. 6(a)-(b) (where CBF or MTT varies) and Fig. 6 (c)-
(d) (where PSNR varies), TTV produces lower CBF and
MTT variations than all the baseline algorithms. SPD achieves
relatively lower variation, but has lower accuracy of CBF and
MTT estimation. TIPS reduces the variation of the bSVD
deconvolution algorithm but is less stable compared to TTV.
In the meantime, TIPS does not further improve the stability
of TTV, which validates the inherent denoising capability of
TTV deconvolution algorithm.

Quantitative comparison: To quantitatively compare the
accuracy of perfusion parameters in the uniform region, Table I
shows RMSE and Lin’s CCC for Fig. 5.CBV is not included
because it does not vary. Lin’s CCC are not shown for varying
PSNR because the true value for the estimated perfusion
parameter does not change and thus Lin’s CCC becomes
zero. For CBF and MTT, the most important two perfusion
maps for disease diagnosis, TTV-based algorithm significantly
outperforms the baseline methods with large margin. In TTP
map, sSVD achieves relatively better result when CBF/MTT
vary, but the different is small. When PSNR varies, TTV
maintains the least RMSE in estimating TTP. An interesting
observation is that while the third columns in Table I has
higher RMSE than these in the first columns for all baseline
methods, TTV has lower RMSE in the third column than in
the first column. By observing Fig. 5, it is not difficulty to
find that TTV is remarkably robust at different PSNR values,
especially at very low PSNR, as shown in Fig. 5(c) and (d).
The errors introduced by TTV at different PSNR values are
even smaller than those at different true CBF/MTT values.
In contrast, the baseline methods either over-estimate CBF
or under-estimate MTT at different ground truth CBF/MTT
values, but within certain bound, while the error at decreasing
PSNR almost increases exponentially. This explains why in
Table I TTV reverses the trend in RMSE contrary to the
competing methods.

4) Contrast preserving: Contrast is an important indicator
of how well two neighboring different regions can be dis-
tinguished. The contrast of perfusion parameters between the
normal and abnormal tissue computed using the deconvolution
algorithm from the noisy data should be comparable to that of
the noise-free CTP data. To compare the performance of the
baseline methods and TTV in preserving contrast, we generate
synthetic CTP data spatially containing two 40× 20 uniform
regions with different perfusion characteristic. Peak contrast-
to-noise ratio (PCNR) is defined as PCNR = max |I1−I2|/σ,

Fig. 8. The digital brain perfusion phantom with user-delineated infarct core -
severely reduced blood flow (orange) and ischemic penumbra - reduced blood
flow (yellow) regions.

where I1 and I2 are the perfusion parameter values of then
two images to be compared for contrast. Typical perfusion
parameters of the gray matter and the white matter are chosen
for the two halves of the region.

Fig. 7 shows the estimated CBF and MTT by the different
algorithms when PCNR=1 and 0.2. The corresponding σ=40
and 200.

When PCNR = 1 and the noise level is moderate, SVD-
based methods without preprocessing fails to preserve the
uniform regions in each half, while the edge is reasonably
maintained. SPD performs well in preserving the homoge-
neous regions in CBF, CBV and TTP but for the most sensitive
perfusion map MTT, the noise level is relatively high. TTV
performs well on recovering all the perfusion maps while
keeping the boundary between the two regions sharp. TIPS
preprocessing does help to remove the noise and improve the
quality of the perfusion maps significantly when combined
with bSVD at this PCNR level, but does not further improve
the TTV performance.

When PCNR = 0.2, the story is different. At such a low
contrast-to-noise ratio, it is extremely hard to recover the
perfusion maps accurately. SVD-based algorithm could hardly
preserve the boundary between the two regions, and the noise
level is so high that salient information cannot be identified.
They also over-estimate CBF and under-estimate MTT when
observing the gray-scale color of the maps. SPD reduces the
noise level slightly yet the boundary can not be well identified.
TIPS removes the noise significantly to recover the perfusion
maps, but due to the smoothing in the spatial domain, the
boundary of CBF, MTT are blurred. TTV performs favorably
compared to all baseline methods in preserving the edges
between two adjacent regions in CBF and MTT, as well
as accurate estimation of perfusion parameters. Though the
variation in the most sensitive map MTT is observable, the
boundary is clearly shown. With TIPS, TTV could further
reduce the noise level, yet also blur the boundary.

B. Digital brain perfusion phantom

A digital brain perfusion phantom is generated using the
MATLAB toolbox. The diseased tissue with reduced or
severely reduced blood flow are annotated manually on the
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Fig. 7. Comparisons of perfusion maps (CBF, CBV, MTT, TTP) estimated by the different deconvolution algorithms in preserving edges between two adjacent
regions at PCNR=1 and 0.2. True CBF is 70 and 20 mL/100 g/min on the left and right halves of the region. True CBV is 4 mL/100 g and 2 mL/100 g
respectively. True MTT is 3.43 s and 6 s on the left and right halves. True TTP is 6 s and 8 s on two haves. Temporal resolution is 1 sec and total duration
of 60 sec.
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Fig. 9. Perfusion maps of the digital brain perfusion phantom with infarct core and ischemic penumbra region by annotation. CBF in unit of mL/100 g/min,
CBF in mL/100 g, MTT and TTP in sec. (Color image)

digital brain phantom to simulate ischemic penumbra and
infarct core in the brain, as shown in Fig. 8. We use the default
perfusion parameters in the toolbox for the gray matter (GM),
white matter (WM) and cerebrospinal fluid (CSF). TACs
are generated by convolving the AIF with residue functions
scaled by CBF. All deconvolution or denoising methods are
applied to the created digital brain perfusion phantom to
compute the residue functions, and then to yield the perfusion
parameters including CBF, CBV, MTT and TTP. The visual
and quantitative results are compared to evaluate the accuracy
and robustness of the competing algorithms.

Fig. 9 shows the estimated perfusion maps (CBF, CBV,
MTT and TTP) of the digital brain perfusion phantom using

the completing methods. The ground truth perfusion maps
are provided by the phantom toolbox, so we could compare
the estimated maps with the ground truth. Baseline methods
under-estimate CBF and over-estimate MTT, while TTV has
highly accurate estimation for most of the perfusion maps.
Though for MTT, the infarct core and ischemic penumbra are
slightly under-estimated, the distinction between the health and
reduced blood flow tissue are clear, and the overall MTT map
are in better agreement with the reference than the baseline
methods. Table II further validates the superiority of TTV
algorithm compared to baseline methods for the two most
important perfusion maps for clinical diagnosis - CBF and
CBV. For MTT and TTP, TTV may not yield the best result for
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TABLE II
QUANTITATIVE EVALUATION IN TERMS OF ROOT MEAN SQUARE ERROR (RMSE) OF THE PERFUSION PARAMETERS (CBF (ML/100 G/MIN), CBV

(ML/100 G), MTT (S) AND TTP (S)) ACCURACY IN THE DIGITAL BRAIN PERFUSION PHANTOM USING COMPETING DECONVOLUTION ALGORITHMS IN
THE GRAY MATTER (GM), WHITE MATTER (WM), GM REDUCED (GMR), GM SEVERELY REDUCED (GMSR), WM REDUCED (WMR), WM SEVERELY

REDUCED (WMSR), AND ALL TISSUES. THE BEST PERFORMANCE IS HIGHLIGHTED WITH BOLD FONT.

Method GM WM GMR GMSR WMR WMSR All

CBF

sSVD 24.70 11.02 4.30 1.72 1.78 0.65 17.27
bSVD 36.29 16.68 4.80 2.35 1.72 0.77 25.52

TIPS+bSVD 24.73 11.02 4.28 1.72 1.75 0.64 17.29
Tikh 38.33 17.82 5.49 2.63 1.96 0.88 27.02
SPD 38.33 17.82 5.49 2.63 1.96 0.88 25.52
TTV 2.18 0.83 1.71 0.56 0.82 0.23 1.51

TIPS+TTV 2.21 0.87 1.86 0.62 0.95 0.26 1.55

CBV

sSVD 0.16 0.18 0.57 0.13 0.31 0.07 0.19
bSVD 0.71 0.43 0.67 0.16 0.36 0.08 0.55

TIPS+bSVD 0.16 0.18 0.58 0.13 0.31 0.07 0.20
Tikh 0.13 0.13 0.52 0.10 0.29 0.06 0.16
SPD 0.13 0.13 0.52 0.10 0.29 0.06 0.55
TTV 0.11 0.04 0.49 0.08 0.29 0.05 0.13

TIPS+TTV 0.12 0.04 0.49 0.08 0.29 0.05 0.12

MTT

sSVD 2.81 2.40 1.42 1.78 1.25 1.57 2.48
bSVD 5.16 4.81 1.47 3.20 0.41 2.02 4.70

TIPS+bSVD 2.81 2.40 1.36 1.75 1.11 1.52 2.47
Tikh 8.68 8.11 3.39 5.63 2.12 4.06 7.94
SPD 8.68 8.11 3.39 5.63 2.12 4.06 4.70
TTV 0.25 0.28 3.02 1.67 4.04 2.46 1.22

TIPS+TTV 0.25 0.29 3.08 1.73 4.20 2.55 1.26

TTP

sSVD 0.40 0.38 0.62 0.29 0.60 0.44 0.41
bSVD 1.20 1.36 0.72 0.81 0.67 0.62 1.24

TIPS+bSVD 0.40 0.38 0.64 0.29 0.67 0.44 0.42
Tikh 1.70 1.36 0.74 0.86 0.62 0.65 1.45
SPD 1.70 1.36 0.74 0.86 0.62 0.65 1.24
TTV 0.34 0.65 0.18 0.35 0.79 0.41 0.55

TIPS+TTV 0.34 0.65 0.18 0.37 0.76 0.42 0.55

the diseased regions, but the difference with the optimal result
is relatively small. It is also noted that TIPS preprocessing
helps to boost the performance of bSVD, but may reduce
the accuracy for TTV deconvolution by too much smoothing.
This further demonstrates the robustness of TTV to noise. The
experiments on the digital brain perfusion phantom proves
the effectiveness of TTV deconvolution when the perfusion
parameters are not sparse in the transformed domain and its
capability to recover the anatomical structure and perfusion
parameters with high intrinsic variability.

C. Clinical evaluation

We performed experiments on 12 clinical subjects. Visual
comparisons are performed on two subject: one with ischemic
stroke and the other with aneurysmal subarachnoid hemor-
rhage (aSAH). Because repetitive scanning of the same patient
under different radiation levels is unethical, low-dose perfusion
maps are simulated from the high-dose 190 mAs by adding
correlated statistical noise [23]. The maps calculated using
bSVD from the 190 mAs high-dose CTP data is regarded
as the “gold standard” or reference images in clinical experi-
ments.

1) Visual Comparison: Ischemic stroke: Ischemic stroke
is reflected in the CTP map by decreased blood flow in
part of the brain area, leading to dysfunction of the brain
tissue in that area. Fig. 10 shows CBF maps at reduced tube
current-exposure time product (mAs) for a subject with acute

stroke in the right middle cerebral artery (MCA) and right
posterior cerebral artery (PCA) deep branches (left and right
are opposite in the medical image). Fig. 10 displays the CBF
maps at 30, 15 and 10 mAs of a subject with ischemic stroke in
the right MCA and PCA deep branches. There are significant
visual differences between the CBF maps of the different
deconvolution methods, where sSVD, bSVD, Tikhonov and
SPD overestimate CBF while TTV estimates accurately. With
decreased mAs and therefore reduced radiation dosage level,
the over-estimation and the increased noise level become more
apparent for the baseline algorithms. At all mAs levels, TTV is
capable to estimate CBF values at higher accuracy compared
to the reference. The ischemic penumbra is in the left of the
image with reduced blood flow is more distinguishable from
the right hemisphere using TTV deconvolution compared to
baseline methods.

Aneurysmal subarachnoid hemorrhage (aSAH): aSAH
is a severe form of stroke with up to 50% of fetal rate and
can lead to severe neurological or cognitive impairment even
when diagnosed and treated at an early stage. The imaging
of aSAH appears as significantly lower CBF in moderate
or severe vasospasm at days 7-9. CBF is the most sensitive
perfusion parameter for the diagnosis of cerebral vasospasm, a
serious complication of aSAH [32]. Fig. 11 displays the CBF
maps at 30, 15 and 10 mAs of a subject with aSAH in the
left MCA inferior division. As the tube current-scanning time
product in mAs decreases, the baseline methods tend to over-
estimate CBF with increasing bias, while TTV maintains the
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Fig. 12. Comparisons of PSNR and Lin’s CCC on 12 clinical subjects
using the competing methods. TTV is our proposed method, and TIPS+TTV
is preprocessed with TIPS bilateral filtering. The notch marks the 95%
confidence interval for the medians.

data fidelity. The distinction between the white matter, gray
matter, cerebrospinal fluid and the arteries are well preserved,
and the reduced blood flow on the left MCA (right of the
image) is more identifiable, compared to the baseline methods.
The noisy and biased estimation in the baseline methods, even
with TIPS preprocessing to reduce the noise, can lead to lower
diagnosis sensitivity.

2) Quantitative comparison: There is significant improve-
ment in image fidelity between the low-dose CBF maps
and the high-dose CBF maps by using the TTV algorithm
compared to the baseline methods. On average, the PSNR
increases by 32%, Lin’s CCC increases by 24% from the best
performance by using the baseline methods (Table III, Fig. 12).
The quantitative values are computed with the vascular pixel
elimination to exclude the influence of high blood flow values
in the blood vessels. In Fig. 12, the notch shows the 95%
confidence interval for the medians. Since the notches from
box plots of TTV-based and the best performance among all
the baseline methods (sSVD, bSVD, TIPS+bSVD, Tikhonov,
SPD) don’t overlap, we can assume at the (0.05 significance
level) that the medians are different. The one-tail student
test on the values in Table III also validates that there are
statistically significant difference between the PSNR and Lin’s
CCC using TTV algorithm compared to the best performance
among the baseline methods, with P-value < 0.05.

D. Computation complexity

For SVD-based algorithms, we need to compute both the
singular vectors and the singular values. Therefore the com-
putational complexity is O(NT 3) for singular value decompo-
sition on matrix A ∈ RT×T and N voxels [33]. For TTV, the
computation involves mostly matrix and vector multiplication,
with the computational complexity of O(NT 2/

√
ε), where ε

is the error bound. When the data matrix and time sequence
are large, TTV has lower computational complexity over SVD-
based methods.

For computation time, it takes approximately 0.83 s, 2.04
s, 1.35 s, 80.6 s and 25 s to process a clinical dataset of
512 × 512 × 118 by sSVD, bSVD and Tikhonov, SPD and
TTV, while TIPS take an additional 20.87 s for preprocessing.
The TTV algorithm usually converges within 5-10 iterations.
Deconvolution algorithms with less than 1 min processing
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Fig. 13. Performace in terms of root-mean-square-error (RMSE) for different
parameters (a) γ and (b) ratio γt/γs.

time is acceptable clinically. In this paper, we use MATLAB
implementation of all the algorithms, and TTV needs several
iterations while SVD solves the problem in one step. MAT-
LAB is known to be slow in iterations and fast in SVD since
it uses lapack. Thus for large dataset in spatial and temporal
dimensions, TTV may be more efficient when the number of
iterations for TV solver is small.

In terms of trade-off between quality and efficiency, though
SVD and Tikhonov based methods are faster, the over-
estimation, low spatial resolution, less differentiable tissue
types and graining in the perfusion maps generated by these
baseline methods for the low-dose data are not acceptable.
SPD and TTV have comparable high-quality results for the
low-dose recovery, however TTV takes only 30% of the
computation time compared to the time for SPD. Moreover,
the output of TTV can generate all four perfusion maps at the
same time from optimized residue functions, while SPD needs
to compute each perfusion map separately.

E. Parameters

In the TTV algorithm, there is only a single type of tunable
parameter: the TV regularization weight. If the spatial and
temporal regularization are treated equally, only one weighting
parameter γ needs to be determined. Fig. 13(a) show the
RMSE and Lin’s CCC at different γ values. When γ < 103,
RMSE and Lin’s CCC does not change much. The optimal γ
is between 10−4 to 10−3.

Since the temporal and the spatial dimensions of the residue
impulse functions have different scaling, regularization pa-
rameters for t and x, y, z should be different too. We set
the spatial γs = γx,y,z = 10−4 since the spatial dimensions
have similar scaling, and tune the ratio between the temporal
weight γt and spatial weight γs. Fig. 13(b) shows that when
the ratio γt/γs < 10−4, the performance is stable. Thus we
set γt = 10−8 and γs = 10−4 for all experiments.

VI. DISCUSSION

In this study, a novel total variation regularization algorithm
to distinctly treat the spatial structural variation and temporal
changes is proposed to improve the quantification accuracy of
the low-dose CTP perfusion maps. The method is extensively
compared with the existing widely used algorithms, including
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Fig. 10. The CBF (in mL/100 g/min) maps with zoomed ROI regions of a patient with acute stroke (ID 6) calculated using different deconvolution algorithms
at tube current of 30, 15 and 10 mAs with normal sampling rate. Baseline methods sSVD, bSVD, Tikhonov and SPD overestimate CBF values, while TTV
agrees with the reference. TTP does not help to improve the accuracy. As the tube current decreases and the radiation level reduces, the over-estimation of
CBF values using baseline methods becomes more apparent. (Color image)

sSVD, bSVD, Tikhonov and SPD, as well as TIPS for prepro-
cessing, on all the common perfusion maps: CBF, CBV, MTT
and TTP. Synthetic evaluation with accurate ground truth data
is used to validate the effectiveness of the proposed algorithm
in terms of residue function recovery, uniform and contrast
preserving, sensitivity to blood flow values and noise levels.
Digital brain perfusion phantom allows a more authentic
validation with ground truth when there are intrinsic structural
variability. Finally clinical data with different deficit types
using high-dose perfusion maps as the reference image are
used to show the visual quality and quantitative accuracy of the
perfusion maps at low-dose. In summary, the proposed TTV
algorithm is capable of significantly increasing the signal-to-
noise ratio in the recovered perfusion maps and residue func-
tions, comparing to the state-of-art deconvolution algorithms.

When the SVD-based algorithms were first introduced in
1996 [25], [34], the perfusion parameters were computed from
each tissue voxel independently. It assumes the X-ray radiation
and intravenous injection were high enough to generate accu-
rate tissue enhancement curves and AIF for deconvolution.
However, SVD-based methods tend to introduce unwanted
oscillations [35], [36] and results in overestimation of CBF
and underestimation of MTT, especially in low-dose scan

setting. The severely distorted residue functions estimated by
the baseline methods at simulate 10 mAs tube current in our
synthetic evaluation reveal the inherent problem existent in the
SVD-based methods: instability. These methods are sensitive
to noise in the low-dose environment, and lead to unrealistic
oscillations in the residue function, which is the starting point
for all perfusion parameter computation.

This instability could be alleviated using the context infor-
mation in the neighboring tissue voxels with the assumption of
a piece-wise smooth model: The residue functions within the
extended neighborhood of a tissue voxel will have constant or
similar shape, while the changes on the boundary between
different regions where tissues undergo perfusion changes
should be identified and preserved. The tensor total variation
term in the objective function Eq. (17) penalizes large variation
of residue functions within the extended neighborhood of the
tissue voxels, and adopting the L1 norm in summing the
gradient of all voxels, to avoid the much greater quadratic
penalty of L2 norm at boundaries between different regions.
In one word, the spatial and temporal contextual tissue voxels
help to robustly estimate the ground truth residue functions
while reducing the statistical correlated noise due to the low-
dose radiation.
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Fig. 11. The CBF (in mL/100 g/min) maps with zoomed ROI regions of a patients (ID 3) calculated using different deconvolution algorithms at tube current
of 30, 15 and 10 mAs with normal sampling rate. Baseline methods sSVD, bSVD, Tikhonov and SPD overestimate CBF values, while TTV corresponds
with the reference. As the tube current decreases and the radiation level reduces, the over-estimation of CBF values using baseline methods becomes more
apparent. (Color image)

TABLE III
QUANTITATIVE COMPARISON OF SEVEN METHODS ON TWELVE PATIENTS IN TERMS OF PSNR AND LINS CCC AT SIMULATED 15 MAS. SUBJECTS 1-6

HAVE BRAIN DEFICITS DUE TO ANEURYSMAL SAH OR ISCHEMIC STROKE, WHILE SUBJECTS 7-12 HAVE NORMAL BRAIN MAPS. PSNR AND LIN’S CCC
ARE COMPUTED USING THE MEAN VALUE OVER THE WHOLE BRAIN VOLUME WITH RESPECT TO THE GROUND TRUTH (190 MAS USING BSVD). THE
AVERAGE METRICS OVER ALL THE DEFICIT AND/OR NORMAL SUBJECTS ARE ALSO COMPUTED. THE BEST PERFORMANCE AMONG ALL METHODS IS

HIGHLIGHTED WITH BOLD FONT FOR EACH CASE AND THE AVERAGE VALUES. ONE-TAIL STUDENT TEST SHOWS THE PSNR AND CCC OF TTV
ALGORITHM IS STATISTICALLY SIGNIFICANT HIGHER THAN THE BEST PERFORMANCE IN THE BASELINE METHODS, WITH P < 0.05.

Methods ID PSNR CCC ID PSNR CCC ID PSNR CCC ID PSNR CCC ID PSNR CCC ID PSNR CCC
sSVD

1

2.51 0.074

2

5.02 0.209

3

1.50 0.113

4

3.08 0.116

5

4.57 0.163

6

3.99 0.048
bSVD 14.19 0.306 16.31 0.583 14.93 0.503 12.71 0.407 11.98 0.444 16.37 0.283
Tikhonov 16.03 0.348 16.58 0.537 13.73 0.391 14.15 0.397 12.60 0.432 14.62 0.218
TIPS bSVD 14.19 0.306 16.31 0.583 14.93 0.503 12.71 0.407 11.98 0.444 16.37 0.283
SPD 14.33 0.312 16.33 0.620 15.18 0.517 12.71 0.414 12.00 0.465 16.39 0.284
TTV 20.95 0.664 23.90 0.605 17.94 0.676 19.15 0.609 18.34 0.529 21.60 0.493
TIPS+TTV 20.95 0.664 23.90 0.605 17.94 0.676 19.15 0.609 18.34 0.529 21.60 0.493
sSVD

7

8.17 0.194

8

6.35 0.224

9

6.79 0.159

10

6.08 0.169

11

9.34 0.226

12

3.19 0.07
bSVD 19.05 0.539 16.99 0.377 18.85 0.561 18.06 0.415 18.58 0.531 17.42 0.37
Tikhonov 19.58 0.504 16.64 0.324 19.16 0.502 15.87 0.390 19.34 0.485 13.42 0.20
TIPS bSVD 19.05 0.539 16.99 0.377 18.85 0.561 18.06 0.415 18.58 0.531 17.42 0.37
SPD 19.44 0.559 17.00 0.387 19.17 0.579 18.10 0.428 18.93 0.550 17.46 0.37
TTV 22.03 0.644 24.53 0.403 22.66 0.712 22.44 0.265 23.18 0.727 21.86 0.460
TIPS+TTV 22.03 0.644 24.53 0.403 22.66 0.712 22.44 0.265 23.18 0.727 21.86 0.460

Methods ID PSNR CCC ID PSNR CCC ID PSNR CCC
sSVD

Deficit

3.44 0.120

Normal

6.65 0.174

Average

5.05 0.147
bSVD 14.41 0.421 18.16 0.465 16.29 0.443
Tikhonov 14.62 0.387 17.33 0.400 15.98 0.393
TIPS bSVD 14.41 0.421 18.16 0.465 16.29 0.443
SPD 14.49 0.435 18.35 0.478 16.42 0.457
TTV 20.32 0.596 22.78 0.535 21.55 0.565
TIPS+TTV 20.32 0.596 22.78 0.535 21.55 0.565
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The synthetic evaluations show that the residue functions
computed by the baseline methods are unrealistically oscil-
lating, leading to erroneous values of CBF, CBV, MTT and
TTP. These baseline methods constantly over-estimate the
value of CBF and the errors increase exponentially as PSNR
decreases. This misleading over-estimation may cause neglect
of infarct core or ischemic penumbra in the patients with acute
stroke or other cerebral deficits, resulting in delay in diagnosis
and treatment. The large variation in the uniform synthetic
region and contrast regions are also caused by the oscillating
nature of the results, and introduce misleading information in
judging the perfusion condition of the healthy and the ischemic
regions.

On the contrary, the proposed TTV method performs com-
parably to the 190 mAs high-dose results on the 15 mAs low-
dose data, which is approximately 8% of the original dose
used. The residue functions are stable and have the same shape
as the ground truth. Perfusion parameters correlate well with
the ground truth, without significant overestimation or under-
estimation. The variation in the uniform regions is significantly
suppressed, while the edges in the contrast regions are more
identifiable.

The clinical evaluations show similar performance com-
paring the baseline methods and TTV algorithm. While the
baseline methods significantly over-estimate CBF values, one
of the most important perfusion parameter for stroke diagnosis
in recently research [37], TTV yields comparable CBF maps
to the reference maps. Moreover, the vascular structure and
tissue details are well preserved by the TTV algorithm by
removing the noise and maintaining the spatial resolution.
Different evaluation metrics and statistical tests further verify
the high correlation between the perfusion parameters of the
low-dose maps computed by TTV and the reference maps.

There is only one type of parameter γ in the model,
which determines the trade-off between data fidelity and TV
regularization. Through extensive evaluation, we find that the
results are not sensitive to the change of γ in the range of
10−6 to 10−4, and the ratio between the temporal and spatial
regularization weight in the range of 10−8 to 10−4. So we set
γs = 10−4 and γt = 10−8 for all the experiments.

While the regularization parameter could be dependent
on the temporal and spatial resolution of the data, through
our experiments on both the digital perfusion phantom and
the clinical data, which have different spatial and temporal
resolutions, the same set of regularization parameter work
pretty well and robustly estimate the perfusion parameters.
Further evaluation on clinical data with varying spatial and
temporal resolution would be an interesting analysis for future
research.

There are several limitations to our study. First,the valida-
tion should be conducted by using larger and more diverse
data sets with more samples and disease conditions. Since
the aim of our study is to propose a new robust low-dose
deconvolution algorithm and validate it preliminarily on syn-
thetic and clinical data, and the improvement on low-dose
quantification is significant enough to show the advantage of
the proposed method. Second, SVD-based algorithms are used
as baseline methods to compare with the proposed TTV. There

are other existing methods to post-process the CTP imaging
data, including maximum slope (MS), inverse filter (IF) and
box-modulated transfer function (bMTF). Further comparison
with these post-processing methods should be conducted. But
MS, IF and bMTF are not designed for low-dose CTP imaging
data, and SVD-based algorithm are the most widely accepted
deconvoltuion algorithms in today’s commercial softwares.

In conclusion, we propose a robust low-dose CTP decon-
volution algorithm using tensor total variation regularization
that significantly improves the quantification accuracy of the
perfusion maps in CTP data at a dose level as low as 8%
of the original level. In particular, the over-estimation of
CBF and under-estimation of MTT, presumably owing to
the oscillatory nature of the results produced by the existing
methods, is overcome by the total variation regularization in
the proposed method. The proposed method could potentially
reduce the necessary radiation exposure in clinical practices
and significantly improve patient safety in CTP imaging.
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