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Robust deconvolution, the task of estimating hemodynamic parameters

from measured spatio-temporal data, is a key problem in computed tomog-

raphy perfusion. Traditionally, this has been accomplished by solving the in-

verse problem of the temporal tracer enhancement curves at each voxel inde-

pendently. Incorporating spatial contextual information, i.e. information other

than the temporal enhancement of the contrast agent, has received significant at-

tention in recent works. Intra-subject contextual information is often exploited

to remove the noise and artifacts in the low-dose hemodynamic maps. In this

thesis, we take a closer look at the role of inter-subject contextual information

in robust deconvolution. Specifically, we explore its importance in three as-

pects. First: Informatics acquisition. We show, through synthetic evaluation as

well as in-vivo clinical data, that inter-subject similarity provides complimen-

tary information to improve the accuracy of cerebral blood flow map estimation

and increase the differentiation between normal and deficit tissue. Second: Dis-

ease diagnosis. We show that apart from the global learned dictionary for hemo-

dynamic maps, the tissue-specific dictionaries can be effectively leveraged for

disease diagnosis tasks as well, especially for low-contrast tissue types where

the deficits usually occur. Lastly: Treatment plan. We propose a generalized

framework with inter-subject context through dictionary learning and sparse

representation possible for any hemodynamic parameter estimation, such as



blood-brain-barrier permeability. We also extend to include inter-subject con-

text through tensor total variation. The diverse hemodynamic maps provide

necessary information for treatment plan decision making. We present results

of our approaches on a variety of datasets and clinical tasks, such as uniform re-

gions estimation, contrast preservation, data acquired at low-sampling rate and

low radiation dose levels.
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CHAPTER 1

INTRODUCTION

Deconvolution in medical imaging is an inverse process to estimate the

hemodynamic parameters, such as the blood flow, blood volume and mean

transit time, from the measurements in the medical images, as illustrated in Fig-

ure 1.1. A traditional machinery employed for estimating these hemodynamic

parameters is to compute the impulse response function of each voxel indepen-

dently using matrix factorization or curve fitting. For instance, singular value

decomposition (SVD) is widely used in current commercial softwares to inverse

the convolution process.

When SVD-based algorithms are proposed in 1990s, they assume the X-ray

radiation and intravenous injection are high enough to generate accurate mea-

surements. However, the elevated radiation exposure in computed tomography

perfusion (CTP), one of the most widely used imaging modality for hemody-

namic parameter estimation, has raised significant public concerns regarding

its potential biological effects and potential increase of cancer risk. Consensus

has been reached that the “as low as reasonably achievable” (ALARA) princi-

ple should be executed more consistently. The low-dose protocols using exist-

ing deconvolution methods are unfortunately leading to higher image noise,

as illustrated in Figure 1.2, which is compensated by using spatial smoothing,

reduced matrix reconstruction and/or thick-slices, at the cost of lowering spa-

tial resolution. Furthermore SVD-based methods tend to introduce unwanted

oscillations and results in estimation bias.

Recently works have observed that the cues of hemodynamic parameters are

not present only within the target voxels. The dynamic information surround-
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Figure 1.1: Deconvolution in computed tomography perfusion as an in-
verse process. (a) Intravenous injection of contrast agent to
trace the blood flow. (b) Cine scanning of the brain slice at
continuous time points. (c) Extracted tissue enhanement curve
(TEC) from a voxel location. (d) Estimated cerebral blood flow
(CBF), cerebral blood volume (CBV) and mean transit time
(MTT) by deconvolution from the TECs.

ing the target voxel also holds strong cues about the functionality of the target

voxel. For example, the neighboring voxels in the same anatomical region of the

target voxel should have same or similar hemodynamic parameter values as the

target voxel. Many works have attempted to incorporate this spatial contextual

information, as opposed to using the temporal dynamic model of the voxel of

interest alone, into the hemodynamic parameter deconvolution pipeline for in-

creased robustness as well as accuracy.

While significant progress has been made in incorporating the spatial con-

textual information and understanding its impact on enhanced deconvolution
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Figure 1.2: High- and low-dose cerebral blood flow maps at 190 mA and
15 mA tube current levels.

of hemodynamic parameters, we believe there are several aspects of spatial

contextual information that have been largely ignored. These are the aspects

explored in this thesis. For instance, the spatial context has mostly been ex-

ploited within the same subject to incorporate spatial smoothness or bound-

aries. We study the scenarios under which spatial context across subjects is re-

ally necessary, and most beneficial to close the gap between high- and low-dose

images through dictionary learning and sparse representation. Spatial context

has mostly been explored for the whole image globally. We explore the role of

tissue-specific spatial context by segmenting the different tissue types and learn

corresponding dictionaries. And finally, most works employ the spatial contex-

tual information in cerebral blood flow which is the most significant indicator

of infraction and ischemic penumbra. We investigate how this robust deconvo-

lution framework can be generalized to other hemodynamic parameters, such

as blood-brain-barrier permeability. We also use tensor total variation regular-

izer to robustly estimate the impulse response function, thus all hemodynamic

parameters can be computed simultaneously.
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The rest of this thesis is organized as follows. Chapter 2 describes our work

on studying robust medical informatics acquisition. Chapter 3 presents our

work on exploring how disease diagnosis can benefit from robust deconvolu-

tion. Chapter 4 and Chapter 5 present our approach to generalize robust hemo-

dynamic parameter estimation to blood-brain-barrier permeability and other

dynamics for treamtent plan decision. We provide an introduction and relevant

background for each of these three aspects in their relevant chapters. The thesis

is concluded in Chapter 6 with a discussion of potential future work.

1.1 First Published Appearances of Described Contributions

Most contributions or their initial versions described in this thesis have first

appeared ias various publications:

1. Chapter 2: Fang, Chen, Sanelli [23, 27, 24]

2. Chapter 3: Fang, Chen, Sanelli [26]

3. Chapter 4: Fang, Chen, Sanelli [30]

4. Chapter 5: Fang, Sanelli, Chen [31]

The following contributions have appeared in various publications: Fang,

Chen, Zabih, Chen [28]; Fang, Zabih, Raj, Chen [33]; Fang, Raj, Chen, Sanelli

[25]; Fang, Tang, Snavely, Chen [32]; Fang, Gallagher, Chen, Loui [29]. However,

they are beyond the scope of this dissertation, and therefore are not discussed

here.
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CHAPTER 2

MEDICAL INFORMATICS: SPARSE PERFUSION DECONVOLUTION

Summary

Computed tomography perfusion (CTP) is an important functional imaging

modality in the evaluation of cerebrovascular diseases, particularly in acute

stroke and vasospasm. However, the post-processed parametric maps of blood

flow tend to be noisy, especially in low-dose CTP, due to the noisy contrast en-

hancement profile and the oscillatory nature of the results generated by the

current computational methods. In this chapter, we propose a robust sparse

perfusion deconvolution method (SPD) to estimate cerebral blood flow in CTP

performed at low radiation dose. We first build a dictionary from high-dose per-

fusion maps using online dictionary learning and then perform deconvolution-

based hemodynamic parameters estimation on the low-dose CTP data. Our

method is validated on clinical data of patients with normal and pathological

CBF maps. The results show that we achieve superior performance than exist-

ing methods, and potentially improve the differentiation between normal and

ischemic tissue in the brain.

2.1 Introduction

Stroke is the third-leading cause of death in the United States after heart dis-

ease and cancer. Early and rapid diagnosis of stroke can save critical time for

thrombolytic therapy. Cerebral perfusion imaging via computed tomography

5



perfusion (CTP) has become more commonly used in clinical practice for the

evaluation of patients with cerebrovascular disease such as acute stroke and

vasospasm after subarachnoid hemorrhage (SAH) [76, 56, 44]. Various mathe-

matical models have been used to process the acquired temporal data to ascer-

tain quantitative information, such as cerebral blood flow (CBF), cerebral blood

volume (CBV) and mean transit time (MTT), with higher radiation dosage com-

pared to a standard CT of the head [80, 81, 44, 42, 105, 43]. However, recent

reports on the over-exposure of radiation in CTP imaging have brought the

dosage problem to the limelight because many patients suffered biologic ef-

fects from radiation exposure, including hair loss, skin burns and even cancer

risk [102]. A key challenge in CTP is to obtain a high-quality CBF image using

low radiation dose.

The most commonly used deconvolution method to quantify the perfusion

parameters in CTP is truncated singular value decomposition (TSVD) and its

variants, such as circular TSVD (cTSVD) [9, 10, 81, 80, 108, 105]. When TSVD

deconvolution algorithm was first introduced in 1996, it calculates the perfu-

sion parameters for each tissue voxel independently. It assumes the X-ray ra-

diation and intravenous injection were high enough to generate accurate tis-

sue enhancement curve (TEC) and arterial input function (AIF) for deconvo-

lution. However, TSVD-based methods tend to introduce unwanted oscilla-

tions [7, 77] and results in overestimation of perfusion parameters, particularly

CBF. Numerous works have been proposed to denoise the reconstructed CT im-

ages and therefore successfully improved the quality of CBF maps, including

bilateral filtering [75], non-local mean [66], nonlinear diffusion filter [87], and

wavelet-based methods [61]. However, these works improve the quality of the

reconstructed CT data only and do not take the convolution flow model of CTP
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into consideration. The oscillatory nature of the TSVD-based method has initi-

ated research that incorporates different regularization methods to stabilize the

deconvolution, and have shown varying degrees of success in stabilizing the

residue functions by enforcing both temporal [7, 79, 2, 106] and spatial regular-

ization [43, 24] on the residue function. However, prior studies have focused

exclusively on imposing regularizations on the noisy low-dose CTP, without

considering the corpus of high-dose CTP data.

Since perfusion images tend to be noisy at low-dose, our aim is to develop

a method to perform deconvolution-based first-pass hemodynamic parameter

estimation that is more robust to noisy input at low radiation dosage by learn-

ing from high-dose data, and to produce perfusion parameter maps with better

signal-to-noise characteristics. To that end, we have developed a formulation

that utilizes a sparse representation functional to enforce both temporal convo-

lution and spatial regularization using example-based restoration learned from

high-dose CTP parametric maps. Because TSVD-based approaches estimate the

residue function (and hence the perfusion parameters) for each voxel indepen-

dently of its neighbors, our sparse perfusion deconvolution approach with dic-

tionaries learned from high-dose perfusion maps mitigates the noise issue asso-

ciated with the traditional approaches. Although sparse representation image

models have been used in several context [1, 70], to date we are not aware of

any such work in the context of perfusion parameter estimation to bridge the

gap between high- and low-dose CTP data.

In this chapter, we propose a robust sparsity-based deconvolution method to

estimate CBF in CTP at low radiation dose We first learned a dictionary of CBF

maps from a corpus of high-dose CTP data using online dictionary learning
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and then perform deconvolution-based hemodynamic parameter estimation of

the low-dose CTP. This method produces perfusion parameter maps with better

signal-to-noise characteristics.

The main contributions of our work are threefold: (1) We propose to train a

dictionary of perfusion parameter maps from the high-dose CT data in an online

fashion to improve the quantification of low-dose CTP. (2) We combine the tem-

poral convolution model with the dictionary mapping term and the sparsity

term to enforce spatio-temporal regularization. (3) In vivo brain aneurysmal

SAH patient data, we demonstrate that our estimated CBF values lead to better

separation between ischemic tissue — which by its angiogenic nature tends to

have less blood flow — and normal tissue.

2.2 Related work

Since we use sparsity prior and example-based restoration to enhance low-

dose perfusion CT images, we review relevant work in both sparsity prior and

example-based restoration work.

2.2.1 Sparsity prior and dictionary learning

Sparsity methods have been vastly investigated in recent years. [8] and [17] have

shown that a sparse signal can be recovered from a small number of its lin-

ear measurements with high probability. Various greedy algorithms have been

proposed to solve the problems with sparsity priors, including basis pursuit

(BP) [12], matching pursuit [71], orthogonal maching pursuit (OMP) [11] and
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stagewise OMP (stOMP) [16]. Another approach is to use l1 norm relaxation

and convex optimization [8, 54, 35], which is employed in our work.

Sparse representation and dictionary learning has been widely used in

computer vision and multimedia communities, such as, but not limited to,

natural image and video denosing [20, 85], image restoration [69], image

super-resolution [109], robust face recognition [107], automatic image annota-

tion [115]. In medical image analysis, sparsity prior has been applied to MR

reconstruction [65, 45], shape modeling [114], deformable segmentation [117],

etc. However, to the best of our knowledge, it is the first time sparse prior

and learned dictionaries are used in a spatio-temporal model to address the

challenging task of low-dose CTP enhancement. The sparsity prior leads to

more robust solution in face of overcomplete bases in signal recovery, and re-

moves noise existent in the captured signal. Specifically, [107] have shown

that sparse representation is critical for high-performance classification of high-

dimensional data, and occlusion and corruption can be handled uniformly and

robustly with this framework.

To learn a compact representation from the original dataset due to compu-

tational cost when the training datasets have thousands or millions of samples,

extensive studies in dictionary learning have been done. A brief introduction of

the relevant algorithms are presented here. Dictionary learning typically con-

sists of two steps: sparse coding and codebook update. Sparse coding can im-

plemented using greedy algorithms such as matching pursuit (MP) [71] and

orthogonal matching pursuit (OMP) [11] by finding the sparsest coefficients.

And codebook update employs optimal direction (MOD) [21], K-SVD [1] or the

recently proposed online dictionary learning [68]. Online dictionary learning
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is used in this work because it can handle large training dataset with higher

efficiency and achieves more robust dictionary compared to MOD and K-SVD.

2.2.2 Example-based Restoration

Redundancy representation and sparsity have been the driving forces for sig-

nal denoising for the research in the past decades or so, leading to what

is considered today as some of the best available image denoising meth-

ods [84, 90, 22, 73]. While this work is built on the very same concept of spar-

sity and redundancy concepts for restoration, it is adopting a different point of

view, drawing resources from yet another recent line of work on example-based

restoration. Traditionally, the image prior to address the general inverse prob-

lem in image processing using Bayesian approach has been based on some sim-

plifying assumptions, such as spatial smoothness, low/max-entropy, or spar-

sity in transform domain. On the other hand, example-based approach resorts

to the images themselves for the optimal prior, for instance, using a spatial-

smoothness based Markov random field prior and training the derivative fil-

ters for image restoration [118, 86]. Example-based restoration has been ap-

plied to image and video denoising [20, 70, 85], image super-resolution [38],

shape representation and segmentation [114, 117]. We introduce the concept of

example-based restoration into low-dose perfusion CT enhancement by learn-

ing the prior from the high-dose perfusion maps.
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2.3 Methodology

In this section, we present the new sparse perfusion deconvolution (SPD) frame-

work for CTP quantification. The framework is comprised of two steps: online

dictionary learning and sparse perfusion deconvolution.

2.3.1 Perfusion parameter model

Based on the theoretical model provided in [81], in CTP, the amount of contrast

in the region is characterized by

Cv(t) = CBF
∫ t

0
Ca(τ)R(t − τ)dτ, (2.1)

where Cv(t) is the tissue enhancement curve (TEC) of tracer at the venous output

in the volume of interest (VOI), CBF is the cerebral blood flow, Ca(t) is an arterial

input function (AIF) and R(t) is the tissue impulse residue function (IRF), which

measures the mass of contrast media remaining in the given vascular network

over time. Under this model, at time t = t0, a unit of contrast agent is injected

as a bolus, and R(t = t0) = 1 indicates that the entire mass of contrast agent is

within the vascular network. After a finite duration (tN) when all contrast has

left the vascular network, R(t = tN) = 0.

To discretize the computation, we assume that Ca(t) and C(t) are measured

with N equally spaced time points t1, t2, . . ., tN with time increment ∆t. The

convolution is discretized

C = CBF · ∆t ·Ca · R, (2.2)
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where

C =



C(t1)

C(t2)
...

C(tN)


R =



R(t1)

R(t2)
...

R(tN)


and

Ca =



Ca(t1) 0 . . . 0

Ca(t2) Ca(t1) · · · 0
...

...
. . .

...

Ca(tN) Ca(tN−1) · · · Ca(t1)


When R(t) is estimated from Eq. (2.2), CBF can be computed from

CBF = R(t = 0) (2.3)

since from the definition of the residue function R(t), R(t = 0) = 1.

2.3.2 Circulant truncated singular value decomposition

Singular value decomposition is a widely adopted approach to estimate the per-

fusion parameter maps [81, 9, 10], where matrix Ca is factorized into two or-

thogonal matrices U and VT and a diagonal matrix S, with n singular values, si,

i = 1, 2, , n in descending order along the diagonal

Ca = USVT (2.4)

Eq. (2.2) can be rewritten as

CBF · ∆t · R = VSTUT · C (2.5)
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Because smaller singular values related to the higher frequency singular val-

ues and the reciprocal of these small singular values lead to large weighting co-

efficients of oscillatory singular vectors, TSVD regularized the solution by trun-

cating small singular values to zero using a threshold λ and therefore remove

the corresponding oscillatory terms from the solution. In this chapter, we set

parameter λ=0.3 (30% of the maximum element in S) based on the experimen-

tal analysis in [34]. Delay and dispersions between the AIF and tissue VOI can

lead to inaccurate estimation of perfusion parameters, especially when contrast

agents arrive earlier in the tissue than in the chosen AIF. Therefore in this chap-

ter block-circulant version of Ca matrix is used instead of linear deconvolution

to avoid the causality problem.

2.3.3 Proposed sparse perfusion deconvolution with online

dictionary learning (ODL-SPD)

Sparse representations over trained dictionaries for perfusion parameter maps

restoration rest on the assumption that the image priors in the perfusion maps

can be learned from images, rather than choosing a prior based on some sim-

plifying assumptions, such as spatial smoothness, non-local similarity, or spar-

sity in the transform domain. Since the low-dose CTP has high noise level in

TEC, it is important to learn the dictionaries from the high-dose (thus low noise

level) CTP. Therefore, we implement the sparse and redundant representation

in the spirit of Sparseland [20]. In our model, we estimate perfusion parameters

by considering both temporal correlations and example-based restoration using

dictionaries learned from high-dose data.
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Basic framework: Suppose C(x, y, z, t) ∈ RN×T is TEC in VOI [x, y, z]T from a

spatial-temporal patch of size
√

N×
√

N×1 pixels and T time points. R(x, y, z, t) ∈

RN×T represent the remaining tracer concentration of the voxel [x, y, z] at a given

time point t, where x, y and z are the respective row, column and slice coordi-

nates of the spatial-temporal data. The least-square form of Eq. (2.2) is

Jls = ‖C − CaR‖22 (2.6)

By definition, CBF map can be computed using f = R(t = 0), where f ∈ RN

indicates a vector of patch in the CBF map by stacking the pixels vertically.

Due to the noise in the low-dose CTP data, the solution of Eq. (2.6) may

be severely distorted. To utilize the high-dose repository existent as a prior,

we first learn a compact dictionary D ∈ RN×K from the existing high-dose CBF

maps, where K is the number of patches in D and N is the number of pixels in

each patch. f is the vector of a newly-input patch which needs to be constrained

or refined. Our basic framework assumes any input patch can be approximately

represented as a weighted linear combination of the patches in the learned dic-

tionary D. We denote α = [α1, α2, . . . , αK]T ∈ RK as the coefficients or weights.

Thus the values of α for the linear combination is found by minimizing the fol-

lowing loss function:

Jbasic = µ1‖C − CaR‖22 + ‖ f − Dα‖22 (2.7)

where µ1 indicates the importance of the temporal correlation term in the loss

function. f and α are computed by solving Eq. (2.7).

Sparse linear combination: The limitations of Eq. (2.7) are twofold. First the

dictionary D may be overcomplete (K > N) when the number of atoms is larger

than the length of f . Thus the system may not have a unique solution. More
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constraints of the coefficient α are needed. Second, the input patch, including

the noises, may be perfectly represented if any linear combination can be used.

A more approximate assumption is that the input patch can be approximately

represented by a sparse linear combination of the dictionary atoms. Thus in the

spirit of Sparseland model, the problem is reformulated as:

J = µ1‖C − CaR‖22 + ‖ f − Dα‖22 (2.8)

s.t.‖α‖0 ≤ k

where ‖ · ‖0 is the l0 norm counting the nonzero entries of a vector, k is the pre-

defined sparsity number. Such formulation ensures that the number of nonzero

elements in α is smaller than k. The value of k depends on specific applications.

Convex relaxation: The constraints in Eq. (2.8) are not directly tractable be-

cause of nonconvexity of l0 norm. Greedy algorithms can be applied to this

NP-hard l0 norm minimization problem, as in [23], but there is no guarantee to

capture the global minima. In the general case, no known procedure can cor-

rectly find the sparsest solution more efficiently than exhausting all subsets of

the entries for f . Thanks to the recent proof of the sparse representation theo-

rem [17], l1 norm relaxation can be employed to make the problem convex while

still preserving the sparsity property. Thus Eq. (2.8) is reformulated as

J = µ1‖C − CaR‖22 + ‖ f − Dα‖22 + µ2‖α‖1 (2.9)

where µ1 and µ2 controls the weight of the temporal term and how sparse α

is. Since the deviation from Eq. (2.8) to (2.9) relaxes the absolute sparseness

constraints of the objective function (l0 norm to l1 norm), and converts a NP

hard problem to a continuous and convex optimization problem, which can be

solved efficiently, it paves the way for a feasible spatio-temporal deconvolution

procedure as described later.
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Connections to other methods: It is interesting to look in Eq. (2.9) by adjust-

ing µ1 and µ2 into some extreme values.

• If µ1 is extremely large, the temporal correlation term dominates. Thus

SPD is similar to methods that do not model spatial regularization.

• If µ1 is extremely small, the temporal correlation is no longer a constraint.

With proper initialization, SPD becomes the imaging denoising method

using learned dictionaries.

• If µ2 is very large, may have only one non-zero element. Thus SPD be-

comes the nearest neighbor method.

• If µ2 is very small, the sparsity constraint no longer exists. A dense linear

combination of atoms is used, which is able to perfectly approximate the

low-dose perfusion parameter map.

Parameter settings: Eq. (2.9) has two user tunable parameters µ1 and µ2,

which are usually crucial to the performance and convergence. It is desirable to

have parameters easy to tune and insensitive to different data in one application

from a practical view. Fortunately the parameters in our algorithm have a phys-

ical meaning and it is straightforward to adjust them. µ1 controls the weight

of the temporal correlation term. A good initialization of CBF map would con-

form to the temporal correlation model. Thus a small µ1 is good enough with a

warm start. µ2 controls the sparsity of α. The length of vector α is equal to the

number of atoms in the dictionaries. It is usually larger than 200. To generate

a sparse coefficient α, a relatively large µ2 is necessary. Both the parameters are

straightforward to tune given their meanings.

Vessel and non-vessel threshold: To further improve the signal-to-noise ra-
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tio for different types of tissue, which have different physiological structures

and spatial resolution requirements, we apply different regularization parame-

ters to different tissue types. In this work, we use different parameter settings

for vessel and non-vessel voxels. Vessels are identified by setting a threshold

on the CBF map, e.g. if vessel threshold is 40 mL/100 g/min, then every voxel

with at least 40mL/100 g/min CBF value in the brain is marked as vessel. For

vessels, we apply low regularization parameters µl
1 and µl

2 because vessels have

high-contrast boundaries with respect to neighboring regions. For non-vessel

voxels, we apply high regularization parameters µh
1 and µh

2 because they are ex-

pected to be more spatially coherent.

Dictionary learning: To learn the dictionary D, we use the recently devel-

oped online learning algorithm [68] which solves Eq. (2.9) by processing one

sample (or a mini-batch) at a time and updating the dictionary using block coor-

dinate descent with warm restart. We first learn a dictionary by using randomly

sampled patches from the CBF perfusion maps estimated from the high-dose

CTP data. Given a set of image patches Z = {z j}
N
j=1, each of

√
N ×
√

N ×1, we seek

the dictionary D that minimizes

arg min
D,A

N∑
j=1

‖z j − Dα j‖
2
2 + µ2‖α j‖1, j = 1, · · · ,N (2.10)

where A is a matrix formed by [α1, α2, . . . , αN]. To solve Eq. (2.10), we start from

an initial dictionary (i.e. the overcomplete DCT dictionary), and CBF parameter

map estimated using cTSVD algorithm at high-dose CTP.

Sparse perfusion deconvolution (SPD): When the dictionary D is known,

the CBF perfusion parametric map from the low-dose CTP data can be estimated

using our sparse perfusion deconvolution method by minimizing Eq. (2.9) in

an iterative fashion. Our SPD method is divided into two sub-problems: (1)
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minimization with respect to α with f fixed, (2) update of f with α fixed as a

simplified linear inverse problem.

The first step is sparse coding, which is formulated as

arg min
α

‖ f − Dα‖22 + µ2‖α‖1 (2.11)

Eq. (2.11) can be solved by LARS-Lasso [18].

The second step is to minimize

arg min
f

µ1‖C − CaR‖22 + ‖ f − Dα‖22 (2.12)

Because f = R(t = 0) , Eq. (2.12) can be rewritten as

arg min
f

µ1‖C − CaR · diag( f )‖22 + ‖ f − Dα‖22 (2.13)

where R is the residue functions normalized by f so that R(t = 0) = 1. Eq. (2.13)

is a quadratic term that has a closed-form solution.

If vec(B) denotes the vector formed by the entries of a matrix B in column

major order, and define P = CaR, then

vec
(
C −CaR · diag( f )

)
= vec

(
C − P · diag( f )

)
= vec(C) −M f (2.14)

where M is a T N × N matrix in form of

M =



P.,1 0 · · · 0

0 P.,2 · · · 0
...

...
. . .

...

0 0 · · · P.,N


where P.,i dictates the ith column of matrix P in its column vector form. Eq. (2.13)

can be transformed into the conventional least square problem

arg min
f
‖(In; µ1M) f − (Dα; µ1vec(C)‖22 (2.15)
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Let A = (In; µ1M) and B = (Dα; µ1vec(C)), we get

f = A+B (2.16)

where A+ is the pseudo-inverse of matrix A, (.; .) denotes a vector or matrix by

stacking the arguments vertically.

Two procedures are iteratively employed to obtain f and α. Note that theo-

retically this iterative algorithm might lead to local minima. However, in our

extensive experiments (Section 2.4), we did not observe this situation yet. We

also observe our results are quite stable with respect to the training dataset.

To address the global CBF deconvolution problem, we use a sliding window

of size
√

N ×
√

N on the specific slice and overlaps the windows by a step size of

one. The final global CBF parametric map is generated by averaging the areas

that the windows overlap.

2.4 Experiments

In this section, we describe the results from comparing our online-dictionary-

learning sparse perfusion deconvolution (ODL-SPD) with cTSVD and SPD de-

convolution using K-SVD learning algorithm (KSVD-SPD) [23]. Out of 20 sub-

jects, 10 are used as training data (7 with CTP deficits in the brain and 3 normal),

and the rest 10 are used for testing purpose (5 with CTP deficits and 5 normal).

A board-certified neuro-radiologist with 12 years experience reviewed CTP data

in a blind fashion to determine the type and location of CTP deficits.
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2.4.1 Experiment setup

Data acquisition: CTP was performed during the typical time-period for pa-

tients with cerebrovascular disease enrolled in an IRB-approved clinical trial

from August 2007 to June 2010, between days 6-8 in asymptomatic patients and

on the same day clinical deterioration occurred in symptomatic patients. CTP

was performed with a standard scanning protocol at our institution using GE

Light speed or Pro-16 scanners (General Electric Medical Systems, Milwaukee,

WI) with cine 4i scanning mode and 45 second acquisition at 1 rotation per sec-

ond using 80 kVp and 190 mA. A scanning volume of 2.0 cm was used consist-

ing of 4 slices at 5.0 mm thickness with its inferior extent selected at the level

of the basal ganglia, above the orbits, to minimize radiation exposure to the

lenses. Approximately 45 mL of nonionic iodinated contrast was administered

intravenously at 5 mL/s using a power injector with a 5 second delay.

Low-dose simulation: Repetitive scanning of the same patient at different

radiation doses is unethical. Thereby, Gaussian noise is added to the recon-

structed CT images in high-dose CTP to simulate low-dose CTP data at I mA

following the practice in [6].

The noise model is built on the inverse relationship between the tube current

I (mA) and the noise standard deviation σ in CT images

σ =
K
√

I
(2.17)

The value K is computed by analyzing the Gaussian noise in the CTP images of

22 patients under I0=190 mA tube current and the average K value is 103.09

mA1/2. Assume I is the simulated tube current level in mA, and σ0 is the

noise standard deviation in CTP images scanned under I0 mA. We can rewrite
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Eq. (2.17) as

σ

σ0
=

√
I0
√

I
(2.18)

Because noise distribution is statistically independent, the relationship between

σ, σ0 and the standard deviation of the added Gaussian noise σa is

σ2 = σ2
0 + σ2

a (2.19)

From Eq. (2.18) and (2.19), we can compute the simulated tube current I given

added noise standard deviation σa

I =
I0 · σ

2
0

σ2
0 + σ2

a
=

K2

K2

I0
+ σ2

a

=
K2 · I0

K2 + σ2
a · I0

(2.20)

When σa = 25.5, the simulated low-dose I = 15 mA.

Implementation details: We implemented cTSVD, KSVD-SPD and ODL-

SPD algorithms in MATLAB and applied them to the clinical CTP data acquired

at 190mA (high-dose) and simulated low-dose dataset. All experiments are con-

ducted on a 2.8GHz Intel Core i7 with dual cores MacBook Pro with 4GB mem-

ory in MATLAB environment. We download the online dictionary learning for

sparse representation code from the authors’ website1.

For all experiments of SPD, the dictionary used are of size 64× 256 designed

to handle perfusion image patches of 8 × 8 pixels with 256 atoms in the dic-

tionary. In all experiments, the denoising process uses a sparse coding of each

patch of size 8 × 8 pixels from noisy image.

Evaluation metrics: In this work, we use two metrics to evaluate the perfor-

mance of the deconvolution algorithms. CBF maps computed from CTP data

1http://spams-devel.gforge.inria.fr/
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obtained at high tube current of 190 mA were regarded as the reference stan-

dard.

Root-mean-square error (RMSE) is a measure of similarity between the CBF

at high-dose and low-dose, defined by

RMS E =

√√
1
n

n∑
i=1

( fi − f̂i)2 (2.21)

where fi and f̂i, i = 1, 2, . . . , n are the estimated CBF value at low dose and refer-

ence standard CBF value at high dose.

Peak signal-to-noise ratio (PSNR) is widely used in signal and image pro-

cessing to measure the denoising performance. PSNR is defined as the ratio

between the maximum intensity value in the ground truth image Imax and the

power of corrupting noise σ (RMSE between the ground truth and enhanced

image) that affects representation fidelity. PSNR is usually expressed in the log-

arithmic decibel scale as

PS NR = 20 log10

( Imax

σ

)
(2.22)

2.4.2 Visual comparisons

Comparison of learned dictionaries: Figure 2.1 shows the learned dictionary

using K-SVD and ODL. Both dictionaries were trained on a dataset of 10,000

8 × 8 patches of high-dose CBF perfusion maps and initialized with the redun-

dant DCT dictionary. We could observe from the two dictionaries that the online

learned dictionary capture the variety of patterns in the high-dose CTP data,

while the dictionary learned using K-SVD has more redundancy in the atoms

located in the upper and left corners of the dictionary. K-SVD algorithm solves
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Figure 2.1: Learned dictionaries. Left: K-SVD trained dictionary. Right:
Online learned dictionary.

the l0 norm problem using a greedy codebook update step, which may lead to

unstable dictionary due to perturbation in the training data. Online dictionary

learning solves a relaxed l1 norm problem which is convex and therefore results

in more robust dictionary. This leads to the differences in the two learned dic-

tionaries. Additionally, online dictionary learning updates the dictionary with

one training sample (or a small batch) each time, which scales up gracefully to

large datasets with millions of training samples.

Comparison of CBF perfusion maps: We then compare three deconvolu-

tion algorithms by visually observing the estimated CBF perfusion maps of two

patients, a patient with left middle cerebral artery (LMCA) perfusion deficit on

due to vasospasm in an aneurysmal SAH and a patient with normal CBF map.

(Please note that in medical practice, the left and right side of the patient are

designated opposite on the image). Low tube current of 15 mA was simulated

by adding Gaussian noise with standard deviation of 25.5 [6].
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Figure 2.2: CBF maps and zoomed-in regions of a 35-year-old female with
left middle cerebral artery (LMCA) perfusion deficit caused
by vasospasm in aneurysmal SAH. LMCA and RMCA are en-
larged for comparison. The results given by cTSVD, K-SVD
SPD and our online SPD are shown in the 1st, 2nd and 3rd row,
respectively, each with CBF map of high-dose (190mA) CTP
data on the left and that of low-dose (15mA) on the right.

As shown in Figs. 2.2 and 2.3, variations in the locally smooth regions are

reduced significantly by our proposed method, while the boundaries between

different tissue types and blood vessels are more visible. The arteries and veins

are more evidently defined, while the noise in the white matter is greatly sup-
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Figure 2.3: CBF maps and zoomed-in regions of a 42-year-old male with
normal cerebral blood flow. LMCA and RMCA are enlarged for
comparison. The results given by cTSVD, K-SVD SPD and our
online SPD are shown in the 1st, 2nd and 3rd row, respectively,
each with CBF map of high-dose (190mA) CTP data on the left
and that of low-dose (15mA) on the right.

pressed. While both SPD algorithms suppress noise in the CBF maps, KSVD-

SPD smoothes the CBF map too much and the vessels in the CBF maps tend to

discontinue and the boundaries of the vessels are less clear-cut. The non-vessel

tissue also tends to be under-estimated in the aneurysmal SAH patient and to be

over-estimated in the normal patient by KSVD-SPD, while our proposed ODL-
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Table 2.1: Quantitative comparison of RMSE and PSNR (dB) in CBF maps
at low-dose are reports using cTSVD, KSVD-SPD and our pro-
posed method. The average value for the patients with CTP
deficits, with normal CTP maps and all data are reported. The
best performance of each column is highlighted.

Metric Method Fig. 2.2 Fig. 2.3 Deficit Normal All data

cTSVD 9.47 12.05 12.72±6.45 11.46±3.28 12.09±4.87

RMSE KSVD-SPD 7.99 9.32 10.05±4.33 8.65±1.98 9.35±3.26

Proposed 7.23 8.74 9.24±4.62 8.28±2.53 7.32±3.54

cTSVD 33.89 34.46 32.95±1.79 31.77±2.30 32.36±2.04

PSNR KSVD-SPD 34.67 36.70 34.71±1.42 34.03±2.31 34.37±1.85

Proposed 36.23 37.25 35.73±1.48 34.75±2.36 35.24±1.93

SPD overcomes these drawbacks with an improved learning and reconstruction

algorithm, and different regularization parameter setting for vessel and non-

vessel voxels.

2.4.3 Quantitative comparisons

To quantitatively compare different methods, we report RMSE and PSNR be-

tween the computed perfusion maps and the reference maps of the entire brain

region in Table 2.1 for Fig. 2.2, Fig. 2.3 and all test data. Generally cTSVD

leads to noisy perfusion maps at low-dose. KSVD-SPD achieves better perfor-

mance than cTSVD in recovering the high-dose parametric maps, but it over-

smooths the texture details in non-vessel structure, especially in patients with
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Figure 2.4: Zoomed-in regions of the intensity difference maps between
LMCA and RMCA estimated by (a) cTSVD (b) KSVD-SPD and
(c) ODL-SPD. Arteries are delineated in red.

CTP deficits. In our proposed method, the robust dictionary and different regu-

larization parameters for vessel and non-vessel structure leads to better perfor-

mance. It performs the best in terms of both RMSE and PSNR for patients with

CTP deficits and normal CTP maps.

2.4.4 Diagnostic analysis

Comparison of asymmetry: As shown in Fig. 2.2, the intensity difference of

CBF values between LMCA and right middle cerebral artery (RMCA) is more

evident in the low-dose CBF map estimated using our method. To visualize

the asymmetry in the left and right middle cerebral artery of this patient, we

compute the intensity difference maps between LMCA and RMCA for three

deconvolution algorithms, namely cTSVD, KSVD-SPD and ODL-SPD, as shown

in Fig. 2.4. We can observe that the intensity different map using cTSVD is

too noisy to identify the asymmetry of LMCA and RMCA vessel structures,

while KSVD-SPD blurs the details of the vessel structure. Our proposed ODL-
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SPD generates the different map with better contrast and spatial resolution for

diagnosis of asymmetry in LMCA and RMCA.

Evaluation of ischemic voxels clustering: By aggregating all voxels (within

VOI) from the normal hemisphere of the patient data into a single “normal”

cluster and the pathologic hemisphere of the ischemia patient data set into an

“abnormal” cluster, we have two clusters of n1 normal voxels and n2 ischemic

voxels. In our case, n1 = 877 and n2 = 877. To quantify the separability between

normal and ischemic CBF values, we define the distance between these two

clusters as:

d =
m1 − m2√
σ2

1
n1

+
σ2

2
n2

(2.23)

where m1, m2 are the means, and σ1 and σ2 are the standard deviations of CBF

in the normal and ischemic clusters, respectively. We hypothesized that our

ODL-SPD algorithm to produce larger distance d as defined in Eq. (2.23), that is,

will more definitely differentiate between normal and ischemic tissues. Fig. 2.5

shows scatter plots of normal versus abnormal cluster. The x coordinate value

of each point if the “number of pixels”–increasing pixel number moves from the

top-left to the bottom-right of the region of interest as delineated by a radiolo-

gist. It is apparent that the two clusters are more separable in data processed via

sparse perfusion deconvolution than cTSVD, as shown in Table 2.2. Both SPD

algorithms perform better than cTSVD at high-dose and low-dose. Although

KSVD-SPD achieves better separability between normal and ischemic tissues,

it tends to under-estimate the CBF value of normal tissue, as in Fig. 2.5. At

low-dose, ODL-SPD best recovers the CBF values of both normal and ischemic

voxels among the three algorithm, and outperforms cTSVD at high-dose by in-

creasing the distance between normal and ischemic voxels.
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(b) cTSVD@15mA
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(c) KSVD-SPD@190mA
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(d) KSVD-SPD@15mA
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(e) Proposed@190mA
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Figure 2.5: Two clusters of normal vs. ischemic voxels from the aneurys-
mal SAH patient in Fig. 2.2. The results given by cTSVD,
KSVD-SPD and our proposed ODL-SPD are shown in the 1st,
2nd and 3rd row, respectively, each with CBF map of high-dose
(190mA) CTP data on the left and that of low-dose (15mA) on
the right.

29



Table 2.2: Normalized distance between ischemic and normal tissues

Distance 190 mA 15 mA

cTSVD 72.24 46.55

KSVD-SPD 86.56 68.37

Proposed 81.98 76.63

Comparison of diagnostic accuracy: Let us define sensitivity as the propor-

tion of samples with abnormal CBF values, which test positive, and specificity

as the proportion of samples with normal CBF values that test negative, at a spe-

cific threshold. Fig. 2.6 is the receiver operator characteristic (ROC) curve drawn

based on 877 abnormal samples and 877 normal samples in which we examine

a spectrum of thresholds. The plot shows the tradeoff between true positive

rate (sensitivity) and false positive rate (1-specificity). The closer the curve is to

the upper left corner, the more accurate the test. Fig. 2.6 shows that ODL-SPD

appears to be considerably more accurate than cTSVD and KSVD-SPD, leading

to more efficient diagnosis.

2.4.5 Parameter influence

Recall that the balance between the temporal convolution model and the dic-

tionary matching is controlled by the parameter µ1, while the sparsity of the

dictionary selection vector α is controlled by parameter µ2. Table 2.3 shows

the average PSNR at different values of µ1 and µ2. Our algorithm consistently

achieves similar performance. When µh
1 = 0.02, µl

1 = 0.01 and µh
2 = 0.8, µl

2 = 0.4,
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Figure 2.6: ROC curves generated by cTSVD, KSVD-SPD and ODL-SPD
deconvolution algorithms. Area under curve (AUC) of cTSVD
is 0.9483, the AUC of KSVD-SPD is 0.9749 and the AUC of
online-SPD is 0.9852.

the algorithm provides the best CBF estimation at low-dose in terms of PSNR.

Table 2.4 and 2.5 shows the parameter influence of vessel threshold and dictio-

nary size.

The threshold for two tissue types is set as CBF value of 40 mL/100 g/min,

which can best differentiate the vessels from other tissue. The dictionary size is

256 when the best performance is achieved. We therefore use this set of param-

eters throughout all experiments in Section 2.4.2 – 2.4.4.
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Table 2.3: The influence of parameters µ1 and µ2

µh
1 0.005 0.01 0.02 0.08 0.1 0.02 0.02

µl
1 0.01 0.01 0.01 0.01 0.01 0.005 0.02

PSNR 44.30 44.37 44.57 43.68 43.53 44.22 43.80

µh
2 0.8 0.8 0.8 0.8 0.8 0.6 0.9

µl
2 0 0.2 0.4 0.6 0.8 0.4 0.4

PSNR 42.29 44.41 44.57 44.22 43.47 44.39 44.40

Table 2.4: Parameter influence of vessel threshold

Thresh 10 20 30 40 50 60

PSNR 42.45 42.56 42.67 44.57 44.39 44.36

2.5 Discussion

We validate the proposed algorithm on clinical dataset with CTP deficits and

normal CBF maps. The experimental results show the following facts.

1. This implicitly incorporated image reconstruction constraint benefits the

quality of recovered low-dose perfusion maps. Such example-based infor-

mation improves the robustness and accuracy of low-dose deconvolution

algorithm, and demonstrate superior performance than existing computa-

tional methods.

2. The sparse linear combination of dictionary atoms learned from high-dose

perfusion maps is able to well approximate the input low-dose CTP data.
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Table 2.5: Parameter influence of dictionary size

K 64 128 256 512 1024 2048

PSNR 43.47 44.21 44.57 44.33 44.11 44.15

The l1 norm constraint of the coefficient handles the noise and artifacts at

low-dose. Different sparsity regularization parameters are applied to ves-

sels and brain tissue in observation of the different anatomical structures

further improves the results.

3. When the number of high-dose perfusion data is huge and comes in se-

quential fashion, it is infeasible to re-learn the entire dictionary whenever

a new training sample becomes available. In this case, online dictionary

learning technique is employed so our algorithm can be gracefully scaled-

up to contain perfusion map priors from, theoretically, infinite number of

training samples.

4. The joint spatio-temporal model overcomes the oscillation in temporal-

based models and preserves the spatial image features such as smooth-

ness and boundaries, as well as tissue structures. The proposed spatio-

temporal method can be applied to various perfusion maps, such as mean

transit time (MTT) and permeability surface product (PS), and different

dynamic imaging modalities such as SPECT and MRI, which captures the

time sequence images at cine mode. We expect to apply this method to

more applications in the future.

We acknowledge the following limitations to this work:
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The goal of this work was to enhance parametric maps in low-dose CTP us-

ing a model with a “residue” function convolution kernel that relates the input

(arterial enhancement) and response (tissue enhancement) [76, 44, 42]. We com-

pared to several existing models including cTSVD and KSVD-SPD, which are

based on similar underlying principles but using different approaches to solve

the problem. However, we did not assess other models that have been applied

to CTP data to calculate perfusion parameters, such as adiabatic approximation

to the tissue homogeneity model (AATH) [60, 53]. Future studies are needed to

determine whether our proposed algorithm regarding the dictionary learning

and sparse reconstruction is also effective for these alternative models.

Another limitation is that the analysis of CTP was predominantly performed

on CBF maps and not necessarily CBV and MTT maps. CBV and MTT maps pro-

vide important and complementary information for detecting and characteriz-

ing the ischemic penumbra in stroke patients. The applicability of our proposed

deconvolution algorithm to CBV and MTT maps will need to be considered and

verified by additional appropriate studies.

Finally, we acknowledge the limited number of patients for evaluation of

the proposed deconvolution algorithm in this work. A large-scale validation

including evaluation of different cerebrovascular diseases and patient variety

is needed to further validate the proposed algorithm for widespread clinical

application.
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2.6 Conclusions

In this chapter, we proposed a sparsity-based perfusion deconvolution algo-

rithm for enhancing CBF parameter map estimation in low-dose CTP. We take

advantage of the complementary parameter map information available in the

high-dose CBF maps from the existing database to recover the missing struc-

tural information in the low-dose CTP. This is achieved by a spatio-temporal

model, which uses a sparse representation approach based on learned dictio-

naries from the high-dose CBF maps, combined with the temporal convolution

model. This framework is validated on clinical dataset with subjects with ab-

normal and normal CBF maps. Compared to the existing methods, our sparse

perfusion deconvolution algorithm exhibits better performance.

The proposed method can be further extended in two directions. First, in

clinical diagnosis, infarct core and penumbra usually locate in low-contrast tis-

sues where the delicate tissue texture are important for neuroradiologists in di-

agnosis and treatment. Therefore, incorporating tissue segmentation into the

reconstruction framework is worth investigating as we would learn distinctive

dictionaries for tissue types respectively rather than a global dictionary. Second,

since the scope of sparsity-based perfusion deconvolution is beyond the cere-

bral blood flow computation, we plan to apply this proposed method to other

parametric maps, such as permeability surface maps, and integrate it into other

medical imaging modalities.
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CHAPTER 3

DISEASE DIAGNOSIS: TISSUE-SPECIFIC SPARSE DECONVOLUTION

Summary

Sparse perfusion deconvolution has been recently proposed to effectively im-

prove the image quality and diagnostic accuracy of low-dose perfusion CT by

extracting the complementary information from the high-dose perfusion maps

to restore the low-dose using a joint spatio-temporal model. However the low-

contrast tissue classes where infarct core and ischemic penumbra usually occur

in cerebral perfusion CT tend to be over-smoothed, leading to loss of essential

biomarkers. In this chapter, we extend this line of work by introducing tissue-

specific sparse deconvolution to preserve the subtle perfusion information in

the low-contrast tissue classes by learning tissue-specific dictionaries for each

tissue class, and restore the low-dose perfusion maps by joining the tissue seg-

ments reconstructed from the corresponding dictionaries. Extensive validation

on clinical datasets of patients with cerebrovascular disease demonstrates the

superior performance of our proposed method with the advantage of better dif-

ferentiation between abnormal and normal tissue in these patients.

3.1 Introduction

Computed tomography perfusion (CTP) [76] has been more commonly used in

patients with cerebrovascular diseases to characterize tissue perfusion. Specif-

ically, in acute stroke patients, detection of ischemic regions has been a main
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focus in the literature. The associated excessive radiation exposure of CTP

has aroused great concern due to over-dosage leading to biological effects in-

cluding hair loss, skin burn and increased cancer risk [102]. Even currently

recommended CTP scanning parameters still contribute to increased lifetime

cancer risk. Sparse perfusion deconvolution (SPD) [23][27] is a recently pro-

posed method for low-dose CTP deconvolution. Different from previous meth-

ods [43][7], whose image prior has been based on some simplifying assump-

tions, SPD is a data-driven method that restores the input low-dose perfusion

map using a spatio-temporal model. The model is regularized by a sparse com-

bination of atoms from a global dictionary learned from the high-dose perfusion

maps. In this way, spatial priors are incorporated on-the-fly. SPD is able to re-

move the noise and can preserve the vascular structure and contrast in low-dose

perfusion maps.

Theoretically, a global dictionary is able to capture sufficient image informa-

tion for different tissue classes, given abundant training data from each class.

Learned global dictionaries have been applied to various domains including

image super-resolution [109] and deformable shape modeling [117]. However

empirically the optimization procedure which minimizes the overall reconstruc-

tion error, tends to favor high-contrast patches to the low-contrast ones in both

the learning and reconstruction procedures. For medical images, the subtle vari-

ations and changes embedded in the low-contrast tissue classes such as white

matter can be crucial for disease detection and diagnosis [44].

In this chapter, we propose a tissue-specific sparse deconvolution method

to address the limitations above. Our method starts from segmenting the brain

into different tissue classes. A modified version of automated model-based tis-
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sue classification [98] is employed to segment the brain tissue classes. Then

tissue-specific dictionaries are learned from the training segments of each class.

Finally we use weighted sparse deconvolution method to restore each tissue

class and stitch them together. The extensive experiments demonstrate the su-

perior performance of our method. It is important to note that all the pre-

processing methods to denoise the dynamic CT data can be complimented

with our proposed deconvolution algorithm to achieve better performance. Al-

though class-specific dictionaries have been studied in other scenarios such as

face recognition [113] and medical image segmentation [116], our scenarios and

goals are different from these work. They aim to predict labels in recognition

and segmentation problems, with one class per example. Our proposed algo-

rithm is for reconstruction purpose, and reconstructive dictionaries allow us to

recover the pixels belonging to neighboring tissue classes in the same patch.

Our main contribution is two-fold: (1) Tissue-specific dictionaries for each

tissue class are employed in place of the global dictionary to capture the low-

contrast tissue class and delicate structural details. (2) Weighted sparse decon-

volution based on the probability of the tissue classification is proposed for a

unified reconstruction of the low-dose perfusion maps. In vivo brain acute

stroke and aneurysmal SAH patients data, we demonstrate the superiority of

our proposed method in CBF estimation that leads to better separation between

normal and ischemic tissue.

38



3.2 Related Work

Related studies can be traced to two categories, perfusion CT deconvolution and

tissue segmentation. In the former category, most previous studies [43, 7, 79, 2]

aim to regularize residue functions or denoise reconstructed CT images using

an assumed prior, e.g. Mumford-Shah [43] and anisotropic diffusion [87]. SPD

is the first CTP deconvolution method using learned priors and sparse repre-

sentation theory. Segmentation of anatomical structures in brain imaging has

gained increasing importance in clinical studies. A frequently used and very

reliable statistical algorithm for MRI employs partial tissue segmentation using

a model-based automated expectation-maximization algorithm [98]. [52] uses

non-linear deformation to warp the tissue probability maps of MR images to

the CT space and decomposes the Hounfield Unit of CT images based on the

tissue probability. A combined version of these two methods with robust statis-

tics of the dynamic CT data is developed in this work to segment the brain tissue

in CTP.

3.3 Tissue-specific Approach to Sparse Deconvolution

3.3.1 Tissue Classification

We first classify the voxels in the dynamic brain CTP data into four tissue

classes: vessel, gray matter (GM), white matter (WM) and cerebrospinal fluid

(CSF). Since computational efficiency is very important in our framework for

real-time clinical diagnosis, we choose a simple yet effective segmentation ap-
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proach by adapting a tissue classification algorithm for MRI [98]. We first com-

pute the median value for each voxel along the temporal axis since different

tissue classes have different contrast perfusion characteristics. Expectation-

maximization segmentation is employed on the median map to obtain proba-

bility maps of GM, WM and CSF, We initialize the bias field to zero and start

the iterations by providing the algorithm with a rough prior estimation of the

classification. The prior distribution is derived from a digital brain atlas that

contains spatially varying prior probability maps for the location of GM, WM

and CSF [97]. Affine transformation is employed to warp the prior distributions

into the target CT image space. EM algorithm is used to estimate the hidden

class labels and the parameters of the model, while contexture information is

incorporated by a Markov Random Field (MRF). The reason for choosing me-

dian map as a robust measurement of the tissue contrast in CTP is because of

its higher tissue contrast compared to other statistics in our experiments. Ves-

sel is segmented by thresholding the original CBF value. The vessel voxels in

other tissue probability maps are set to zero to guarantee mutually occlusive

segmentations. Tissue probability maps on a representative dataset are shown

in Fig. 3.1. The following reconstruction does not heavily depend on the seg-

mentation accuracy, since each tissue dictionary is learned from over 10,000

patches and represents dominant patterns in the training patches.

3.3.2 Tissue-Specific Dictionary Learning

Based on the tissue classification from the previous section, we obtain M sets

S m of training patches, m = Vessel,GM,WM,CS F, by classifying a patch y from

a training image to class i if more than 50% of voxels in the patch y belongs to
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(a) (b) (c) (d) (e) (f) 

Figure 3.1: Brain tissue classification by the automatic algorithm on the
median map. (a) A slice in the enhanced CTP data (b) Median
map. Probability maps of (c) Vessel (d) Gray matter (e) White
matter (f) CSF.

class i. Voxels from other classes are then removed from the patch.

To learn the tissue-specific dictionary Dm, m = Vessel,GM,WM,CS F, we use

the recently developed online learning algorithm [68] which is able to update

the dictionary with every batch of new training samples and avoids the time-

consuming reconstruction of the entire dictionary when new samples come.

Given a set of high-dose CBF patches Ym = {ym
i }

N
i=1 for a specific tissue type m,

each as a column vector of size N. αi in RK is a sparse vector to make Dαi an

approximation to ym
i with certain error tolerance. Am = [α1, . . . , αN]. We seek the

dictionary Dm in RN×K in that minimizes

min
Dm,Am

N∑
i=1

‖ym
i − Dmαi‖2 + µ2‖αi‖1 (3.1)

The framework of online dictionary learning is depicted in Algorithm 1.

The dictionary is updated efficiently using block-coordinate descent based on

stochastic approximation. Because it only exploits a small batch of newly com-

ing data in the dictionary update step, it is therefore much faster than K-SVD or

other off-line learning algorithms. Since computational efficiency is very impor-

tant in our framework, we can efficiently update the tissue-specific dictionaries
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Algorithm 1: The framework of online dictionary learning in mini-batch
mode.

Input: Initialized dictionary D0 ∈ Rn×k, input data yi ∈ Rn, number of itera-

tions T , regularization parameter λ ∈ R.

Output: Learned dictionary DT .

A0 = 0, B0 = 0.

for t = 1→ T do

Randomly draw a set from Y : yt,1, yt,2, . . . , yt,τ.

for i = 1→ τ do

Sparse coding: αt,i = arg min
α∈Rk

1
2‖yt,i − Dt−1α‖

2
2 + λ‖α‖1.

end for

At = βAt−1 +
∑τ

i=1 αt,iα
T
t,i, Bt = βBt−1 +

∑τ
i=1 yt,iα

T
t,i,

where β = θ+1−τ
θ+1 , and θ = tτ if t < τ, θ = τ2 + t − τ otherwise.

Dictionary update: Compute Dt, so that:

arg min
D

1
tσ

t
i=1

1
2‖yi − Dαi‖

2
2 + λ‖αi‖1 = arg min

D

1
t ( 1

2Tr(DT DAt) − Tr(DT Bt)).

end for

with newly coming data using online learning. Moreover online learning also

does not require the loading of all data at the same time, which is unfeasible in

clinical practice, and results in less memory cost.

3.3.3 Weighted Sparse Deconvolution

Let’s assume dynamic CTP data C in RN×T composed of N tissue enhancement

curves (TEC) at voxels of interest (VOI) [x, y, z]T and T time points. The residue

impulse function (RIF) is represented by R in RN×T , indicating the delaying of
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the remaining contrast tracer in the VOI. f in RN is the CBF map to be esti-

mated and D is the learned dictionary. The deconvolution step in SPD algorithm

computes the CBF map of low-dose CTP data using both temporal convolution

model and tissue-specific dictionary-based spatial regularization by solving:

J = µ1‖Cm − CaRm
‖22 + ‖ f m − Dmα‖22 + µ2‖α‖1 (3.2)

where Cm, Rm, Dm and f m are the corresponding TEC, RIF, dictionary and CBF

for tissue class m for a patch of size N × N. The final global CBF parametric map

is generated by averaging the areas of neighboring patches with overlap of one

pixel.

Eq. (3.2) is solved by an EM style algorithm with iterative employment of

two processes: 1) sparse coding process which minimizes with respect to α with

f fixed, 2) quadratic solver which efficiently minimizes this simplified linear in-

verse problem, as in [27]. Two procedures are iteratively employed to obtain f m

and αm for each tissue type. Proper initialization in Eq. (3.2) with the output of

cTSVD poses the optimization at a good start point and is supposed to mitigate

local minima. We also observe our results are quite stable with respect to the

training dataset.

The probability map of each tissue class is obtained by employing the model-

based segmentation algorithm [98] on the median map of the low-dose CTP

data. For every tissue class m, a tissue-specific patch f̂ m
i is reconstructed using

the corresponding tissue-specific dictionary of tissue class m. The patch f̂ m
i is

then weighted by the probability map of class m for patch fi and all probability-

weighted tissue-specific patches are summed together to obtain the final recon-

struction.

Using tissue-specific dictionaries to enhance low-dose CTP maps, SPD ob-
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tains three additional advantages: 1) Segmentation information is incorporated

into the dictionary learning and reconstruction. 2) Each tissue type has sufficient

atoms in the tissue-specific dictionary to reconstruct. 3) Tissue specific parame-

ter settings can be employed according to the spatial smoothness of each tissue

class.

3.4 Experiments

To evaluate the performance of the proposed tissue-specific sparse deconvolu-

tion (TS-SPD) method, we apply it to a cerebrovascular disease dataset of 20

cases CTP scanned at tube current 190mA from our medical institute. Out of

20 subjects, 10 are used as training and validation (6 with CTP deficits in the

brain and 4 normal), and the remaining 10 are used for testing purpose (5 with

CTP deficits and 5 normal). For all experiments of SPD, the dictionary used

are of size 64 × 256 designed to handle perfusion image patches of 8 × 8 pixels

with 256 atoms in the dictionary. We download the online dictionary learn-

ing for sparse representation code from the authors’ website1, and the model-

based brain segmentation code2. The optimal parameters are obtained empiri-

cally from the training and validation dataset are: µ1 = 0.01, 0.02, 0.04, 0.08 and

µ2 = 0.2, 0.4, 0.8, 1 for vessel, GM, WM and CSF. The threshold for vessel seg-

mentation is 70 mL/100g/min on the CBF map, as found to be the optimal

value in our empirical experiments.

Since repetitive scanning of the same patient at different radiation doses

is unethical, correlated Gaussian noise is added to the high-dose CTP data

1http://spams-devel.gforge.inria.fr/
2http://sourceforge.net/projects/niftyseg/
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Figure 3.2: Left: Global dictionaries learned using K-SVD. Right: Tissue-
specific dictionary for white matter. The global dictionary is
dominated by high-contrast, edge-like atoms, while the tissue-
specific dictionary for WM has more low-contrast, fine struc-
tured atoms, as highlighted by red boxes.

to simulate low-dose CTP data at I mA following the practice in [6]: I =

(K2 · I0)/(K2 + σ2
a · I0), where σa is the standard deviation of the added noise,

I0 = 190mA is the tube current at high-dose, K = 103.09mA
1
2 is a constant. Low

tube current of 15.6 mA was simulated by adding correlated Gaussian noise

with standard deviation of 25. CBF maps computed from CTP data obtained

at high tube current of 190 mA were regarded as the reference standard. We

present both the visual and quantitative results to demonstrate performance of

the proposed method, with the comparison to cTSVD [105] and KSVD-SPD [23].

Tissue-specific dictionaries: Figure 3.2 shows the globally learned dictio-

nary using K-SVD and the tissue-specific dictionary for white matter. The global

dictionary is trained on a dataset of 40,000 8 × 8 patches of high-dose CBF per-

fusion maps randomly sampled from 10 training subjects and initialized with
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Figure 3.3: CBF maps and zoomed-in regions. A 63-year-old female with
acute stroke has an ischemic region in the right hemisphere of
the brain (1st row) and a 35-year-old female with left middle
cerebral artery (LMCA) perfusion deficit caused by aneurys-
mal SAH (2nd row). (Note representations in medical images
display the sides of the images in reverse order) LMCA and
RMCA are enlarged for comparison next to each image. The
low-contrast tissue classes in the LMCA and RMCA regions
are highly noisy in cTSVD images, and are over-smoothed by
KSVD-SPD, while TS-SPD preserves the subtle variations and
are closest to the ground truth.

the redundant DCT dictionary. Each tissue-specific dictionary is trained using

10,000 8 × 8 patches of the corresponding tissue category from the same train-

ing subjects. We could observe from the global dictionary that high-contrast

patches with edges and corners dominate the dictionary atoms. In comparison,

the tissue-specific dictionary for white matter preserves the texture and image

characteristics for this tissue class.

CBF perfusion map: We then compare three methods by visually observing

the estimated CBF perfusion maps of two patients. As shown in Figs. 3.3, among

the three low-dose CBF maps, the CBF maps generated using our proposed

TS-SPD algorithm recovers the information of high-dose CBF maps from the

low-dose CTP data with best overall performance. The arteries and veins as
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Figure 3.4: Zoomed-in regions of the intensity difference maps between
LMCA and RMCA of the acute stroke (left) and SAH (right)
patients estimated by (a) Ground truth (b) cTSVD (c) KSVD-
SPD (d) Proposed TS-SPD. Arteries are delineated in red, CSF
in blue.

well as the micro-vessels are better defined, while the delicate structures of the

white matter and CSF are preserved. While the noise is greatly suppressed in

the low-dose CBF maps for both enhancement algorithms, KSVD-SPD tends to

smooth the image too much, especially the non-vessel structures. Our TS-SPD

algorithm overcomes these drawbacks and preserves both the vessel boundaries

and the low-contrast structures of WM and CSF with tissue-specific dictionaries

and adaptive parameter settings for each tissue class.

Asymmetry: To visualize the asymmetry in the left and right middle cerebral

artery in Fig. 3.3, we compute the intensity difference maps between LMCA

and RMCA for three methods, as shown in Fig. 3.4. The intensity difference

map of cTSVD is too noisy to identify the asymmetry of LMCA and RMCA

vessel structures, while KSVD-SPD blurs the details of the vessel structure. The

proposed method generates the difference map with better contrast and spatial

resolution for diagnosis of asymmetry in LMCA and RMCA.
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Table 3.1: Quantitative comparison of PSNR (dB) in CBF maps at low-dose are reported
for 10 CTP cases by cTSVD, KSVD-SPD and our TS-SPD. SAH and stroke indi-
cate the two subjects in Fig. 3.3. The best performance is in bold-face type.

PSNR Brain GM WM

Stroke SAH All data Stroke SAH All data Stroke SAH All data

cTSVD 43.51 34.87 33.57 12.81 15.94 15.91 19.99 18.65 17.82

KSVD-SPD 45.80 37.11 34.91 17.53 18.08 17.88 22.80 19.75 19.41

TS-SPD 47.84 38.38 36.65 18.92 19.66 19.91 25.02 22.56 22.28

Table 3.2: Quantitative comparison of the normalized distance between is-
chemic and normal tissue clusters. The best performance of each
column is in bold-face type. (Unit: mL/100g/min)

Method Stroke SAH All data

cTSVD 42.71 46.03 49.91±5.12

KSVD-SPD 57.19 53.96 55.62±3.91

TS-SPD 63.25 56.64 59.60±3.82

Quantitative comparisons: We report the PSNR (peak signal-to-noise-ratio)

values for two cases in Fig. 3.3 and all testing subjects on the whole brain, GM

and WM in Table 3.1. The GM and WM are the tissue regions in the brain

affected by stroke and other ischemic processes. The proposed method again

achieves the highest PSNR (usually 2∼3 dB higher) in all cases, allowing for bet-

ter discrimination ability of these brain regions, by preserving the tissue struc-

tures for differentiation of infarct core and ischemic penumbra in specific re-

gions of the brain assisting neuroradiologists in diagnosis.

Ischemic voxels clustering: We also perform the clustering experiment as
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in [23] by aggregating all voxels (within VOI) from the normal hemisphere into a

single “normal” cluster and the pathologic hemisphere into an “abnormal” clus-

ter. To quantify the separability between normal and ischemic CBF values, we

define the distance between these two clusters as: d = (m1−m2)/
√
σ2

1/n1 + σ2
2/n2,

where m1, m2 are the means, and σ1 and σ2 are the standard deviations of CBF

in the normal and ischemic clusters, n1 and n2 are the number of normal vox-

els ischemic voxels, respectively. We hypothesized that our TS-SPD algorithm

to produce larger distance d, that is, to more definitely differentiate between

normal and ischemic tissues. Table 3.2 shows the distance between normal and

abnormal clusters for the two cases in Fig. 3.3 and all subjects with CTP deficits.

TS-SPD separates the two clusters with greatest distance. One-tail paired t-test

yields p = 0.051 between cTSVD and KSVD-SPD, and p = 0.015 between KSVD-

SPD and TS-SPD.

3.5 Conclusion

In this chapter, we have proposed a novel tissue-specific dictionary learning

and deconvolution approach for CBF perfusion map enhancement in low-dose

cerebral CTP. We take advantage of the distinctive image information of each

tissue category available in the high-dose CBF maps to recover the missing tex-

ture and structural information in the low-dose CBF maps. This is achieved

by performing a spatio-temporal sparse deconvolution based on tissue-specific

dictionaries learned from high-dose CBF map segmentation. Our method con-

sistently outperforms the state-of-art methods, especially in GM and WM where

the cerebrovascular disease diagnoses mostly rely.
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CHAPTER 4

TREATMENT PLAN: BLOOD-BRAIN BARRIER PERMEABILITY

ESTIMATION

Summary

Blood-brain barrier permeability (BBBP) measurements extracted from the per-

fusion computed tomography (PCT) using the Patlak model can be a valuable

indicator to predict hemorrhagic transformation in patients with acute stroke.

Unfortunately, the standard Patlak model based PCT requires excessive radia-

tion exposure, which raised attention on radiation safety. Minimizing radiation

dose is of high value in clinical practice but can degrade the image quality due to

the introduced severe noise. The purpose of this work is to construct high qual-

ity BBBP maps from low-dose PCT data by using the brain structural similarity

between different individuals and the relations between the high- and low-dose

maps. The proposed sparse high-dose induced (shd-Patlak) model performs by

building a high-dose induced prior for the Patlak model with a set of location

adaptive dictionaries, followed by an optimized estimation of BBBP map with

the prior regularized Patlak model. Evaluation with the simulated low-dose

clinical brain PCT datasets clearly demonstrate that the shd-Patlak model can

achieve more significant gains than the standard Patlak model with improved

visual quality, higher fidelity to the gold standard and more accurate details for

clinical analysis.
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4.1 Introduction

As the first leading cause of long-term disability in the United States, stroke im-

poses a substantial economic burden on individuals and society, with an annual

direct and indirect costs totaling US$69 billion in 2006 [63]. Stroke may be is-

chemic or hemorrhagic and for the former case, intravenous rtPA(alteplase) is

an effective treatment widely adopted in clinical practice [14]. However, hem-

orrhagic transformation (HT) is a serious and potentially fatal complication in

patients with acute ischemic stroke, especially for those treated with rtPA [64].

This complication has been and is the hindrance to the administration of the

rtPA for this condition [49, 91]. Blood-brain barrier (BBB) breakdown due to is-

chemia before reperfusion therapy is considered one of the contributing factors

to HT in acute ischemic stroke patients [62]. Early detection of a damaged BBB

with increased blood-brain barrier permeability (BBBP) could be a valuable tool

to identify patients who are more likely to suffer from HT after acute reperfu-

sion therapy, and assist evaluation of the benefits/risks of this treatment [5].

Perfusion computed tomography (PCT) imaging has been advocated to

quantify the rate of BBBP [13] from the enhanced time series CT images, with

the Patlak model [83]. The standard Patlak model states that a steady-state of

contrast levels must be achieved before BBBP assessment, and therefore a de-

layed PCT acquisition of 240 seconds [15] is required to accurately assess BBBP.

The associated excessive radiation exposure of the standard PCT scanning pro-

tocol in cine mode for about 1 minute has already raised significant concerns

on radiation safety [39, 48, 102], let alone the prolong protocol for BBBP assess-

ment. While effective radiation dose reduction in PCT is an important arena of

continuing research efforts, minimizing the reasonable radiation dose for BBBP
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assessment is a relatively new topic drawing accumulating research attention.

Up to now, many efforts to reduce radiation dose in PCT have been per-

formed to optimize PCT scanning protocol [36, 104, 101, 111, 50, 3]. Among

these techniques, lowering the milliampere-seconds (mAs) is a straightforward

and cost-effective method to reduce the radiation dose in PCT. However the as-

sociated increased noise in the sinogram will unavoidably lead to quality degra-

dation and the image artifacts in the reconstructed image series and hemody-

namic parameter maps. Numerous approaches have been proposed to reduce

the noise in the low-dose PCT data, including denoising the sinogram and/or

reconstructed image series [75, 66, 67, 87, 61] and regularizing the residue func-

tions in the deconvolution process [7, 79, 2, 106, 43, 24, 27]. However most of

these approaches are not addressing the optimization of BBBP map specifically.

The interweaving nature of temporal information in the Patlak model and the

spatial correlation with the neighborhood tissue is also not effectively utilized.

The standard Patlak model analyzes each voxel in the region of interest in-

dependently when a steady-state phase is reached between reversible compart-

ments. It also assumes that the radiation dosage and tracer concentration are

high enough to generate high-quality, nearly noise-free tissue density curves

(TDC) in the cine-mode scanning. However the noise in the PCT data due to

the reduced radiation dose will unavoidably disturb the linearity between the

variables in the steady-state phase for Patlak model analysis, thus degrade the

accuracy of the permeability calculation. To mitigate the noise issue associated

with the standard Patlak model, in this chapter, we develop a spatial-temporal

formulation that interweaves the temporal relationship between TDCs of the

artery and the tissue, with the spatial similarity between the high- and low-dose
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BBBP maps. This is achieved by constructing a dictionary from the repository of

high-dose BBBP maps available in the clinical database and imposing a sparsity

prior to select a few atoms in the dictionary for the restoration of the low-dose

map. In spite of the recent research that bridges the gulf between high- and low-

dose perfusion maps such as CBF with a learned dictionary [27], to the best of

our knowledge, it is the first attempt to enhance the BBBP map at low radiation

dose by improving the standard Patlak model.

The novelty of sparse high-dose induced Patlak model (shd-Patlak) model is

threefold. First, shd-Patlak explores the similarity in the brain structure across

patients and the specific anatomy at each region of the brain by constructing a

location adaptive dictionary from the high-dose maps of different patients. Sec-

ond, a sparsity term is imposed to the optimization problem in producing the

high-dose induced prior as a strategy to select the proper patches for reconstruc-

tion. Third, an iterative process with steepest descent algorithm is proposed

to optimize the current shd-Patlak model. Qualitative and quantitative eval-

uations were carried out on the scans of clinical patients in terms of different

evaluation metrics.

4.2 Related work

Since sparsity prior is used in the optimization of our works, we review the rel-

evant work on the theoretical background and the application of sparsity prior.

Sparsity approach has inspired much research in recent years. It dates back

to 2006 when [17] and [8] showed that with high probability a sparse signal

could be reconstructed from a small number of its linear measurements. Since
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then, numerous greedy algorithms have been developed to address the sparsity

optimization problem. These algorithms include matching pursuit [71], orthog-

onal matching pursuit (OMP) [11], basis pursuit (BP) [12] and stagewise OMP

(stOMP) [17]. Besides the greedy algorithms which solve the L0 norm problem,

relaxation to L1 norm which is convex has been explored [8, 54, 35], leading to

optimization algorithms including LARS-Lasso [96], interior-point [54], etc.

Sparsity prior have been widely applied to computer vision, multimedia

processing and medical imaging communities. In the natural image domain,

the applications range from the natural image and video denoising [20, 85],

image super-resolution [109], image demosaicing and inpainting [70], robust

face recognition [107], automatic image annotation [115]. In the medical im-

age domain, sparsity prior has shown its advantage in shape modeling [114],

deformable segmentation [117], MR reconstruction [65, 45], etc.

4.3 Background: Patlak model

Patlak model, first described by Patlak et al. [83, 82], is a theoretical model of

blood-brain exchange. When a steady-state phase is reached between the re-

versible (arterial) intravascular and the irreversible extravascular (in this case

the brain parenchyma) compartments, transfer of tracer is assumed to be unidi-

rectional. The Patlak plot is a graphical representation of the Patlak model. The

rate of transfer between the two compartments is computed from the slope of

the linear part of the plot.

The Patlak model is derived from the idea that the total attenuated contrast

of a current voxel or region of interest could be represented as a sum of the
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tracer in the intravascular and extravascular compartments at a specified time t

as:

T (t) = CBV · civ(t) + p
∫ t

0
civ(τ)dτ = Intravascular + Extravascular (4.1)

where T (t) is the tissue density curve or tracer at time t, and civ(t) is the intravas-

cular concentration of the voxel at time t, CBV is the cerebral blood volume. The

multiplication of civ(t) and CBV would yield the total amount of tracer residing

in the intravascular component. For the extravascular component,
∫ t

0
civ(τ)dτ

represents the total amount of tracer that perfused the intravascular component

from time 0 up till time t, and p is the permeability constant, which is the target

of Patlak analysis. The total amount of tracer that leaks from the intravascular

to the extravascular component is proportional to the permeability and could

be computed via the multiplication of p with
∫ t

0
civ(τ)dτ.

In practice, arterial input function AIF(t) is used as a substitute of civ(t) since

the voxels in the artery contains only an intravascular component. Eq. 4.1 now

becomes

T (t) = CBV · AIF(t) + p
∫ t

0
AIF(τ)dτ (4.2)

By dividing AIF(t) from both sides, the equation yields an easily plotable

line in which the slope is p:

T (t)
AIF(t)

= CBV + p ·

∫ t

0
AIF(τ)dτ

AIF(t)
(4.3)

By setting

y =
T (t)

AIF(t)
and x =

∫ t

0
AIF(τ)dτ

AIF(t)
(4.4)
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we get

y = CBV + p · x (4.5)

The slope of a regression line fit to the linear part of the Patlak plot is an ap-

proximation of p (the rate of transfer) at time t. The value indicates the amount

of accumulated tracer in relation to the amount of tracer that has been avail-

able in the plasma and BBBP is expressed in mL×100 g−1×min−1. The y-axis

intercept equals CBV. To correct the overestimation of BBBP due to delayed ar-

rival of tracer in the current voxel compared to AIF(t) [15], we shift the time-

enhancement curve in each parenchymal voxel to match the arrival time of

tracer in the artery [88]:

civ(t) = AIF(t − [TT P(T ) − TT P(AIF)]) (4.6)

where TT P is the time to peak of a curve. The new civ(t) replaces the AIF(t) for

all delay-corrected calculation.

4.4 Sparse high-dose induced Patlak model

4.4.1 Basic idea

Our key assumption is that image information lost in the low-dose BBBP map

due to severe noise could be recovered from the corresponding anatomical re-

gions from the high-dose BBBP maps in the clinical repository. The similarity

in the human brain structure and perfusion mechanism makes restoration of

missing information of one patient from other individuals possible.
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Up till now the BBBP computation with Patlak model is voxel-independent,

neglecting the contextual information embedded in the neighboring voxels in

the same BBBP map and the similarity between high- and low-dose BBBP maps

of different patients. Thus we propose to impose a regularization prior R(P) to

the linear regression problem in Eq. 4.5 to improve the quality of BBBP maps,

especially at low-dose. In this chapter, following the line of the previous stud-

ies for sparsity-based perfusion deconvolution for cerebral blood flow (CBF)

map [27] and residue function [24] regularization, we propose a sparse high-

dose induced prior for Patlak model (“shd-Patlak”) with location adaptive dic-

tionaries constructed from corresponding anatomical regions in the high-dose

maps from the existing repository, and an EM style algorithm to solve the max-

imum a posterior (MAP) optimization. The flowchart of the shd-Patlak model

is summarized in Fig. 4.1.

4.4.2 Construction of location adaptive dictionary

The structural similarity between the brains of different individuals motivates

us to explore the connections between the high- and low-dose BBBP maps of

distinct patients. While patch-based dictionary learning is widely adopted in

computer vision for image denoising and super-resolution [20, 70, 110], a global

dictionary is usually learned from hundreds of thousands of patches to achieve

a universal representation of all the possible patches with enough accuracy.

However, the large computational demand in the reconstructed process to eval-

uate every patch in the global dictionary and the existence of the unnecessary

patches in the global dictionary for reconstruction of the patch of interest make

us turn to location adaptive dictionaries.
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Low-dose 
BBBP 

1. Location Adaptive 
Dictionary Construction 

2. Sparsity Imposed Prior 
Estimation  

3. MAP Optimization 

Result 

High-dose 
BBBP 

Iterative Optimization 

Figure 4.1: The flowchart of the low-dose map enhancement framework
which consists of three modules: location adaptive dictionary
construction, sparsity imposed prior estimation and MAP opti-
mization. Using the high-dose repository, high-quality param-
eter maps are computed as training data from which we are
able to construct location adaptive dictionaries. Then an itera-
tive process consisting of prior estimation and MAP optimiza-
tion is applied to enhance the low-dose map.

Assuming that the space of a low-dose BBBP map P has been divided into

overlapping patches, we use pi, a column vector to denote the intensity values

of a patch at location i. The search for patches to be included in the location

adaptive dictionary is based on a search-window S i surrounding the location i

in the high-dose maps. For each high-dose map H j for training, we extract with

respect to pi a L × m dictionary matrix D j = [p1
j , . . . , pm

j ], where L is the length of

pi, and m is the number of patches to select from each high-dose map. The search

process is repeated for all available high-dose maps j ( j = 1, . . . , n) to build the

final L × M dictionary matrix D = [D1, . . . ,DM], where M = mn. The location

adaptive dictionary relaxes the need for accurate registration via its patch-based
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Low-dose Map P 

High-dose Repository 

pi 
pj 

Si Sj 

Figure 4.2: Construction of location adaptive dictionaries for a low-dose
map P (red) from the high-dose repository (blue). Search
bounding box is adaptively determined for each patch P (such
as the purple box pi or the orange box p j) by using the loca-
tion of the current patch as reference. After determining the
bounding box (dashed line S i and S j) for the current patch, a
certain number of patches across different training samples are
selected into the dictionary D.

search mechanism, and saves the computational demand at restoration. The

concept of the location adaptive dictionary is shown in Fig. 4.2.
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4.4.3 Sparse high-dose induced prior

Without loss of generality, the BBBP measurement can be approximately ex-

pressed as a linear regression problem:

Y = CBV + X ⊗ P (4.7)

where P in RN×1 is the vector of BBBP values to be estimated by stacking the

pixels in the 2-D map vertically. Y , X and CBV in RT×N are the dependent, the

independent variables and the intercept derived from Eq. 4.5 for all pixels in P.

The operator ⊗ indicates that the column i in X is multiplied by the ith value in

P. The goal of blood-brain barrier permeability computation is to estimate the

parameter P according to the measurement model in Eq. 4.7.

Direct linear regression for each pixel independently may lead to unreliable

outcome given the noisy sinogram data at low-dose PCT with various artifacts.

To address this problem, we propose a penalized least square approach based

on the MAP estimation criterion by adding a priori term R(P) to the least square

form of the problem:

P∗ = arg min
P≥0

‖Y − V − X ⊗ P‖22 + βR(P) (4.8)

The priori term R(P) plays an important role for reliable BBBP estimation in

low-dose condition. Here based on the previous studies using sparse and re-

dundant dictionaries for sinogram denoising in regular CT [89] and cerebral

blood flow map enhancement [27] in perfusion CT, a sparse high-dose induced

prior (named shd prior) is proposed:

R(P) = ‖P − shd(P)‖22 (4.9)

where shd(P) represents a sparse high-dose induced reconstruction.
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Upon obtaining the corresponding location adaptive dictionary Di for patch

pi in the low-dose BBBP map P, the denoised version of pi is assumed to be for-

mulated as a linear combination of a few patches in the dictionary Di as pi = Diα,

where α is a M × 1 column weight vector to choose the appropriate dictionary

atoms.

shd(pi) = Di · arg min
α

‖pi − Diα‖
2
2 subject to ‖α‖0 < K (4.10)

where ‖ · ‖0 represents the L0 norm which constrains the number of atoms to

combine the reconstructed patch to less than K.

The sparsity constraint in Eq. 4.10 is necessary in two ways. First the noise

may be perfectly reconstructed if any combination can be used. Second, the so-

lution to the problem may not be unique when the dictionary D is overcomplete

(M > L). Sparsity constraint has been shown effective in various scenarios, in-

cluding natural image denoising, image super-resolution, video denoising, MR

reconstruction, etc. [20, 110, 85, 45], by imposing a regularization term that limits

the number of examples to select from the training repository. Another impor-

tant advantage of the sparse L0-based constraint over the L2-based constraint is

that the L0 constraint is less sensitive to the outliers, which in image processing

applications indicates sharp edges.

The constraint in Eq. 4.10 is not directly tractable due to non-convexity of the

L0 norm. Greedy algorithms can be used to solve this NP-hard L0 norm mini-

mization problem. Yet there is no guarantee to find the global minima. Gener-

ally, no known algorithms can search for the sparsest solution more efficiently

than exhausting all possible subsets of α. Fortunately, the recent development

in the sparse representation theory [17] proves that L1 norm can be applied to

impose sparsity while making the problem convex. So Eq. 4.10 is relaxed to
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shd(pi) = Di · arg min
α

(‖pi − Diα‖
2
2 + λ‖α‖1) (4.11)

where ‖α‖1 stands for the sum of the absolute values of the components of α.

The sparse high-dose induced prior of BBBP map P can thus be recon-

structed by overlapping and averaging the reconstructed patches from Eq. 4.11.

And the final cost function to optimize is

P∗ = arg min
P≥0

‖Y −CBV − X ⊗ P‖22 + β‖P − shd(P)‖22 (4.12)

The cost function composes of two terms: the temporal linear regression

model from the Patlak assumption, and the spatial regularization term of sparse

reconstruction induced from the high-dose maps. The interweaving of the tem-

poral and spatial information can overcome the high noise sensitivity of the

Patlak model with sole temporal term and pave the way for a robust model for

low-dose BBBP estimation.

4.4.4 Problem reformulation

Given that the weight vector α in Eq. 4.11 is a function of the objective map

P, solving the cost function in Eq. 4.12 is not straightforward. Therefore an

iterative approach is adopted to optimize the cost function, which automatically

adjust the weight vector α in Eq. 4.11 according to the current estimation Pt

at tth iteration and the location adaptive dictionaries during each iteration. To

solve the objective function with the operator ⊗ in Eq. 4.12, we first reformulate

it to conventional matrix multiplication. The Patlak model in Eq. 4.7 can be
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expressed as

Ȳ = X · diag(P) = X̄P (4.13)

where Ȳ in RT N×1 is formed by stacking the columns of Y −CBV vertically. X̄ is a

T N × N matrix formed by positioning the columns of matrix X on the diagonal

of the new matrix X̄, so that

X̄ =



X.,1 0 · · · 0

0 X.,2 · · · 0
...

...
. . .

...

0 0 · · · X.,N


(4.14)

Now the objective function in Eq. 4.12 becomes

P∗ = arg min
P≥0

‖Ȳ − X̄P‖22 + β‖P − shd(P)‖22 (4.15)

4.4.5 MAP optimization framework

The shd-Patlak algorithm optimizes the estimated low-dose BBBP map by an

EM style MAP algorithm, which iterates the following two steps:

1. shd prior estimation. Given the current map estimation Pt and the high-dose

map repository, location adaptive dictionaries are built for each patch pt
i in

Pt. Eq. 4.11 can be solved by multiple algorithms and we use Lasso [96] in

this work. The regularization term R(P) is then obtained in Eq. 4.9.

2. Steepest descent optimization. The steepest descent optimization is applied

to Eq. 4.15 to generate the new map estimation. We denote X̄′ = X̄ +βI and
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Ȳ ′ = Ȳ + βshd(P). The updated estimation of BBBP map, i.e. Pt+1, can be

expressed as:

Pt+1 = Pt + γt+1(X̄′T (Ȳ ′ − X̄′P)) (4.16)

where γt+1 indicates the gradient step-size which can be computed adap-

tively following the estimator [92]

γt+1 =
QT Q

(X̄′Q)T (X̄′Q)
where Q ≡ X̄′T (X̄′Pt − Ȳ ′) (4.17)

The updated Pt+1 is put back to step 1 again to obtain the new shd prior

estimation.

The optimization framework of the algorithm is detailed in Algorithm 2.

We observe that our results are quite stable with respect to the local random

perturbations of the subject space (e.g. the initialization). This shows that slight

differences of the initial estimation algorithm do not affect the final results.

4.5 Experiment setup

4.5.1 Data acquisition

To evaluate the performance of the proposed shd-Patlak algorithm on BBBP

map computation in PCT, clinical brain PCT images were acquired with GE

Pro-16 scanners (General Electric Medical Systems, Milwaukee, WI) located at

NewYork-Presbyterian Hospital at Weill Cornell Medical College in New York

City, NY. First, 45 mL of non-ionic iodinated contrast was administrated intra-

venously at 4.0 mL/s using a power injector. Then with a 5 s delay, the cine
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Algorithm 2: The iterative optimization framework to solve Eq. 4.15

Input: Location adaptive dictionaries Di∈I ∈ RL×M (I is the set of all possible

patch locations), input low-dose BBBP map P ∈ RN . Independent and depen-

dent parameters in Patlak model X̄ ∈ RT N×N and Ȳ ∈ RT N×1.

Output: Updated low-dose BBBP map Pt ∈ RN .

R(P) = 0.

repeat

for i = 1, 2, . . . , |I| do

Compute the sparsity-induced prior using Lasso

shd(pi) = arg min
pi

‖pi − Diα‖
2
2 + λ‖α‖1 (4.18)

end for

Update shd(Pt) by overlapping and averaging patches shd(pi).

Update regularization prior R(Pt) = ‖Pt − shd(Pt)‖22

Update Pt using steepest descent optimization

Pt+1 = Pt + γt+1(X̄′T (Ȳ ′ − X̄′P)) (4.19)

where X̄′ = X̄ + βI, Ȳ ′ = Ȳ + βshd(P), γt+1 =
QT Q

(X̄′Q)T (X̄′Q) , Q ≡ X̄′T (X̄′Pt − Ȳ ′)

until Stop criteria

(continuous) enhanced high-dose scan was performed at tube voltage of 80 kVp,

tube current of 190 mA, 1 rotation per second for duration of 45 s. The scanning

volume of 2.0 cm consists of 4 slices at 5.0 mm thickness with its inferior extent

selected at the level of basal ganglia, above the orbits, to minimize radiation

exposure to the lenses. The source-to-detector distance was 946 mm, and the
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source-to-patient distance was 538 mm. CT dose index volume (CTDI-vol) was

725.21 mGy, and the dose-length product was 1450.42 mGy-cm.

4.5.2 Low-dose data simulation

Repetitive scanning of the same patient at different radiation doses is unethical.

So instead of scanning the patients twice, researchers simulate low-dose CT im-

ages from the acquired high-dose data with noise models of varying complex-

ity [6, 99, 112, 37, 40, 41, 72, 94]. Among these techniques, we use the approach

described by [6], which demonstrated that low-dose scan can be simulated by

adding spatially correlated statistical noise to the reconstructed CT images (be-

fore processing to generate perfusion maps), for its simplicity and effective low-

dose simulation.

Quantum noise is linearly related to the square root of the absorbed dose in

the detector. The absorbed dose is proportional to the tube current level multi-

plied by the X-ray exposure time, mAs. When the X-ray exposure time is fixed,

the noise standard deviation σ and the tube current I (mA) has an inverse rela-

tionship as below:

σ =
K
√

I
(4.20)

Let’s define I0 as the original high-dose tube current level in mA, I the de-

sired low-dose tube current level. σ0 and σ are the corresponding standard

deviation of the pixels in the reconstructed CT images at the above tube current

levels. The distribution of the noise is independent, so the standard deviation
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σG of the added Gaussian noise can be derived from

σ2
G = σ2 − σ2

0 = (I0/I − 1)σ2
0 = K2(1/I − 1/I0) (4.21)

To generate the spatially correlated statistical noise, we first measure the

spectral properties of CT noise from the phantom data and then calculate the

noise power spectrum for each tube current setting. The shape of the normal-

ized noise power spectra is stable at different mAs, so the same spectrum model

is used for all cases and noise levels. Following the practice in [6], we generate

the noise autocorrelation function (ACF) from these data and choose the 11× 11

window around the autocorrelation peak as a convolution filter for producing

colored noise in subsequent experiments.

The autocorrelation function is convolved with the white Gaussian noise to

simulate noise with a proper power spectrum then the convolved noise is scaled

to the desired standard deviation σG. The noise image is masked by a filter of

valid pixels in the PCT data and is added to the same image. The noise spectrum

of any simulated noise added to any image by this procedure is guaranteed to

have the spectral properties observed in an actual CT scan of the phantom on

this scanner.

In this study, the constant K in Eq. 4.20 is calibrated with 22 patients under

I0 = 190 mA and the average value of K is 103.09 mA1/2. The reduced tube cur-

rent I is chosen to represent the ultra-low dose at 15 mAs to match previously

published techniques highlighting ultra-low exposure in lung CT perfusion ex-

aminations [111]. However it is important to note that the technique introduced

in that work enhances the reconstructed CT images instead of the perfusion

maps and is based on the nonlinear filtering of the difference image between

the low-dose scan and the previous normal dose scan. This technique can be in-
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corporated with our proposed spatio-temporal method to achieve further dose

reduction and quality improvement.

4.5.3 Performance evaluation metrics

We adopted the following three metrics to evaluate the noise reduction for the

quantitative comparison:

(1) Local signal to noise ratio (LSNR)

LS NR =

1
N

∑N
i=1 P(i)√

1
N

∑N
i=1(P(i) − 1

N

∑N
i=1 P(i))2

(4.22)

(2) Root-mean-square error (RMSE)

RMS E =

√√
1
N

N∑
i=1

[P(i) − Phd(i)]2 (4.23)

where P(i) is the permeability value at voxel i in the low-dose map, N is the total

number of voxels in the region of interest (ROI). Phd(i) is the permeability value

at voxel i in the corresponding high-dose map.

(3) Structural similarity index (SSIM) [100]

S S IM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(4.24)

where µx, µy are the expectation (mean) of image x and y, σx and σy are the

unbiased standard deviation of image x and y. σxy is estimated as

σxy =
1

N − 1

N∑
i=1

(xi − µx)(yi − µy) (4.25)

C1 = (K1L)2, and C2 = (K2L)2, where L is the dynamic range of the pixel values,

and K1 = 0.01, K2 = 0.03 are used in this work.
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4.5.4 Statistical analysis

The hypothesis for the quantitative evaluation of the BBBP maps was that each

low-dose permeability maps enhanced using the proposed shd-Patlak model

had no change in terms of above mentioned three metrics compared with the

maps estimated by Patlak model, first across designated ROIs, and second over

the whole brain region, while the maps estimated at high-dose 190 mA were

regarded as golden standard for metric computation. The metric values were

computed for each patient individually. Therefore, it was considered statisti-

cally appropriate to analyze these quantitative data by using the paired t-test.

All P values were 2-sided, and P < .05 was considered statistically significant.

4.5.5 Implementation details

The implementation of the Patlak and shd-Patlak models was conducted on a

MacBook Pro with 2.80 GHz Intel Core i7 processor with dual cores and 4 GB of

RAM memory in MATLAB 2013a environment (The Math Works Inc., Natick,

MA). BBBP maps using Patlak model on the high-dose 190 mA scan served

as gold standard for the testing cases. A trained neuroradiologist (P.S.) with

12 years of experience reviewed permeability maps of all high-dose datasets

and identified regions with visual perfusion deficits, defined as focal areas with

elevated BBBP.

The training cases for location adaptive dictionary construction in Section 4.6

except Section 4.6.6 include the BBBP maps processed by Patlak model on the

190 mA scan of 10 cases (5 with brain deficits and 5 normal). For Section 4.6.6, 10

cases of pathological patients and 10 cases of healthy controls were used respec-
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tively for two experimental settings. No additional smoothing was performed

in BBBP map estimation.

The related parameters in the implementation were selected as follows:

(1) The size of the search-window S i was 11 × 11. Since there was no regis-

tration performed, for the voxels on the boundary of the test image, the search

space might consist of only background from the training data. Thus search

window was moderately expanded based on the percentage of background vox-

els in the current patch on the boundary. (2) The patch size L was 5 × 5 with a

overlap of 3. (3) The number of patches extracted from each training image m

was 5. (4) The sparsity weight λ was 0.05. (5) The weighting parameter of high-

dose induced prior β was 0.3. The choice of the parameters will be detailed in

Section 4.6.7.

4.6 Results

4.6.1 Clinical BBBP maps

Fig. 4.3 shows the cerebral BBBP maps computed from the high-dose 190 mA

and simulated low-dose PCT data at different exposure levels (mAs) (50 mA, 25

mA and 15 mA) using different computation methods. In the BBBP map com-

puted by Patlak model from the simulated low-dose 15 mA and 30 mA PCT

data, serious noise-induced artifacts can be observed, which obscure the per-

meability information. In the low-dose BBBP maps computed by shd-Patlak

model, the clearly delineated signal with clear-cut edges in the shd-Patlak im-
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ages are better reproduced than those from the Patlak model with independent

computation of each voxel.

4.6.2 Vertical profiles

Fig. 4.4 depicts the vertical profiles of the BBBP maps shown in Fig. 4.3, where

the profile from the high-dose map is regarded as a reference standard. The

profiles from the shd-Patlak model matches better with that from the reference

standard than the profile from the standard Patlak mode. In other words, the

gains from the present shd-Patlak model are more noticeable than those from

the Patlak model.

To quantitatively measure the consistency between the vertical profiles from

the high-dose BBBP map and the vertical profiles from the simulated low-dose

maps computed by the Patlak model and the shd-Patlak model, Table 4.1 lists

the Lin’s concordance correlation coefficients [59] of the two vertical profiles in-

dicated by the white lines in Fig. 4.4. The results demonstrated that in profiles

(a) and (b), Lin’s concordance correlation coefficients from the low-dose Patlak

maps are below 0.7 while the corresponding Lin’s concordance correlation co-

efficient from the BBBP maps by the present shd-Patlak model is higher than

0.9, with all lower bounds of the 95% confidence interval of the concordance

correlation coefficients higher than 0.9. In other words, the results may suggest

a significant agreement between the profiles from the shd-Patlak maps and the

high-dose maps.
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Figure 4.3: Cerebral BBBP maps computed by different methods from sim-
ulated low-dose PCT data at different exposure levels (mAs).
The 1st column is the BBBP map estimated from high-dose
190 mA data (gold standard). The 2nd column is the BBBP
maps estimated using Patlak model at simulated low-dose.
Dose reduction, achieved through tube current reduction, pri-
marily results in increased image noise, demonstrated as in-
creased “graininess” in the map of the simulated low-dose
scan. The 3rd column is the enhanced low-dose BBBP maps
using shd-Patlak model. The 1st row is at tube current 50 mA
(σG = 12.51), 2nd row at 25 mA (σG = 17.27), and 3rd row at 15
mA (σG = 25.54). The display window option: width is 5 HU,
level is 2.5 HU. (Color) 72
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Figure 4.4: Vertical profiles of the BBBP map at high-dose and simulated
at tube current of 15 mA in Fig. 4.3 at (a) x=320 using Patlak
model, (b) x=320 using shd-Patlak model, (c) x=220 using Pat-
lak model and (d) x=220 using shd-Patlak model. Profile be-
tween y=101 and 420 is shown and used for quantitative eval-
uation. The ‘dash line’ is from Patlak model or the shd-Patlak
model. The ‘solid line’ is from the high-dose map which acts
as the ground-truth for comparison.
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Table 4.1: Lin’s concordance correlation coefficient between the vertical
profiles from the high-dose map and from the low-dose maps
computed by the Patlak model and the shd-Patlak model.

ProfileMethods

Sample

size

Lin’s concordance

correlation

coefficient

95% confidence

interval of

concordance

coefficient

P-value of

significance

level

a Patlak 320 0.6810 (0.6791, 0.6829) P < 0.0001

shd-

Patlak 320 0.9033 (0.9026, 0.9291) P < 0.0001

b Patlak 320 0.6846 (0.6826, 0.6865) P < 0.0001

shd-

Patlak 320 0.9247 (0.9242, 0.9253) P < 0.0001

4.6.3 Visual analysis

Fig. 4.5 shows the BBBP parameter maps calculated from the original high-dose

images and the low-dose images computed by different methods from the noisy

data, which is 15 mA, about one-twelfth radiation dose of the high-dose scan.

The BBBP maps have a relatively small dynamic range compared to other hemo-

dynamic parameter maps such as cerebral blood flow (CBF) and mean transit

time (MTT), so that the errors in the low-dose maps are not as significant in its

absolute value as those in other maps. We could still observe that the BBBP

maps derived from the shd-Patlak model is similar to that derived from the

original high-dose images. The shd-Patlak model can yield sharper edges and

higher contrast between gray and white matter than the standard Patlak model.

To further show the performance of the present shd-Patlak model, the zoomed
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ROIs of the BBBP maps are shown in Fig. 4.6. The results clearly demonstrate

that the shd-Patlak model has more gains than the standard Patlak model in

preserving dynamic detail information (as indicated by the arrows in Fig. 4.6),

which further indicates more reliable cerebral permeability parameter.

4.6.4 Quantitative analysis

Table 4.2 lists the LSNR, RMSE and SSIM metrics of three ROIs and the whole

brain from the low-dose PCT by two different methods. The results from shd-

Patlak model exhibits significant gains over the standard Patlak model in terms

of the three metrics. On average, the shd-Patlak model performs better than

Patlak model. On ROI1, the performance of shd-Patlak has 58.58%, 49.37% and

54.17% gain over Patlak model in terms of LSNR, RMSE and SSIM. Experimen-

tal results on other two ROIs and the whole brain also further demonstrate bet-

ter performance of the present shd-Patlak approach. P-values from the paired

t-test show that our proposed method shd-Patlak consistently and significantly

improve the performance of permeability computation at low-dose in three dif-

ferent metrics.

4.6.5 Correlation analysis

To further demonstrate the merits of the present shd-Patlak model quantita-

tively, we manually select 20 specific ROIs of size 3 × 3 pixels from the second

and third subjects in Fig. 4.5 which exclude the areas that contain major blood

vessel branches and suspected abnormal signs. The ROIs are located at both
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Figure 4.5: BBBP maps of 3 patients calculated from the different brain
PCT images. Every row contains BBBP maps of one patient at
different exposure and computation methods. The first column
was calculated from the high-dose 190 mA images using Patlak
model (the gold standard); the second and third columns were
calculated from the simulated low-dose images by the Patlak
model and the shd-Patlak model, respectively. The radiation
dose in the low-dose data simulated is 15 mA, which equals to
a 92% reduction of radiation exposure compared to the high-
dose. Three ROIs of size 50 × 50 pixels are selected for all
patients and quantitative evaluation is shown in Section 4.6.4.
ROI2 is enlarged and displayed on the lower right corner of the
maps. The first two patients are normal, while the third patient
has brain deficit in the right middle cerebral artery (RMCA).
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Figure 4.6: Zoomed regions of the BBBP maps shown in Fig. 4.5. The first
column was calculated from the high-dose 190 mA images us-
ing Patlak model (the gold standard); the second and third
columns were calculated from the simulated low-dose images
by the Patlak model and the shd-Patlak model, respectively.
The radiation dose in the low-dose data simulated is 15 mA,
which equals to a 92% reduction of radiation exposure com-
pared to the high-dose. The arrows highlight the tissue and
blood vessels which are enhanced in the simulated low-dose
maps.
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hemispheres in basal ganglia, gray matter and white matter. Fig. 4.7 and 4.8

illustrate the regression equation, Pearson correlation coefficients and the corre-

sponding Bland-Altman plots of BBBP values under different conditions for the

these two patients in Fig. 4.5. It can be observed that the correlation coefficients

derived from the high- and the low-dose maps computed by the shd-Patlak

model are consistently higher than those from the low-dose maps of the Patlak

model, whereas the difference in the ordinate axis on the Bland-Altman plot is

smaller. For the BBBP parameters shown in Fig. 4.7 the bias from the shd-Patlak

model is also less than that from the Patlak model. These figures suggest that

the shd-Patlak model can achieve noticeable performance in low-dose PCT map

estimation with the accuracy of diagnostic physiological parameters.

Table 4.2: Image quality metrics of 16 patients on the

three ROIs indicated by the squares in Fig. 4.5. Each

section divided by horizontal lines is for one patient.

The first row in each section is the results of Patlak

model, and the second row is the results of shd-Patlak

model. The best performance in the average value for

each metric and region is highlighted with bold font.

ID
ROI1 ROI2 ROI3

LSNR RMSE SSIM LSNR RMSE SSIM LSNR RMSE SSIM

1
0.93 0.73 0.47 1.20 0.83 0.46 1.13 0.83 0.46

1.54 0.36 0.76 2.10 0.39 0.79 2.09 0.38 0.78

2
1.05 0.20 0.44 1.11 0.20 0.48 1.14 0.20 0.48

1.62 0.09 0.74 1.59 0.10 0.76 1.64 0.10 0.74

Continued on next page
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Table 4.2 – Continued from previous page

ID
ROI1 ROI2 ROI3

LSNR RMSE SSIM LSNR RMSE SSIM LSNR RMSE SSIM

3
0.73 0.62 0.74 1.15 0.67 0.67 0.82 0.69 0.72

0.82 0.36 0.90 1.52 0.36 0.89 0.92 0.48 0.91

4
1.18 1.12 0.39 1.23 1.16 0.43 1.20 1.16 0.38

2.50 0.53 0.68 1.86 0.47 0.76 1.89 0.53 0.68

5
1.04 0.86 0.43 1.18 0.92 0.45 1.27 0.94 0.52

1.85 0.42 0.70 1.98 0.45 0.73 2.22 0.44 0.77

6
0.76 0.64 0.53 1.11 0.75 0.54 1.08 0.72 0.56

0.95 0.35 0.74 1.73 0.39 0.77 1.60 0.39 0.76

7
0.87 0.61 0.44 1.15 0.75 0.50 1.19 0.73 0.44

1.43 0.31 0.71 1.57 0.35 0.78 1.78 0.35 0.75

8
1.27 0.85 0.35 1.58 0.90 0.41 1.35 0.86 0.38

2.22 0.38 0.68 2.49 0.38 0.75 2.55 0.38 0.69

9
0.86 0.72 0.41 1.43 0.91 0.49 1.14 0.85 0.46

1.43 0.38 0.66 2.48 0.45 0.74 2.38 0.43 0.72

10
1.03 0.99 0.55 1.57 1.10 0.51 1.27 1.10 0.58

1.23 0.61 0.76 2.61 0.54 0.76 1.54 0.58 0.79

11
0.84 0.85 0.59 1.09 0.97 0.60 0.94 0.88 0.65

1.10 0.44 0.82 1.60 0.47 0.84 1.28 0.44 0.86

12
1.04 0.95 0.76 1.02 0.98 0.75 1.06 0.99 0.76

1.31 0.48 0.92 1.39 0.53 0.91 1.29 0.55 0.91

Continued on next page
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Table 4.2 – Continued from previous page

ID
ROI1 ROI2 ROI3

LSNR RMSE SSIM LSNR RMSE SSIM LSNR RMSE SSIM

13
0.88 0.80 0.37 1.39 0.96 0.45 1.03 0.87 0.46

1.25 0.41 0.63 2.17 0.44 0.74 1.41 0.41 0.73

14
0.95 0.67 0.54 1.20 0.78 0.53 1.00 0.70 0.52

1.44 0.36 0.77 1.91 0.40 0.79 1.48 0.38 0.77

15
1.22 1.13 0.44 1.50 1.23 0.44 1.30 1.22 0.50

1.79 0.55 0.71 2.55 0.57 0.74 1.58 0.57 0.77

16
1.15 0.85 0.31 1.13 0.83 0.36 1.17 0.87 0.45

2.45 0.41 0.62 2.70 0.40 0.63 1.78 0.42 0.72

Mean
0.99 0.79 0.48 1.25 0.87 0.50 1.13 0.85 0.52

1.56 0.40 0.74 2.01 0.42 0.77 1.72 0.43 0.77

Std
0.16 0.22 0.13 0.18 0.24 0.10 0.14 0.23 0.11

0.50 0.12 0.08 0.44 0.11 0.07 0.42 0.11 0.07

P < 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

4.6.6 Evaluation of training data

To evaluate the impact of pathological and normal training data on the low-

dose enhancement results, we choose 6 patients with brain deficits among the

16 patients and enhance them by training on only the healthy controls or the

pathological cases. Each of the 6 low-dose testing cases has brain deficits

due to subarachnoid aneurysmal hemorrhage (SAH) at one or more regions
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Figure 4.7: The correlation (left column) and Bland-Altman plot (right col-
umn) between the BBBP values computed from the high-dose
images and the low-dose images by different methods for the
patient in the second row in Fig. 4.5. Plots (a) and (b) repre-
sent the results obtained from the high- and low-dose by the
Patlak model. Plots (c) and (d) represent the corresponding re-
sults obtained from the high- and low-dose by the shd-Patlak
model.
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Figure 4.8: The correlation (left column) and Bland-Altman plot (right col-
umn) between the BBBP values computed from the high-dose
images and the low-dose images by different methods for the
patient in the third row in Fig. 4.5. Plots (a) and (b) represent
the results obtained from the high- and low-dose by the Patlak
model. Plots (c) and (d) represent the corresponding results ob-
tained from the high- and low-dose by the shd-Patlak model.
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from the following: right anterior cerebral artery (RACA), left anterior cerebral

artery (LACA), right middle cerebral artery (RMCA), left middle cerebral artery

(LMCA). The pathological training cases include deficits caused by SAH in all

of the above mentioned regions. The healthy controls do not have any deficit in

the BBBP maps. Fig. 4.9 shows the BBBP maps of Patient 8 at different experi-

mental settings. Visual inspection indicates that while the BBBP maps estimated

by both shd-Patlak models (either trained on cases with deficits or normal con-

trols) outperform the maps generated by the standard Patlak model at low-dose

15 mA, there is no obvious visual differences between the maps estimated by

the two shd-Patlak models. The abnormalities in the brain of the testing data are

well preserved by using shd-Patlak model in both cases. Table lists the LSNR,

RMSE and SSIM metrics of LMCA, RMCA and the whole brain region from

the 6 pathological testing cases at low-dose exposure by three approaches: Pat-

lak model, shd-Patlak trained on pathological and shd-Patlak trained on nor-

mal cases. Both shd-Patlak models significantly outperform the standard Patlak

model in terms of three metrics on two regions and the whole brain area (P1 and

P2). The hypothesis for P3 is that the permeability maps enhanced using the

shd-Patlak model trained on healthy controls have no change in terms of three

metrics compared with the maps enhanced by shd-Patlak trained on pathologi-

cal cases. Paired t-test demonstrates that in terms of RMSE and SSIM, in general

the two approaches are not statistically different. For LSNR, the two approaches

are statistically different. Further one-tail t-test shows that shd-Patlak model

trained on cases with deficits yields higher LSNR compared to that trained on

normal controls for low-dose enhancement of pathological cases.
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Figure 4.9: BBBP maps of Patient No. 8 at different experimental settings.
(a) A frame from the PCT data of Patient 8, who has RACA
deficit due to ventriculostomy catheter and the blood in the
brain vessel flows into the skull. (b) Map calculated using Pat-
lak model at 190 mA. (c) Map calculated using Patlak model
at 15 mA. (d) Map calculated using shd-Patlak model at 15
mA and trained on deficit cases. (e) Map calculated using shd-
Patlak model at 15 mA and trained on normal cases. Left and
right middle cerebral arteries (LMCA and RMCA) are enlarged
below the map.
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Table 4.3: Image quality metrics of 6 patients with brain

deficits on either RMCA or LMCA indicated by the

rectangles in Fig. 4.9 and on the whole brain. Each sec-

tion divided by a horizontal line is the metric values

for one patient. The first row in each section is the re-

sults of Patlak model. The second row is of using shd-

Patlak trained on deficit subjects. The third row is of

using shd-Patlak trained on normal subjects. The best

performance in the average value for each metric and

region is highlighted with bold font. P1 is the p-value

for comparison between Patlak and shd-Patlak trained

on deficit cases. P2 is the p-value for the compari-

son between Patlak and shd-Patlak trained on normal

cases. P3 is the p-value for the comparison between

shd-Patlak model trained on the deficit cases and shd-

Patlak trained on normal cases.

ID
RMCA LMCA Brain

LSNR RMSE SSIM LSNR RMSE SSIM LSNR RMSE SSIM

2

1.21 0.20 0.52 1.18 0.20 0.51 0.88 0.17 0.58

1.63 0.10 0.79 1.68 0.10 0.78 1.11 0.09 0.82

1.58 0.10 0.81 1.66 0.10 0.78 1.09 0.08 0.83

4

1.27 1.16 0.40 1.30 1.18 0.38 0.87 0.97 0.52

2.03 0.51 0.71 2.32 0.52 0.71 1.17 0.44 0.77

1.94 0.53 0.69 2.18 0.52 0.71 1.15 0.44 0.77

Continued on next page
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Table 4.3 – Continued from previous page

ID
RMCA LMCA Brain

LSNR RMSE SSIM LSNR RMSE SSIM LSNR RMSE SSIM

6

1.19 0.74 0.55 1.24 0.76 0.54 0.82 0.62 0.63

1.91 0.39 0.78 2.00 0.39 0.77 1.07 0.33 0.82

1.88 0.40 0.78 1.84 0.38 0.79 1.05 0.33 0.83

8

1.59 0.91 0.39 1.38 0.88 0.37 1.01 0.77 0.48

2.52 0.39 0.72 2.41 0.39 0.69 1.28 0.34 0.76

2.43 0.40 0.72 2.29 0.40 0.69 1.27 0.35 0.75

9

1.35 0.91 0.48 1.22 0.86 0.46 0.81 0.71 0.61

2.17 0.42 0.77 2.20 0.41 0.74 1.06 0.35 0.82

2.02 0.42 0.78 2.07 0.41 0.76 1.04 0.35 0.83

10

1.62 1.11 0.49 1.49 1.11 0.49 1.01 0.94 0.59

2.52 0.54 0.75 2.10 0.53 0.76 1.21 0.47 0.81

2.49 0.55 0.74 2.07 0.55 0.75 1.20 0.48 0.80

Mean

1.37 0.84 0.47 1.30 0.83 0.46 0.90 0.70 0.57

2.13 0.39 0.75 2.12 0.37 0.74 1.15 0.34 0.80

2.06 0.40 0.75 2.02 0.39 0.75 1.13 0.34 0.80

Std

0.19 0.35 0.06 0.12 0.35 0.07 0.09 0.29 0.06

0.35 0.16 0.03 0.26 0.16 0.04 0.09 0.13 0.03

0.35 0.16 0.04 0.23 0.16 0.04 0.09 0.14 0.03

P1 <0.001 <0.01 <0.001 <0.001 <0.01 <0.001 <0.001 <0.01 <0.001

P2 <0.001 <0.01 <0.001 <0.001 <0.01 <0.001 <0.001 <0.01 <0.001

P3 0.01 0.04 1.00 0.01 0.47 0.36 <0.001 0.61 0.69
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4.6.7 Evaluation of Convergence and Parameter Sensitivity

We also conducted experiments of the convergence rate and parameter sensitiv-

ity (Fig. 4.10). The cost function in Eq. 4.15 drops fast and usually converges af-

ter 2 or 3 iterations, as shown in Fig. 4.10(a). In our framework, five parameters

should be selected manually, namely the patch-size L, the search-window S i, the

atom number m, the weighting parameters λ and β, which controls the sparsity

the coefficient α and the importance of the regularization term. It is worthwhile

to mention that all the related parameters are likely dependent on the applica-

tion in practice. In general, the performance was stable for all parameters, and

the optimum parameters were chosen for the above mentioned experiments.

From Fig. 4.10(b), the optimal patch size of 5×5 was adequate for effective noise

and artifact suppression while retaining computational efficiency. The search-

window S i should be sufficiently large to acquire more similarity information

while minimizing the influence of the mismatched tissues. The size of the search

window will also influence the searching time. To find sufficient similar patches

in reasonable time, based on the analysis in Fig. 4.10(c), we chose a search win-

dow of 11×11. For the parameters λ and β, in this work, we briefly fixed the sizes

of the search-window and patch-size, and compared the results estimated with

a broad range of parameter values in term of visual inspection and quantitative

measurements. The atom number from each training sample m depends on the

size of the training dataset, and for the current experiment setting, m = 5 gen-

erated sufficient training patches. The sparse weight λ should not be too large,

otherwise it will produce over-smoothed results and we found that λ = 0.05

generates satisfactory results for the cases in general. The weighting parame-

ter β reflects the importance of the sparse high-dose induced prior and β = 0.3

was adequate for the reconstruction. More theoretical analysis in optimizing the
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Figure 4.10: Convergence rate and parameter sensitivity of patch size,
search window size, training samples per image, λ and β. A
set of parameter values is tested. The cost function drops fast
and usually converges after 2 or 3 iterations. Generally the
performance is stable and the optimum values are chosen in
the following experiments.
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parameters are necessary, which may be a topic for future research.

4.7 Discussion

In this chapter, we present a high-dose induced prior for the low-dose blood-

brain barrier permeability estimation in cerebral PCT. The experimental results

show that the present shd-Patlak model can yield more significant performance

gains than the existing Patlak model in terms of different measurement metrics

and visual quality.

The penalty prior reflects the information of the desired BBBP map. The

traditional image prior to tackle the inverse problems relies on some simplify-

ing assumptions. These assumptions include local spatial smoothness, sparsity

in the transformed domain and low/max-entropy, etc. In general, given that

these assumptions are in accordance with the properties of the desired BBBP

maps with a low noise level, these priors might work well. On the other hand,

given that the noise level is relatively significant and the image information is

deteriorated by the high noise level in the low-dose map, these priors would

tend to produce the over-smoothed regions. More importantly, such condition

is misleading in clinical scenarios because the related over-smoothed effect may

average the neighboring pixels with the abnormal tissue and lead to neglect of

the abnormality.

In PCT imaging, scans performed at higher tube current following the out-

dated and current protocols are available in the clinical data repository at hospi-

tals. The high-dose high-quality BBBP maps provide strong a priori information

of the general brain structure and permeability pattern. It would be a natural
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choice to use the high-dose BBBP maps to induce low-dose BBBP map estima-

tion from the measured noisy data. However, the patient distinction and the

tissue deformation make such application challenging. Thus to fully use the

high-dose permeability maps of different patients, dedicated image registration

techniques are needed. Sparse high-dose induced prior may be a good candi-

date to use the high-dose maps for the current patient BBBP estimation because

it does not heavily depend on the accuracy of the image registration due to its

patch searching mechanism. Consequently, an important novelty of the present

shd-Patlak model in this work is the utilization of the existent high-dose maps

without the need of accurate image registration. In other words, the shd-Patlak

model can relax the need for accurate image registration processing through its

patch-based search mechanism during construction of the location adaptive dic-

tionaries and selection of a sparse set of useful atoms from the dictionary during

the reconstruction process.

The enhanced BBBP maps with abnormalities trained on healthy controls or

the subjects with abnormalities are not statistically different in terms of RMSE

and SSIM, while those trained on subjects with abnormalities have slightly

higher LSNR. Visual inspection by neuroradiologists indicates that no signifi-

cant difference can be found between the two cases and both of them signif-

icantly outperform the results using the standard Patlak model. Since RMSE

and SSIM reflect the differences between the enhanced images and the gold

standard, while LSNR is a metric that reflects the relationship of the signal value

and the variance of the enhanced test image itself, the former two metrics reflect

the fidelity between the enhanced low-dose image and the gold standard. When

the patch size is sufficiently small (much smaller than the size of the abnormal-

ities), the patches from the training data can represent the tissue structures at
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the corresponding anatomical regions of the test data despite of the differences

in subjects and types of deficits. Hence, an important advantage of the pro-

posed shd-Patlak model is the independence between the abnormalities in the

training and the testing data. In another word, the shd-Patlak model does not

strictly require the same pathologies to be seen in the training data for reliable

enhancement of the corresponding abnormalities in the testing cases.

Visual inspection on the enhanced low-dose BBBP maps by using shd-Patlak

model shows minor loss of spatial resolution and color contrast. To address this,

a neuroradiologist with 12 years of experience (P.C.S.) reviewed the simulated

low-dose BBBP maps estimated using the standard Patlak model and shd-Patlak

model in pairs while using the high-dose 190 mA BBBP maps as the reference.

It shows that the minor loss of spatial resolution and color contrast in the BBBP

maps of 16 cases did not significantly hamper the clinical diagnosis, while the

severe noise (or “graininess”) in the low-dose maps did hinder the accurate di-

agnosis of brain abnormality, especially at vessel boundaries and lobes. Further

subjective evaluation by the neuroradiologists on clinical diagnosis could be a

future research direction.

The EM-style algorithm converges fast, as shown in Fig. 4.10 (a) and usually

converges in 2-3 iterations. Every step in the EM algorithm decreases or main-

tains the global energy without increasing it, leading to convergence in the end.

Although there is no theoretical guarantee of the global optimum for this itera-

tive algorithm, local random perturbations of the initialization yields stable op-

timization results. With good initialization using the BBBP map estimated using

the standard Patlak model from the low-dose PCT data, the cost function gen-

erally converges to ideal solution. With proper parameter setting, the present

91



shd-Patlak model takes 40 s to process a PCT dataset of 512 × 512 × 119 voxels,

while the Patlak model takes 20 s in the same experimental setting. Consider-

ing the improved qualitative and quantitative results, the extended computa-

tion time is worthwhile. Obviously with faster computers, dedicated hardware

and implementation of the algorithm in C++ environment would boost up the

execution time and make the processing time clinically acceptable.

4.8 Conclusion

In this chapter, we propose an approach to restore the missing information in

the low-dose BBBP maps generated from PCT with Patlak model. The standard

Patlak model based PCT requires excessive radiation exposure, which raised at-

tentions on the radiation safety. The proposed method constructs high quality

BBBP maps from low-dose PCT by using the brain structural similarity between

different individuals and the relations between high- and low-dose maps, lead-

ing to a reduction of 92% necessary radiation exposure.

The proposed approach first builds a high-dose induced prior for the Patlak

model with a set of location adaptive dictionaries obtained from the correspond-

ing anatomical regions in the high-dose maps from the repository, followed by

an optimized estimation of BBBP map with the prior regularized Patlak model.

The shd-Patlak model was validated on a series of high-dose brain PCT

datasets and the corresponding low-dose images simulated from the high-dose

images. Evaluations were performed with visual inspection, profile compari-

son, three quantitative performance evaluation metrics and correlation analysis.

The impact of abnormalities in the training data and parameter sensitivity were
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also analyzed.

Currently our efforts were focused on the noise suppression in BBBP esti-

mation using an iterative algorithm with a sparse high-dose induced prior. For

future work, besides noise, bias and data corruption are also important prob-

lems in the low-dose PCT imaging which are worth future study. In clinics, the

present algorithm can be applied to other spatial-temporal medical data and

applications in which high-quality prior image is available and subsequent ac-

quisition is performed, such as radiotherapy and magnetic resonance perfusion.

Thus the present model can be adapted to the associated application for radia-

tion dose reduction, opening another topic for future research.
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CHAPTER 5

TREATMENT PLAN: TENSOR TOTAL VARIATION REGULARIZED

DECONVOLUTION

Summary

Acute brain diseases such as acute stroke and transit ischemic attacks are the

leading causes of mortality and morbidity worldwide, responsible for 9% of

total death every year. ‘Time is brain’ is a widely accepted concept in acute

cerebrovascular disease treatment. Efficient and accurate computational frame-

work for hemodynamic parameters estimation can save critical time for throm-

bolytic therapy. Meanwhile the high level of accumulated radiation dosage due

to continuous image acquisition in CT perfusion (CTP) raised concerns on pa-

tient safety and public health. However, low-radiation will lead to increased

noise and artifacts which require more sophisticated and time-consuming al-

gorithms for robust estimation. We propose a novel efficient framework using

tensor total-variation (TTV) regularization to achieve both high efficiency and

accuracy in deconvolution for low-dose CTP. The method reduces the neces-

sary radiation dose to only 8% of the original level and outperforms the state-

of-art algorithms with estimation error reduced by 40%. It also corrects over-

estimation of cerebral blood flow (CBF) and under-estimation of mean transit

time (MTT), at both normal and reduced sampling rate. An efficient computa-

tional algorithm is proposed to find the solution with fast convergence.
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5.1 Introduction

Computed tomography perfusion (CTP) has important advantages in clinical

practice due to its widespread availability, rapid acquisition time, high spatial

resolution and few patient contraindications. Brain CTP has been proposed for

improving the detection of ischemic stroke and evaluation of the extent and

severity of hypoperfusion [55, 78]. Recently, the radiation exposure associated

with CTP has raised significant public concerns regarding its potential biologic

effects, including hair and skin damage, cataract formation and very small but

finite cancer induction [102, 19]. Consensus has been reached that the “as low

as reasonably achievable” (ALARA) principle should be executed more consis-

tently. The low-dose protocols are unfortunately leading to higher image noise,

which is compensated by using spatial smoothing, reduced matrix reconstruc-

tion and/or thick-slices, at the cost of lowering spatial resolution [56, 104].

Recent efforts have been focused on reducing radiation exposure from CTP

while maintaining the spatial resolution and quantitative accuracy. Various al-

gorithms have been proposed to reduce the noise in the reconstructed CT image

series from the sinogram, including the low-pass filtering, edge-preserving fil-

tering such as anisotropic diffusion [87], bilateral filtering [75], non-local means

[66], total variation regularization [95], spatio-temporal filtering such as highly

constrained back projection (HYPR) [93] and multi-band filtering (MBF). While

edge-preserving filtering algorithms are relatively slow in computation, HYPR

and MRF require motion-free images across the scan duration. Furthermore,

these algorithms attempt to reduce the noise in the reconstructed CT image se-

ries, instead of improving the deconvolution algorithms or the quantification

of perfusion maps. While improving the reconstructed CT images is an impor-
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tant step towards robust and accurate hemodynamic parameter estimation, the

deconvolution process itself to quantify the hemodynamic parameter maps is

the essential procedure that generates the perfusion maps for disease diagnosis

and treatment assessment. Perfusion parameter estimation via robust deconvo-

lution is the task we are tackling in this work.

In this work, we propose a new robust deconvolution algorithm to improve

the quantification of the perfusion parameter estimation at low dose by tensor

total variation (TTV) regularized optimization. All the previously mentioned

noise reduction algorithms for CT image series can complement our model to

further reduce the noise and improve the image quality. Spatio-temporal regu-

larization methods to stabilize the residue functions in the deconvolution pro-

cess have been proposed, including weighted derivative [43], sparse residue

representation [24] and sparse perfusion deconvolution using learned dictio-

naries [27, 26]. The deconvolution approach proposed in this work to accu-

rately and robustly estimate the hemodynamic parameters is distinct from the

previous work using edge-preserving total variation [95] for low-dose CT recon-

struction. In [95], it focuses on the reconstruction procedure from sinogram to

images using inverse Radon transform while our work addresses the deconvo-

lution procedure from image sequences to perfusion maps based on Indicator

dilution theory [74]. Besides this, both the data term and the regularization

terms in our work have substantially different meanings from their definitions.

For CT reconstruction, the data term is a projection process, while for decon-

volution, it is a spatial-temporal convolution. The TV regularization term is a

regularization on 2D CT images for CT reconstruction, while we extended it to

4D tensor regularization involving both the temporal and the spatial correlation

information in the deconvolution. To our knowledge, this is the first research
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proposing tensor total-variation to stabilize the deconvolution process.

The purpose of this original research is to develop and evaluate a tensor total

variation (TTV) regularized deconvolution for low dose CTP data. The method

is retrospectively evaluated in terms of image quality and signal characteristics

of low dose brain CTP on both synthetic and clinical data.

The contribution of our work is three-fold. First, we propose to regularize

the impulse residue functions instead of the perfusion parameter maps. Sec-

ond, the optimization is performed globally on the entire spatio-temporal data,

instead of each patch individually. Third, total variation regularizer is extended

into the four dimensional sequence to consider the regional effect and tempo-

ral correlation of the tissue. The method reduces the necessary radiation dose to

only 8% of the original level and outperforms the state-of-art algorithms with es-

timation error reduced by 40%. It also corrects over-estimation of cerebral blood

flow (CBF) and under-estimation of mean transit time (MTT), at both normal

and reduced sampling rate. An efficient computational algorithm is proposed

to find the solution with fast convergence.
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5.2 Materials and methods

5.2.1 Data acquisition and preprocessing

Clinical dataset

Retrospective review of consecutive CTP exams performed on aneurysmal

subarachnoid hemorrhage patients enrolled in an IRB-approved and HIPAA-

compliant clinical trial from August 2007-June 2014 was used. Ten consecutive

patients (9 women, 1 men) admitted to the Weill Cornell Medical College, with

mean age (range) of 54 (35-83) years were included. 5 patients (Patients 1-5) had

brain deficits shown in the CTP images and the other 5 patients (Patients 6-10)

had normal brain images. The brain deficits were caused by aneurysmal sub-

arachnoid hemorrhage (SAH), which could lead to vasospasm, a serious com-

plication of SAH, and may cause ischemic brain injury. CTP was performed

with a standard protocol using GE Lightspeed Pro-16 scanners (General Electric

Medical Systems, Milwaukee, WI) with cine 4i scanning mode and 45 second

acquisition at 1 rotation per second using 80kVp and 190mA. Four 5-mm-thick

sections were assessed at the level of the third ventricle and the basal ganglia.

Approximately 45 mL of nonionic iodinated contrast was administered intra-

venously at 5 mL/s using a power injector with a 5 second delay. These acquired

CTP data at high-dose were considered the reference standard for comparison

to lower-dose CTP. For data analysis, vascular pixel elimination was applied by

using a previously described method [57], in which the threshold for a vascular

pixel was 1.5 times the average CBV of the unaffected hemisphere.
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Low-dose simulation

To avoid the unethical repetitive scanning of the same patient at different ra-

diation doses, we follow the practice in [6, 51] to simulate low-dose CT scan

by adding spatially correlated statistical noise to the reconstructed CT images

(before deconvolution). The tube current-exposure time product (mAs) varies

linearly with the radiation dosage level. The dominant source of noise in CT

imaging is quantum mottle and it is inversely proportional to the square root of

mAs (1/
√

mAs).

The standard deviation of the added noise is computed by

σa = K · (
1
I
−

1
I0

)
1
2 (5.1)

where I and I0 are the tube current-exposure time product (mAs) at low-dose

and normal dose. K is calibrated on 22 patients and the average value of K =

103.09mA
1
2 . Gaussian noise is convolved with the noise autocorrelation function

(ACF) generated from scanned low-dose phantom and scaled to the desired σa.

For low-dose tube current of 30, 15 and 10 mAs gives the standard deviation

σa = 17.27, 25.54, 31.73. The noise spectrum of any simulated noise added to any

image by this procedure is guaranteed to have the spectral property observed

in an actual CT scan of the phantom on the same scanner.

Synthetic dataset

Because the clinical CTP does not have ground truth perfusion parameter values

for comparison, we first use synthetic data to evaluate the proposed algorithm.

The arterial input function (AIF) is simulated using a gamma-variant function
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[81] with the analytical form of:

cart(t) =


0 if t ≤ ta

a(t − ta)be−(t−ta)/c if t > ta

(5.2)

where ta is bolus arrival time to any given region. Generally, a = 1, b = 3, c =

1.5 s, ta = 0 are used to generate AIF typically obtained for a standard injection

scheme. The transpose function h(t) is

h(t;α, β) =
1

βαΓ(α)
tα−1e−t/β α, β > 0 (5.3)

We set β = MTT/α to satisfy the central volume theorem [44]. Three types

of experiments were performance on synthetic data: residue function recovery,

uniform region estimation and contrast preserving.

5.2.2 Computation of perfusion parameters using deconvolu-

tion

For a volume under consideration vvoi, let cart be the local contrast agent concen-

tration at the artery inlet, and cvoi be the average contrast agent concentration in

vvoi. ρvoi is the mean density of the volume vvoi. The cerebral blood flow (CBF)

is defined as the blood volume flow normalized by the mass of the volume vvoi

and is typically measured in mL/100g/min. The cerebral blood volume (CBV)

quantifies the blood volume normalized by the mass of vvoi and is typically mea-

sured in mL/100g. The mean transit time (MTT), usually measured in seconds,

is defined as the first moment of the probability density function h(t) of the tran-

sit times.

100



Furthermore, the (dimensionless) residue function R(t) quantifies the relative

amount of contrast agent that is still inside the volume vvoi of interest at time t

after a contrast agent bolus has entered the volume at the arterial inlet at time

t = 0, as

R(t) =


1 −

∫ t

0
h(τ)dτ if t ≥ 0

0 if t < 0
(5.4)

Due to the various transit times within the capillary bed, the contrast will

leave the volume gradually overtime. According to indicator-dilution theory,

cvoi = CBF · ρvoi ·

∫ ∞

−∞

cart(τ)R(t − τ)dτ

= CBF · ρvoi · (cart ⊗ R)(t)
(5.5)

where ⊗ denotes the convolution operator. Here the variables cvoi(t) and cart(t)

can be measured and have known values, whereas the values of CBF, R(t) and

ρvoi are unknown. To compute the perfusion parameters, an intermediate vari-

able, the flow-scaled residue function K(t) is introduced:

K(t) = CBF · ρvoi · R(t) (5.6)

which is given in units of 1/s. The function cart(t) is usually replaced by a global

arterial input function (AIF) measured in a larger feeding artery in order to

achieve a reasonable signal-to-noise ratio (SNR). In brain perfusion imaging,

the anterior cerebral artery is often selected. Thus, Eq. 5.4 can be rewritten as

cvoi(t) = (AIF ⊗ K)(t) (5.7)

Hence K(t) can be computed from the measured data AIF(t) and cvoi(t) using
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a deconvolution method, and the perfusion parameters may be determined as

CBF =
1
ρvoi
·max (K(t))

MTT =
1

max (K(t))
·

∫ ∞

0
K(τ)dτ

CBV = MTT ·CBF =
1
ρvoi
·

∫ ∞

0
K(τ)dτ

(5.8)

Here using max (K(t)) instead of K(0) has particular practical advantages due

to bolus delay, defined as the delay time between the contrast arrival at tissue

and the artery due to disease or other reasons.

In practice, AIF and cvoi(t) are sampled at discrete time points, ti = (i − 1) · ∆t

with i = 1, . . . ,T and typically ∆t = 1s. Eq. 5.7 can be discretized as

cvoi(ti) =

∫ ∞

0
AIF(τ)K(t − τ)dτ

≈ ∆t
T∑

j=1

AIF(t j)K(ti− j+1)

= ∆t
T∑

j=1

AIF(ti− j+1)K(t j)

(5.9)

In matrix-vector notation, we have 

cvoi(t1)

cvoi(t2)
...

cvoi(tT )



= ∆t



AIF(t1) 0 · · · 0

AIF(t2) AIF(t1) · · · 0
...

...
. . .

...

AIF(tT ) AIF(tT−1) · · · AIF(t1)





K(t1)

K(t2)
...

K(tT )


(5.10)
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Here we assume that the values of AIF(t) can be neglected for t > T . The end

of summation index can also be set to j instead of T since K(t) = 0 for t < 0. For

a voxel of interest, Eq. 5.10 can be abbreviated as

c = Ak (5.11)

where ∆t and AIF(t j) are incorporated in the matrix A ∈ RT×T , cvoi(t j) and K(t j)

represent the entries in vectors c ∈ RT and k ∈ RT . For a volume of interest with

N voxels, we have

C = AK (5.12)

where C = [c1, . . . , cN] ∈ RT×N , K = [k1, . . . , kN] ∈ RT×N represent the contrast

agent concentration and scaled residue function for the N voxels in the volume

of interest.

In practice, the causality assumption in Eq. 5.10, i.e. the voxel signal cannot

arrive before the AIF, may not hold. The AIF can lag cvoi(t) by a time delay td in

practice because the measured AIF is not necessarily the true AIF for that voxel,

thus resulting in AIF(t) = cart(t − td). For instance, this lag can happen when

the chosen AIF comes from a highly blocked vessel. Thus the calculated R′(t)

should be R(t+td) to yield cvoi(t) at the voxel. However the causuality assumption

in Eq. 5.10 makes the estimation of R′(t) improper. Circular deconvolution has

been introduced to reduce the influence of bolus delay [108], where R′(t) can be

represented by time shifting R(t) circularly by td.

Specifically, cart(t) and cvoi(t) are zero-padded to length L, to avoid time alias-

ing in circular deconvolution, where L ≥ 2T . We denote the zero-padded time

series as c̄art ∈ RL×1 and c̄voi ∈ RL×1. Matrix A is replaced with its block-circulant

version Acirc, with the elements (acirc)i, j of the block-circulant matrix Acirc ∈ RL×L

103



defined as

(acirc)i, j =


cart(ti− j+1), for j ≤ i

cart(tL+i− j+1), for j > i
(5.13)

As an example, for L = 2T , the matrix Acirc has the following structure:

Acirc = ∆t



cart(t1) 0 · · · 0 0 cart(tN) · · · cart(t2)

cart(t2) cart(t1) · · · 0 0 0 · · · cart(t3)
...

...
. . .

...
...

...
. . .

...

cart(tN) cart(tN−1) · · · cart(t1) 0 0 · · · 0

0 cart(tN) · · · cart(t2) cart(t1) 0 · · · 0

0 0 · · · cart(t3) cart(t2) cart(t1) · · · 0
...

...
. . .

...
...

...
. . .

...

0 0 · · · 0 cart(tN) cart(tN−1) · · · cart(t1)


(5.14)

Thus Eq. 5.11 can be replaced by

c̄ = Acirck̄ (5.15)

and Eq. 5.12 can be replaced by

C̄ = AcircK̄ (5.16)

where c̄ ∈ RL×1 and k̄ ∈ RL×1 are the zero-padded time series of c and k, and C̄ ∈

RL×N and K̄ ∈ RL×N are the zero-padded time series of C and K. For simplicity,

we use C, A and K to represent the block-circulant version in Eq. 5.16 in the rest

of the chapter.
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5.2.3 Tensor total variation regularized deconvolution

The least square solution of Eq. 5.12 is equivalent to minimizing the squared

Euclidean residual norm of the linear system given by Eq. 5.12 as

Kls = arg min
K∈RT×N

(‖AK −C‖22) (5.17)

However, for the ill-conditioned Toeplitz matrix A, the least-square solution

Kls does not represent a suitable solution. A small change in C (e.g. due to pro-

jection noise or low-dose scan) can cause a large change in Kls. Regularization

is necessary to avoid the strong oscillation in the solution due to small singular

values of matrix A.

Our assumption is that since the voxel dimensions in a typical CTP image

are much smaller than tissue structures and changes in perfusion are regional

effects rather than single voxel effects, within extended voxel neighborhoods

the perfusion parameters will be constant or of low-variation, while it is also

important to identify edges between different regions where tissues undergo

perfusion changes, particularly ischemic regions.

We introduce the tensor total variation regularizer to the data fidelity term

in Eq. 5.17 as

Kttv = arg min
K∈RT×N

(
1
2
‖AK −C‖22 + ‖K‖TV) (5.18)

It is based on the assumption that the piecewise smooth residue functions in

CTP should have small total variation. The tensor total variation term is defined
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as

‖K‖γTV =
∑
t,i, j,k

[
γt|K̃t+1,i, j,k − K̃t,i, j,k|

+ γx|K̃t,i+1, j,k − K̃t,i, j,k|

+ γy|K̃t,i, j+1,k − K̃t,i, j,k|

+ γz|K̃t,i, j,k+1 − K̃t,i, j,k|
]

(5.19)

where K̃ ∈ RT×N1×N2×N3 is the 4-D volume obtained by reshaping matrix K based

on the spatial and temporal dimension sizes. Here N = N1 × N2 × N3 and T is

the time duration. The tensor total variation term here uses the forward finite

difference operator using L1 norm. The regularization parameter γi, i = t, x, y, z

controls the regularization strength for the temporal and spatial dimension. The

larger the γi, the more smoothing the TV term imposes on the residue function

in ith dimension.

Since the TV term is non-smooth, this problem is difficult to solve. The con-

jugate gradient (CG) and PDE methods could be used to attack it, but they are

very slow and impractical for real CTP images. Motivated by the effective ac-

celeration scheme in Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)

[4], we propose an algorithm to efficiently solve the problem in Eq. 5.18 based

on the framework of [45]

The proposed scheme include the following well-known important algo-

rithms:

FISTA: FISTA considers minimizing the following problem:

min f (x) + g(x), x ∈ Rp (5.20)

where f is a smooth convex function with Lipschitz constant L f and g is a convex
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function which may be non-smooth. An accelerated scheme is conceived in

FISTA to obtain ε-optimal solution in O( 1
√
ε
) iterations.

Steepest gradient descent: To find a local minimum of a function, steepest

gradient descent takes steps proportional to the negative of the gradient of the

function at the current point. An adaptive step size s [92] is used due to the

ill-conditioned matrix A makes the solution sensitive to noise in the observation

C.

The proximal map: Given a continuous convex function g(x) and any scalar

ρ > 0, the proximal map associated to function g is defined as follows [4]

proxρ(g)(x) := arg min
u

{
g(u) +

1
2ρ
‖u − x‖2

}
(5.21)

For the proximal map, we extended the 2-dimensional TV regularizer in [4]

to 4-dimensional and adapted the algorithm to tensor total variation regulariza-

tion. The entire algorithm is shown in Algorithm 3.

5.2.4 Implementation details

All algorithms were implemented using MATLAB 2013a (MathWorks Inc, Nat-

ick, MA) on a MacBook Pro with Intel Core i7 2.8G Hz Duo CPU and 8GB RAM.

Four baseline methods were compared: standard truncated singular value de-

composition (sSVD) [81], block-circulant truncated SVD (bSVD) [108], Tikhonov

regularization [34] and sparse perfusion deconvolution (SPD)[27]. A threshold

value λ is empirically chosen as 0.1 (10% of the maximum singular value) to

yield optimal performance for SVD-based algorithms. One-tail student test is

used to determine whether there is significant difference between the evaluation
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Algorithm 3: The framework of TTV algorithm.

Input: Regularization parameters γi, i = t, x, y, z

Output: Flow-scaled residue functions K ∈ RT×N1×N2×N3 .

K0 = 0

t1 = r1 = K0

for n = 1, 2, . . . ,N do

(1) Steepest gradient descent

Kg = rn + sn+1(AT (C − Arn))

where sn+1 =
QT Q

(AQT )(AQ) , Q ≡ AT (Arn −C)

(2) Proximal map:

Kn = proxγ(2‖K‖TV)(Kg)

where proxρ(g)(x) := arg min
u

{
g(u) + 1

2ρ‖u − x‖2
}

(3) Update t, r

tn+1 = (1 +
√

1 + 4(tn)2)/2

rn+1 = Kn + ((tn − 1)/tn+1)(Kn − Kn−1)

end for
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metrics of the comparing algorithms. A α level of .05 is used for all statistical

tests to indicate significance.

5.2.5 Evaluation metrics

Three metrics were used to evaluate the image fidelity to the reference: Root

mean-squared-error (RMSE), Lin’s Concordance Correlation Coefficient (CCC)

and linear regression. RMSE evaluates the variability of the estimated low-dose

maps compared to the reference. A value close to 0 indicates a smaller differ-

ence of data compared to the reference. Lin’s CCC measures how well a new

set of observations reproduce an original set, or the degree to which pairs of

observations fall on the 45 line through the origin. Values of ±1 denote per-

fect concordance and discordance; a value of zero denotes its complete absence.

Peak signal-to-noise ratio (PSNR) is also used to describe the noise level. In clin-

ical CTP data, the maximum value in CT data is around 2600 HU, and simulated

low-dose of 15 mAs yields σa = 25.54, which gives PSNR=40. In the synthetic

evaluations, we conducted experiments at much lower PSNRs to highlight the

differences between algorithms at even lower radiation.

5.3 Results

5.3.1 Synthetic evaluation

Because the clinical CTP does not have ground truth perfusion parameter values

for comparison, we first use synthetic data to evaluate the proposed algorithm.
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The simulated noise power spectrum (NPS) at 15 mAs is compared with

the NPS of the real scanned phantom image at 15 mA, as shown in Figure 5.1

(a). In the experiments, three baseline methods were compared: sSVD, bSVD,

Tikhonov and SPD regularizations.The first three methods are the most widely

used regularized deconvolution methods for CTP, and widely adopted by com-

mercial medical software [58]. SPD is the state-of-art algorithm for low-dose

CTP deconvolution.

Residue function recovery

1) Normal arterial input function: The residue function recovered by the base-

line methods and TTV are shown in Figure 5.1(b-f). The baseline methods show

severe oscillation and elevated peak value, while the residue function recovered

by TTV is in agreement with the reference.

2) Tracer delay in arterial input function: Circular deconvolution has been

used to correct the delay effect using circular representation of AIF and cvoi,

but with limited improvement, as shown in Fig. 5.2. The arterial input func-

tion is delayed by 5 s. bSVD and TTV use the block-circulant version of AIF

and cvoi, while sSVD and Tikhonov use linear deconvolution. Though bSVD us-

ing block-circulant representation show relatively improved performance com-

pared to sSVD, the estimated CBF (the maximum value of residue function) is

still over-estimated around 30 mL/100g/min, while TTV with tensor total vari-

ation regularization in both temporal and spatial dimension could well correct

the delay effect and output accurate residue function.
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Figure 5.1: The Noise power spectrum and the recovered residue func-
tions by baseline methods and TTV. (a) The noise power spec-
trum is of the scanned phantom image at 15 mAs and simu-
lated statistical correlated Gaussian noise at 15 mA. (b)-(f) The
parameters used for residue function recovery are the simula-
tion is CBV = 4 mL/100 g, CBF = 20 mL/100 g/min, PSNR=25.
SPD is not included since it optimizes the perfusion maps di-
rectly.

Uniform region estimation

From the recovered residue function, perfusion parameters CBF, CBV and MTT

can be estimated using Eq. 5.8. We generate a small region containing 40 ×

40 voxels with the same perfusion characteristics, and compute the mean and

standard deviation of the perfusion parameters over this region.

1) Fig. 5.3 (a)-(b) show the estimated CBF and MTT values when the true

perfusion parameter values vary. All the baseline methods overestimate the
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Figure 5.2: The delayed arterial input function and the recovered residue
functions by baseline methods and TTV. (a) The delayed arte-
rial input function with 5 s delay compared to tracer arrival
at the tissue. (b)-(f) The parameters used for residue function
recovery are the simulation is CBV = 4 mL/100 g, CBF = 20
mL/100 g/min, PSNR=25. SPD is not included since it opti-
mizes the perfusion maps directly.

CBF values and under-estimate the MTT values while TTV yields accurate CBF

and MTT estimations.

2) To explore the effect of noise levels on the performance of perfusion pa-

rameter estimation, we simulate different levels of noise (PSNR varies from 5 to

60) and fix CBF at 30 mL/100 g/min or MTT at 12 s. Fig. 5.3 (c)-(d) show the

estimation results. TTV consistently generates more accurate estimation of CBF

than the baseline methods across a broad rage of noise levels. Moreover, while

the accuracy of the baseline methods degrades dramatically as the noise level
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Figure 5.3: Comparison of the accuracy in estimating CBF and MTT by
sSVD, bSVD, Tikhonov and TTV deconvolution methods. True
CBV = 4 mL/100 g. The error bar denotes the standard devia-
tion. (a) Estimated CBF values at different true with PSNR=15.
(b) Estimated MTT values at different true MTT with PNSR=15.
(c) Estimated CBF values at different PSNRs with true CBF=20
mL/100 g/min. (d) Estimated MTT values at different PSNRs
with true MTT = 12 s.
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Figure 5.4: Visual comparison in a uniform regions of perfusion parame-
ter estimation using baseline methods and TTV. The ideal vari-
ation is 0. The reference is the ground truth at CBV = 4 mL/100
g, CBF = 20 mL/100 g/min, MTT = 12 s, PSNR = 15.

increases, TTV method appears to be more robust.

3) The ideal variability of the uniform region should be zero. Fig. 5.4 shows

the estimated perfusion maps of the reference and four methods on the uniform

region. While the baseline methods behave poorly in recovering the smooth

region, TTV results in uniform perfusion maps for all three parameters at PSNR

= 15. SPD reduces the noise level in estimating the three maps compared to

other baseline methods, but the over-estimation in CBF and under-estimation in

MTT could not be corrected using SPD. In comparison, TTV not only decreases

the noise standard deviation in the estimated perfusion maps, but also restores

the accurate quantitative parameters for CBF and MTT.

4) Quantitative comparison is shown in Fig. 5.5(a)-(b) (where CBF or MTT

varies) and Fig. 5.5 (c)-(d) (where PSNR varies). All figures show that TTV pro-

duces lower CBF and MTT variations than the sSVD, bSVD and Tikhonov meth-
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Figure 5.5: Comparisons of reducing variations over homogeneous region
of (a) CBF at different CBF values with PSNR = 15. (b) MTT at
different true MTT values with PSNR = 15. (c) CBF at different
PSNR values with true CBF = 20 mL/100 g/min. (d) MTT at
different PSNR values with true MTT = 12 s.

ods. SPD achieves relatively lower variation, but the mean estimated values of

CBF and MTT in Fig. 5.3(c)-(d) shows under-estimation of MTT, compared to

the ground truth. Table 5.1 shows the quantitative evaluation of the different

methods in terms of RMSE and Lin’s CCC for the results in Fig. 5.3-5.5.
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Table 5.1: Quantitative evaluation of the perfusion parameters in Fig. 5.3-
5.5. ‘Estimated’ mean the perfusion parameter to be estimated,
‘varying’ means the varying condition in the evaluation. The
best performance is highlighted in bold font. Lin’s CCC are
not shown for varying PSNR because the true value for the esti-
mated perfusion parameter does not change and thus Lin’s CCC
becomes zero. CBV does not change value in the experiment so
for CBV estimation there is no varying CBV.

Estimated CBF MTT

Varying CBF PSNR MTT PSNR

Method/Metric RMSE Lin’s CCC RMSE RMSE Lin’s CCC RMSE

sSVD 23.52 0.6878 52.07 6.056 0.4283 6.278

bSVD 15.05 0.8129 52.01 5.827 0.4567 6.309

Tikhonov 19.94 0.7198 43.92 5.64 0.4748 6.015

SPD 15.02 0.8294 44.36 5.804 0.4586 3.3323

TTV 0.993 0.9991 0.7954 0.6847 0.9945 0.294

Contrast preserving

Contrast is an important indicator of how well two neighboring different re-

gions can be distinguished. The contrast of perfusion parameters between the

normal and abnormal tissue computed using the deconvolution algorithm from

the noisy data should be comparable to that of the noise-free CTP data. To com-

pare the performance of the baseline methods and TTV in preserving contrast,

we generate synthetic CTP data spatially containing two 40×20 uniform regions

with different perfusion characteristic. Peak contrast-to-noise ratio (PCNR) is

defined as PCNR = max |I1 − I2|/σ, where I1 and I2 are the perfusion parameter

values of then two images to be compared for contrast.
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Figure 5.6: Comparisons of CBF and MTT estimated by the different de-
convolution algorithms in preserving edges between two adja-
cent regions at PCNR=1 and 0.2. CBV is not shown because it
is uniform in the region. True CBF is 70 and 30 mL/100 g/min
on the left and right halves of the region. CBV is uniform in the
region at 4 mL/100g. True MTT is 3.43 and 8 s on the left and
right halves. Temporal resolution is 1 sec and total duration of
60 sec.

Fig. 5.6 shows the estimated CBF and MTT by the different algorithms when

PCNR=1 and 0.2. The corresponding σ=40 and 200. While baseline methods

sSVD, bSVD and Tikhonov perform poorly at both PCNR levels, SPD and TTV

yield improved CBF and MTT maps with regard to the reference. When the

PCNR = 1 and the noise level is moderate, both SPD and TTV are capable of

removing the noise and preserve the contrast. However the spatial resolution

at the boundary of two regions is smoothed by SPD, compared to the clear-cut
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boundary using TTV. When the PCNR is as low as 0.2, the contrast to noise ratio

is extremely low. sSVD, bSVD and Tikhonov generate severely biased perfusion

parameters. SPD reduces the noise level to certain extent, but is unable to correct

the estimation bias in CBF and MTT. TTV performs favorably compared to all

baseline methods in preserving the edges between two adjacent regions in CBF

and MTT, as well as accurate estimation of perfusion parameters.

5.3.2 Clinical evaluation

Because repetitive scanning of the same patient under different radiation levels

is unethical, low-dose Perfusion maps are simulated from the high-dose 190

mAs by adding correlated statistical noise [6] with standard deviation of σa =

25.54, which yields PSNR=40. The maps calculated using bSVD from the 190

mAs high-dose CTP data is regarded as the “gold standard” or reference images

in clinical experiments.

Visual Comparison

1) At reduced tube current-exposure time product (mAs), Fig. 5.7 shows sig-

nificant differences visually between the CBF maps of the different deconvolu-

tion methods, where sSVD, bSVD, Tikhonov and SPD overestimate CBF while

TTV estimates accurately. With decreased mAs and therefore reduced radiation

dosage level, the over-estimation and the increased noise level become more

apparent for the baseline algorithms. At all mAs levels, TTV is capable to accu-

rately estimate CBF values compared to the reference.
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Figure 5.7: The CBF maps with zoomed ROI regions of a patients (ID
3) calculated using different deconvolution algorithms at tube
current of 30, 15 and 10 mAs with normal sampling rate. Base-
line methods sSVD, bSVD, Tikhonov and SPD overestimate
CBF values, while TTV corresponds with the reference. As
the tube current decreases and the radiation level reduces, the
over-estimation of CBF values using baseline methods become
more apparent. SPD method could remove the noise to certain
extent compared to other baseline methods, but has limited
ability to correct the over-estimation in the CBF value. (Color
image)
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Figure 5.8: The CBF maps with roomed ROI regions of a patient (ID 9)
computed using different deconvolution methods at sampling
rate (SR) of 1 s, 2 s and 3 s with 15 mAs tube current. At normal
sampling rate 1 s, baseline methods over-estimate CBF values.
At reduced sampling frequency 2 s, sSVD still over-estimate
while bSVD, Tikhonov and SPD under-estimate CBF values.
At reduced sampling rate of 3 s, all baseline algorithms under-
estimate CBF values. At all sampling rates, TTV accurately es-
timate the CBF values. (Color image)
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2) At reduced temporal sampling rate of 2 s and 3 s, the errors of CBF esti-

mation in the four baseline algorithms increase, while TTV maintains accurate

estimation for CBF value at all sampling rates.

Quantitative comparison

There is significant improvement in image fidelity between the low-dose CBF

maps and the high-dose CBF maps by using the TTV algorithm compared to

the baseline methods. On average, the RMSE decreases by 40%, Lins CCC in-

creases by 89% from the best performance by using the baseline methods (Table

2, Fig. 5.9). The quantitative values are computed with the vascular pixel elimi-

nation to exclude the influence of high blood flow values in the blood vessels.

Computation Time

It takes approximately 25 s to process a clinical dataset of 512×512×118 by TTV

method with 5 iterations, and approximately 0.83 s, 2.04 s and 1.35 s for sSVD,

bSVD and Tikhonov algorithms. For SPD, it takes 80.6 s for the whole image.

The TTV algorithm usually converges within 5 iterations. Though SVD and

Tikhonov based methods are faster, the over-estimation, low spatial resolution,

less differentiable tissue types and graining in the images are not acceptable.

SPD and TTV have comparable high-quality results for the low-dose recovery,

however TTV takes only 30% of the computation time compared to the time

for SPD. Moreover, the output of TTV can generate all perfusion maps at the

same time from optimized residue functions, while SPD needs to compute each

perfusion map separately, resulting in 240 s for all three maps.
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Table 5.2: Quantitative comparison of four methods

on ten patients in terms of RMSE, Lins CCC and lin-

ear regression. Patients 1-5 have brain deficits due

to aneurysmal SAH, while patients 6-10 have normal

brain maps. The mean value for the deficit and normal

subjects are computed respectively, as well as the mean

value for all cases. The best performance is highlighted

in bold font. Best performance among all methods is

highlighted with bold font for each case and the aver-

age. * P < .001 in one-tail student test.

Methods Case RMSE Lin’s CCC Linear Regression

sSVD

1

30.01 0.0242 y=0.289x-0.549

bSVD 6.41 0.156 y=0.826-1.457

Tikhonov 10.09 0.0454 y=0.693x-2.185

SPD 6.05 0.095 y=0.928x-5.219

TTV 2.94 0.572 y=1.069x-1.351

sSVD

2

22.42 0.059 y=0.416x-0.369

bSVD 7.3 0.207 y=0.877x-2.277

Tikhonov 10.44 0.114 y=0.781x-3.167

SPD 6.3907 0.3498 y=0.949x-3.327

TTV 4.1 0.60 y=1.164x+1.025

sSVD

3

18.65 0.034 y=0.192x+1.911

bSVD 6.1 0.117 y=0.516x-0.764

Tikhonov 9.9 0.044 y=0.405x+0.495

Continued on next page
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Table 5.2 – Continued from previous page

Methods Case RMSE Lin’s CCC Linear Regression

SPD 4.26 0.165 y=0.872x-7.704

TTV 2.22 0.622 y=0.829x+0.514

sSVD

4

25.68 0.0539 y=0.192x+1.91

bSVD 7.91 0.132 y=0.516x+0.764

Tikhonov 9.84 0.080 y=0.405x-0.495

SPD 6.73 0.171 y=0.822x-7.025

TTV 4.59 0.451 y=0.829x+0.514

sSVD

5

29.67 0.0322 y=0.192x+1.911

bSVD 9.09 0.117 y=0.516x+0.764

Tikhonov 12.22 0.0745 y=0.405x-0.495

SPD 5.23 0.183 y=1.183x-3.757

TTV 4.78 0.338 y=0.829x+0.514

sSVD

6

38.3 0.09 y=0.346x+0.232

bSVD 7.89 0.415 y=0.900x-2.13

Tikhonov 11.5 0.215 y=0.346x-3.41

SPD 6.35 0.702 y=1.045x-4.107

TTV 3.39 0.807 y=1.31x-1.77

sSVD

7

28.7 0.0391 y=0.382x-0.316

bSVD 11.7 0.1072 y=0.786x-2.959

Tikhonov 15.5 0.0605 y=0.714x-4.004

SPD 12.31 0.065 y=0.813x-9.093

TTV 4.79 0.459 y=1.127x+1.082

Continued on next page
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Table 5.2 – Continued from previous page

Methods Case RMSE Lin’s CCC Linear Regression

sSVD

8

23.5 0.0454 y=0.327x+1.008

bSVD 7.42 0.1626 y=0.799x-1.633

Tikhonov 11.6 0.0739 y=0.673x-2.398

SPD 4.91 0.1922 y-0.914x-4.985

TTV 3.02 0.6398 y=1.030x-0.618

sSVD

9

18.4 0.077 y=0.421x-0.539

bSVD 4.88 0.3571 y=0.917x-1.484

Tikhonov 11.00 0.0989 y=0.733x-3.46

SPD 3.71 0.513 y=1.033x-2.656

TTV 2.29 0.7956 y=1.045x-0.765

sSVD

10

21.55 0.0361 y=0.215x+2.298

bSVD 7.27 0.0801 y=0.542x+0.844

Tikhonov 10.63 0.147 y=0.457x+0.595

SPD 4.32 0.232 y=1.028x-3.968

TTV 4.21 0.308 y=1.012x+1.667

sSVD

Deficit

29.22 0.052

bSVD 7.72 0.205

Tikhonov 10.82 0.106

SPD 6.15 0.300

TTV 3.96* 0.554

sSVD 22.16 0.046

bSVD 7.47 0.165

Continued on next page
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Figure 5.9: Comparisons of RMSE and Lin’s CCC among the four meth-
ods. TTV results in significant (P < 0.001) lower RMSE and
higher Lin’s CCC compared with all the baseline methods.

Table 5.2 – Continued from previous page

Methods Case RMSE Lin’s CCC Linear Regression

Tikhonov Normal 11.73 0.085

SPD 5.90 0.233

TTV 3.31* 0.565

sSVD

All

25.69 0.049

bSVD 7.60 0.185

Tikhonov 11.27 0.095

SPD 6.03 0.267

TTV 3.63* 0.505
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Figure 5.10: Performace in terms of root-mean-square-error (RMSE) for
different parameters (a) γ and (b) ratio γt/γs.

Parameters

In the TTV algorithm, there is only a single type of tunable parameter: the TV

regularization weight. If the spatial and temporal regularization are treated

equally, only one weighting parameter γ needs to be determined. Fig. 5.10(a)

show the RMSE and Lin’s CCC at different γ values. When γ < 103, RMSE and

Lin’s CCC does not change much. The optimal γ is between 10−4 to 10−3.

Since the temporal and the spatial dimensions of the residue impulse func-

tions have different scaling, regularization parameters for t and x, y, z should

be different too. We set the spatial γs = γx,y,z = 10−4 since the spatial dimen-

sions have similar scaling, and tune the ratio between the temporal weight γt

and spatial weight γs. Fig. 5.10(b) shows that when the ratio γt/γs < 10−4, the

performance is stable. Thus we set γt = 10−8 and γs = 10−4 for all experiments.
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5.4 Discussion

In this study, a new total variation regularization algorithm is proposed to im-

prove the quality and quantification of the low-dose CTP perfusion maps and

extensively compared with the existing widely used algorithms, e.g. sSVD,

bSVD, Tikhonov and SPD regularizations. Synthetic evaluation with accurate

ground truth data is used to compare the quality of the residue functions, uni-

form regions, contrast preserving, sensitivity to blood flow value, noise levels

and sampling rate. Clinical evaluation using high-dose perfusion maps as the

reference image is conducted to show the visual quality of the perfusion maps

at low-dose and the sampling rate compared with the high-dose maps.

When the SVD-based algorithms were first introduced in 1996 [81, 80], the

perfusion parameters were computed from each tissue voxel independently. It

assumes the X-ray radiation and intravenous injection were high enough to gen-

erate accurate tissue enhancement curves and AIF for deconvolution. However,

SVD-based methods tend to introduce unwanted oscillations [77, 7] and results

in overestimation of CBF and underestimation of MTT, especially in low-dose

scan setting. The severely distorted residue functions estimated by the baseline

methods at simulate 15 mAs tube current in our synthetic evaluation reveal the

inherent problem existent in the SVD-based methods: instability. These meth-

ods are sensitive to noise in the low-dose environment, and lead to unrealistic

oscillations in the residue function, which is the starting point for all perfusion

parameter computation.

This instability could be alleviated using the context information in the

neighboring tissue voxels with the assumption of a piece-wise smooth model:
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The residue functions within the extended neighborhood of a tissue voxel will

have constant or similar shape, while the changes on the boundary between

different regions where tissues undergo perfusion changes should be identified

and preserved. The tensor total variation term in the objective function Eq. 5.18

penalizes large variation of residue functions within the extended neighbor-

hood of the tissue voxels, and adopting the L1 norm in summing the gradi-

ent of all voxels. It avoids the much greater quadratic penalty of L2 norm at

boundaries between different regions where large change in the residue func-

tions occur. In one word, the contextual tissue voxels jointly identify the ground

truth residue functions while reducing the statistical correlated noise due to the

low-dose radiation.

The synthetic evaluations show that the residue functions computed by the

baseline methods are unrealistically oscillating, leading to erroneous values of

CBF, CBV and MTT. These baseline methods constantly over-estimate the value

of CBF and the errors increase exponentially as PSNR decreases. This mislead-

ing over-estimation may cause neglect of infarct core or ischemic penumbra in

the patients with acute stroke or other cerebral deficits, resulting in delay in

diagnosis and treatment. The large variation in the uniform synthetic region

and contrast regions are also caused by the oscillating nature of the results,

and introduce misleading information in judging the perfusion condition of the

healthy and the ischemic regions.

On the contrary, the proposed TTV method performs comparably to the 190

mAs high-dose results on the 15 mAs low-dose data, which is approximately

8% of the original dose used. The residue functions are stable and have the

same shape as the ground truth. Perfusion parameters correlate well with the
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ground truth, without significant overestimation or under-estimation. The vari-

ation in the uniform regions is significantly suppressed, while the edges in the

contrast regions are more identifiable. The clinical evaluations show similar per-

formance comparing the baseline methods and TTV algorithm. While the base-

line methods significantly over-estimate CBF values, one of the most important

perfusion parameter for stroke diagnosis in recently research [103], TTV yields

comparable CBF maps to the reference maps. Moreover, the vascular structure

and tissue details are well preserved by the TTV algorithm by removing the

noise and maintaining the spatial resolution. Different evaluation metrics and

statistical tests further verify the correlation between the perfusion parameters

of the low-dose maps computed by TTV and the reference maps.

There is only one type of parameter γ in the model, which determines the

trade-off between data fidelity and TV regularization. Through extensive eval-

uation, we find that the results are not sensitive to the change of γ in the range

of 10−6 to 10−4, and the ratio between the temporal and spatial regularization

weight in the range of 10−8 to 10−4. So we set γs = 10−4 and γt = 10−8 for all the

experiments.

There are several limitations to our study. First, CT perfusion imaging data

from only 10 patients are used. Some patients have perfusion deficits due to

SAH, but other brain perfusion deficits such as acute stroke are not included.

Further validation should be conducted by using larger and more diverse data

sets. However the aim of our study is to propose a new robust low-dose decon-

volution algorithm and validate it preliminarily on synthetic and clinical data,

and the improvement on low-dose quantification is significant enough to show

the advantage of the proposed method. Second, SVD-based algorithms are used
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as baseline methods to compare with the proposed TTV. There are other exist-

ing methods to post-process the CTP imaging data, including maximum slope

(MS), inverse filter (IF) and box-modulated transfer function (bMTF). Further

comparison with these post-processing methods should be conducted. But MS,

IF and bMTF are not designed for low-dose CTP imaging data, while TTV uses

the contextual information for low-dose CTP deconvolution.

In conclusion, we propose a robust low-dose CTP deconvolution algorithm

using tensor total variation regularization that significantly improves the quan-

tification of the perfusion maps in CTP data at a dose level as low as 8% of the

original level. In particular, the over-estimation of CBF and under-estimation of

MTT, presumably owing to the oscillatory nature of the results produced by the

existing methods, is overcome by the total variation regularization in the pro-

posed method. The proposed method could potentially reduce the necessary

radiation exposure in clinical practices and significantly improve patient safety

in CTP imaging.
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CHAPTER 6

CONCLUSIONS

Robust deconvolution for low-dose medical imaging has received significant

attention in recent works. Intra-subject contextual information is often exploited

to remove the noise and artifacts in the restored hemodynamic maps. In this the-

sis, we took a closer look at the role of inter-subject contextual information in

robust deconvolution. Specifically, we explored its importance in three aspects.

First: Informatics acquisition. We found, through synthetic evaluation as well as

in-vivo clinical data, that inter-subject context provide complimentary informa-

tion to improve the accuracy of cerebral blood flow map estimation and increase

the differentiation between normal and deficit tissue. Second: Disease diagno-

sis. We showed that apart from the global learned dictionary for hemodynamic

maps, the tissue-specific dictionaries can be effectively leveraged for disease di-

agnosis tasks as well, especially for low-contrast tissue types where the brain

deficits usually occur. Lastly: Treatment plan. We proposed a generalized frame-

work with inter-subject context through dictionary learning and sparse repre-

sentation possible for any hemodynamic parameter estimation, such as blood-

brain-barrier permeability. We also extended to include inter-subject context

through tensor total variation. The diverse hemodynamic maps provide neces-

sary information for treatment plan decision making. We presented results of

our approaches on a variety of datasets and clinical tasks, such as uniform re-

gions estimation, contrast preservation, data acquired at low-sampling rate and
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low radiation dose levels.

6.1 Future Work

The following are different directions I would like to pursue in the future using

my previous work as a stepping stone, via collaborations with researchers in

neuroscience, data science and artificial intelligence.

6.1.1 Extension to other imaging modalities

I would like to investigate a similar approach in a variety of medical imaging

modalities such as MRI and SPECT/CT for dictionary learning of inter-subject

context. High-quality dictionary can be learned from high quality medical data

to capture the spatio-temporal patterns. For instance, for arterial spin labeling

MRI (ASL-MRI), repetitive scans are usually performed numerous times to ob-

tain an average spatio-temporal MRI sequence with high signal-to-noise ratio

(SNR). We can learn a dictionary from the existing average ASL-MRI data with

high SNR, and utilize the atoms in the dictionary as building blocks to restore

the new ASL-MRI data with fewer repetitive scans. Although it may seem like a

direct application of the above algorithm developed for MRI modality, it opens

up a new realm of possible applications as such fast ASL-MRI to capture transit

functional changes, high resolution functional imaging and SPECT with lower

dose of radioactive tracer.
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6.1.2 Incorporating multi-modality and information beyond

images

So far my current work has relied mostly on inter- or intra-subject visual data of

the same imaging modality. Multi-modality information such as dMRI, fMRI,

EEG and PET can also be incorporated. This would allow us to leverage a new

set of statistics to better learn the spatio-temporal patterns. Moreover, incor-

porating multi-modality information would allow for more robust recovery of

certain structures such as ligament and tendon injuries, spinal cord that are cur-

rently with limited clarity in CTP.

It would be interesting to explore other forms of information such as text

associated with medical images, and perhaps learn a meaningful pattern on the

textual signals, so that the visual and textual information enhance each other in

selecting the suitable dictionary patches. Alternatively, the textual entities can

be incorporated into the visual dictionary. Thus the patterns learned can now

represent the visual spatio-temporal patterns as well the demographical and

diagnosis records of the subjects. For example, the dictionary of brain tumor

patients can be learned based on the age, gender, ethnics and medical history of

the patient database. Each of these elements can be further leveraged when a

new subject’s low quality data needs to be restored. This would allow for a very

rich and multi-modal dictionary of certain disease or demographical group.
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6.1.3 Structured Sparsity

So far the tissue-specific dictionaries are learned from the segments of each tis-

sue types from the training data. Only the labels of the voxels are considered

in this proposed model, without exploiting the interactions between the tissue

labels and the positions of the voxels with different labels. It is desirable to fur-

ther employ the connectivity among the voxels with their labels. For instance,

deep gray matter is usually located near the cerebrospinal fluid in the anterior

central arterial area of the brain. The relative position of the tissue types and

their connectivity can be incorporated as prior constraint using structured spar-

sity or group sparsity [46, 47]. Spatial connectivity can be encoded as groups

and modeled as a regularization term. Thus all voxels within the same group

have similar probability to be classified as one tissue type in the restoration.

Furthermore, the segmentation and the restoration could help each other in

an iterative manner. Improved signal-to-noise ratio in the perfusion maps us-

ing the proposed deconvolution could assist more accurate segmentation of the

tissue structures. More accurate segmentation of the tissue structure would in

turn improve the patch selection in the sparse representation stage from the cor-

responding dictionary. This iterative process would be an interesting direction

to explore to boost both segmentation accuracy and deconvolution robustness.

6.1.4 Clinical Trials

Another interesting future work that I wish to explore is to perform large-scale

clinical trials with real low-dose scans. So we could understand the extent to

which the radiation dose can be reduced by our proposed sparse representa-
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tion algorithm for normal and different diseased cases. For instance, we could

scan the voluntary subjects twice at a normal dose and a low-dose, for instance,

100 mAs and 10 mAs, where the total radiation dose level is below the FDA

regulation of maximum 200 mAs.

We would apply our algorithm to leverage the inter-patient contextual infor-

mation and evaluate the quantitative differences between the normal-dose per-

fusion maps and the restored low-dose perfusion maps. We would also present

the three types of maps (normal-dose, low-dose and restored low-dose) to the

neuroradiologists to evaluate the diagnosis accuracy and then determine the

lowest achievable tube current level with acceptable image quality and without

any substantial artifacts affecting diagnostic confidence using our algorithm.

The subjective evaluation include assessment of image noise, visibility of small

structures, ischemic region size, delineation and conspicuity, and diagnostic

confidence in a blinded fashion. Statistical analysis will also be performed to

evaluate the statistical significance of the results. The clinical trials would al-

low possibility to evaluate the effectiveness of the deconvolution algorithm on

real low radiation dose data, instead of the simulated low-dose data, therefore

giving way to potential clinical application of the proposed deconvolution algo-

rithms and dose reduction in CTP scans.

135



APPENDIX A

RELATED PUBLICATIONS

Journal papers:

• Ruogu Fang, Kolbeinn Karlsson, Tsuhan Chen, Pina C. Sanelli. Improving

Low-Dose Blood-Brain Barrier Permeability Quantification Using Sparse

High-Dose Induced Prior for Patlak Model. Medical Image Analysis, Vol-

ume 18, Issue 6, Pages 866-880, 2014.

• Ruogu Fang, Tsuhan Chen, Pina Sanelli. Towards Robust Deconvolution

of Low-Dose Perfusion CT: Sparse Perfusion Deconvolution Using Online

Dictionary Learning. Medical Image Analysis, Volume 17, Issue 4, Pages

417-428, 2013.

Conference papers:

• Ruogu Fang, Pina Sanelli, Shaoting Zhang, Tsuhan Chen. Tensor Total-

Variation Regularized Deconvolution for Efficient Low-Dose CT Perfu-

sion. The 17th Annual International Conference on Medical Image Com-

puting and Computer Assisted Intervention, 2014 (MICCAI 2014)

• Ruogu Fang, Tsuhan Chen, Pina Sanelli. Tissue-Specific Sparse Deconvo-

lution for Low-Dose CT Perfusion. The 16th Annual International Confer-

ence on Medical Image Computing and Computer Assisted Intervention,

2013 (MICCAI 2013)
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• Ruogu Fang, Andrew C. Gallagher, Tsuhan Chen, Alexander Loui. Kin-

ship Classification by Modeling Facial Feature Heredity. The 20th Interna-

tional Conference on Image Processing, 2013 (ICIP 2013)

• Ruogu Fang, Tsuhan Chen, Pina Sanelli. Sparsity-Based Deconvolution of

Low-Dose Perfusion CT Using Learned Dictionaries. The 15th Annual In-

ternational Conference on Medical Image Computing and Computer As-

sisted Intervention, Lecture Notes in Computer Science Volume 7510, pp.

272-280, 2012 (MICCAI 2012)

• Ruogu Fang, Tsuhan Chen, Pina Sanelli. Sparsity-Based Deconvolution Of

Low-Dose Brain Perfusion CT In Subarachnoid Hemorrhage Patients. The

9th International Symposium on Biomedical Imaging, pp. 872-875, 2012

(ISBI 2012)

• Ruogu Fang, Ashish Raj, Tsuhan Chen, Pina C. Sanelli. Radiation dose

reduction in computed tomography perfusion using spatial-temporal

Bayesian methods. In Proceedings of SPIE Medical Imaging, Volume 8313,

Paper 831345, 2012 (SPIE 2012)

• Ruogu Fang, Ramin Zabih, Ashish Raj, Tsuhan Chen. Segmentation of

Liver Tumor Using Efficient Global Optimal Tree Metrics Graph Cuts. Ab-

dominal Imaging, pp. 51-59, 2011. (AI 2011)

• Ruogu Fang, Kevin D. Tang, Noah Snavely, Tsuhan Chen. Towards Com-

putational Models of Kinship Verification. The 17th IEEE International

Conference on Image Processing, 2010 (ICIP 2010)

• Ruogu Fang, Joyce Yu-hsin Chen, Ramin Zabih, Tsuhan Chen. Tree-

Metrics Graph Cuts For Brain MRI Segmentation With Tree Cutting.

IEEE Western New York Image Processing Workshop, pp. 10-13, 2010
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