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ABSTRACT
We tackle the problem of brain MRI image segmentation us-
ing the tree-metric graph cuts (TM) algorithm, a novel im-
age segmentation algorithm, and introduce a “tree-cutting”
method to interpret the labeling returned by the TM algorithm
as tissue classification for the input brain MRI image.

The approach has three steps: 1) pre-processing, which
generates a tree of labels as input to the TM algorithm; 2) a
sweep of the TM algorithm, which returns a globally optimal
labeling with respect to the tree of labels; 3) post-processing,
which involves running the “tree-cutting” method to gener-
ate a mapping from labels to tissue classes (GM, WM, CSF),
producing a meaningful brain MRI segmentation. The TM
algorithm produces a globally optimal labeling on tree met-
rics in one sweep, unlike conventional methods such as EMS
and EM-style geo-cuts, which iterate the expectation maxi-
mization algorithm to find hidden patterns and produce only
locally optimal labelings. When used with the “tree-cutting”
method, the TM algorithm produces brain MRI segmentations
that are as good as the Unified Segmentation algorithm used
by SPM8, using a much weaker prior. Comparison with the
current approaches shows that our method is faster and that
our overall segmentation accuracy is better.

Index Terms— brain MRI segmentation, tree-metrics
graph cuts, tree cutting, global optimal labeling

1. INTRODUCTION

Computer-aided diagnoses depend on fast, robust algorithms
for processing medical images. The advent of magnetic reso-
nance imaging has allowed us to study the brain and diagnose
neural diseases as never before; in this light, automatic brain
MRI segmentation is crucial for understanding the brain and
diseases that affect the brain.

The task of brain MRI segmentation is to segment a large
3D MRI image representing the brain into three types of
brain tissue: white matter (WM), gray matter (GM), and
cerebrospinal fluid (CSF). Accurate and efficient automatic
brain MRI segmentation will provide information critical to
diagnosing brain disease in time, reduce the time and labor
spent by human experts, and make interpretations of brain
MRI images more consistent. However, automating brain
MRI segmentation is challenging. Brain MRI images often

Fig. 1. Brain MRI Segmentation. (a)Brain MRI image
(b)Gray Matter (c) White Matter (d) CSF

have non-uniform intensity because there is an MRI bias
field: voxels representing grey matter in one region of the
image may have different intensities compared to grey matter
voxels in a different region of the image. MRI images are
also influenced by the partial volume effect; some voxels may
have a mixture of several tissue types, making classification
difficult. Finally, in order to reduce scan time, many MRI
images are intentionally undersampled, resulting in noisy
images with aliasing.

To address these challenges, we need image-segmentation
algorithm that is robust to noise and has provable guarantees
on the quality of its outputs. We propose to apply tree-metrics
graph cuts (TM) algorithm [1] to segment brain MRI images,
and then use our “tree cutting” method to classify the seg-
ments as GM, WM or CSF. We will refer to our approach as
the TM-TC algorithm, because it applies the tree-metric (TM)
algorithm and then the tree-cutting (TC) method.

Our proposed approach’s novel aspects include:

• Globally optimal labeling for multiple labels. Conven-
tional approaches such as EMS [2] and EM-style geo-
cuts [3] only obtain a locally optimal labeling by using
iterations of the expectation-maximization algorithm.

• Low computational cost. The running time of our tree-
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metric algorithm is O(log(k)(g(n) + k)), for n vox-
els and k labels (in our case, n = 4: GM, WM, CSF
and background), where g(n) is the running time of the
min-cut algorithm on graph with n nodes.

1.1. Brain MRI segmentation as metric labeling

The brain MRI segmentation problem can be interpreted as an
instance of metric labeling; specifically an instance of image
denoising. In image denoising, the observations are labels;
we want to pick a new label (gray-scale intensity) for each of
our voxels. Each of the new values should be similar to the
observed one in the original MRI image, and the values of
nearby voxels should be similar.

Let the brain 3D MRI image be represented as an undi-
rected weighted graph G = (V,E), where vertices V corre-
spond to voxels and E are edges between neighboring voxels.
Let L be the set of labels, and let f : V ! L be a labeling.
Furthermore, let c(v, f(v)) = wvd(o(v), f(v)) (assignment
cost function) be the cost for givin label f(v) to object v,
where o(v) is the observed label and d(a, b) is a distance on
L. The goal is to find a labeling f that minimizes the cost
function

Q(f) =
X

v2V

wvd(o(v), f(v)) +
X

(u,v)2E

wuvd(f(u), f(v))

We refer to the first summation in Q(f) as the “data term”
and the second summation in Q(f) as the “prior term” (or
“smoothness term”). As our prior, we want objects connected
by an edge in E to have similar labels.

The image denoising problem is NP-hard for arbitrary dis-
tance d(a, b). However, if the distance d is actually a “tree-
metric”, the problem is very tractable; under these circum-
stances, the TM algorithm returns a globally optimal labeling
f and can handle large numbers of labels. The tree-metric d
can be represented as a tree of labels, such that the distance
between any pair of labels is the length of the path between
them in the tree.

2. METHOD

In order to apply the tree-metric graph cuts (TM) algorithm to
brain MRI segmentation, we perform pre-processing to create
suitable inputs to the TM algorithm, and post-processing on
the output segmentation returned by the TM algorithm a to
create a meaningful brain segmentation, classifying the tissue
at each voxel.

The TM algorithm takes 3 things as input: a brain MRI
image, a tree of labels, and a smoothness parameter � � 0.
We generate a tree of labels with agglomerative clustering
based on observed gray level intensity.

We apply the TM algorithm to the brain MRI image and
the tree of labels, which returns a globally optimal labeling
of the brain MRI with respect to the tree of labels. We use a

Fig. 2. Example of tree generation. Left: Input synthetic
image with three colors. Middle: Generated binary tree from
observation. Right: Underlying graph.

process called “tree cutting” to compute the mapping of labels
to tissue classes, completing our brain segmentation.

Each stage of our approach (TM-TC algorithm)— tree
generation, sweep, and pruning— is detailed in this section
as follows.

2.1. Tree Generation

We use agglomerative hierarchical clustering to create a tree
of labels. For example, in Figure 2, we apply agglomerative
hierarchical clustering on the colors at each pixel to generate
tree T based on Ward’s variance criteria [4]. For brain MRI
segmentation, we perform agglomerative hierarchical cluster-
ing to create a tree of labels with 256 leaves.

In agglomerative hierarchical clustering, closest pairs of
clusters (of labels) in the feature space are repeatedly merged,
such that the distance between two clusters C and D reflects
the increase in variance of the feature vectors in C[D relative
to the variance in C and D.

In practice, we implement agglomerative hierarchical
clustering in phases. At each phase, we use k-nearest neigh-
bors (measured in Euclidean distance) to compute candidate
clusters (using the nearest neighbor data structure [5]) and
merge them. If the number of clusters is very large, we use
approximate nearest neighbors in our computation instead.
When the maximum variance becomes greater than two times
of the minimum variance, we stop merging clusters.

2.2. Tree-Metric Algorithm Sweep

Now that we’ve generated a tree of labels representing the
tree-metric distance function d, we apply the TM algorithm
to, the 3D brain MRI image, the tree of labels, and the
smoothness parameter � � 0. The TM algorithm will mini-
mize the cost function for a distance d and labeling f :

Q(f) =
X

v2V

d(o(v), f(v)) + �
X

(u,v)2E

d(f(u), f(v))

The TM algorithm can compute the globally optimal la-
beling f for the cost function Q(f) in O(log(k)(g(n) + k))
time for n voxels and k labels, where g(n) is the running time
of the min-cut algorithm on graph with n nodes. The log(k)

11



term in the running time assumes that the tree of labels is bal-
anced; [1] mentions ways binarize and balance any arbitrary
tree.

Because our label set for brain MRI images contains 256
labels representing gray level intensities, the TM algorithm
returns a labeling f with 256 labels, vastly greater than the 4
labels (GM, WM, CSF and background) we want to label the
brain with.

2.3. Tree Cutting

The labeling returned by TM algorithm does not directly cor-
respond to the tissue classes in the brain. Therefore we need
to map the gray-scale labels to 4 labels: GM, WM, CSF or
background. We create this mapping with the “tree-cutting”
method. To reduce 256 labels to 4 labels, we “cut” our binary
tree of labels at depth log2(4) = 2; for each node at depth
2 (where the root node is depth 0), their child subtrees now
map to the same label (as their ancestor node at depth 2). By
cutting the tree of labels at depth 2, we are left with 7 labels;
1 label at the root (depth 0), 2 labels at depth 1, and 4 labels
at depth 2. All of the nodes deeper than depth 2 map to one of
the labels at depth 2. Finally, map each of the labels shallower
than depth 2 (the root, nodes at depth 1) to one of the 4 labels
at depth 2 with the closest Euclidean distance.

After the “tree-cutting” procedure, we are left with only
the 4 labels at depth 2. It is now easy to assign each of the 4
labels as either GM, WM, CSF or background.

3. RESULTS

We validated our approach on both simulated and clinical
brain MRI dataset and compare the performance of our al-
gorithm to that of EMS and EM styled geo-cuts.

3.1. Simulated Brain Database

The first dataset is simulated brain database from Brain Web
[6], which contains 20 normal anatomical models of realistic
MRI data volumes produced by an MRI simulator.

Our baseline algorithms were the widely used EMS al-
gorithm and EM-style geo-cuts. Both of them are state-of-
art brain tissue segmentation methods, yet both of them de-
pend on iterations to approximate optimal segmentation of the
brain tissue. Figure 3 shows the comparison of segmentation
results of brain MRI using EMS, EM-style geo-cuts and our
approach. After finding the absolute number of voxels classi-
fied as WM, GM, and CSF, the normalized confusion matrix
was created in order to show the accuracy of our results on a
percentage basis.

We can see that the segmentation of our approach (Fig.
3 d) are smoother: for example, white matter segmentation
has less noise than EMS and EM-style geo-cuts, and fine
curvatures of gray matter are better preserved. By compar-
ing the overall segmentation accuracy on three brain tissues

Fig. 3. Segmentation results on simulated brain
dataset.a)Original bias-corrected brain MRI data b)EMS
c)EM-style geo-cuts d)Our approach (Color: white matter -
white, gray matter - gray, CSF - deep gray)

Table 1. Classification accuracy for brain tissue using EMS,
EM-style geo-cuts and TMN

METHOD ALL CLASSES WM GM CSF
EMS 85.65% 61.67% 99.58% 95.31%
GEO-CUTS 96.43% 99.83% 93.00% 98.60%
OURS 97.21% 99.80% 96.52% 92.39%

(excluding non-brain materials), the differences are signifi-
cant: EMS: 85.64%, EM-style Geo-cuts: 96.43%, Our Ap-
proach: 97.21%. More importantly, the running time of EMS
and EM-style geo-cuts can go up to hours for entire 3D brain
MRI data, due to its iterative nature, while our approach needs
only minutes to complete the segmentation. A statistical t-
test shows that our approach is better than EMS and EM-style
geo-cuts with 99% confidence. The quantitative comparison
of segmentation accuracy for three types of brain tissues and
the overall accuray are shown in Table 1.

Furthermore, we compare the performance of our ap-
proach with popular state of the art brain segmentation soft-
ware SPM8, which uses “Unified Segmentation” by Ash-
burner and Frist [7]. The “Unified segmentation” algorithm
unifies segmentation and registration into a single probabilis-
tic framework, using atlases for probability maps; unlike TM
algorithm, unified segmentation uses a very strong prior and
uses iterative computations to converge to a solution. In Table
2, we demonstrate that TM algorithm performs at least as well
as unified segmentation under the dice metric on BrainWeb
data with 3% simulated noise.

The Dice metrics we use in the evaluation is

Dice metric =

2⇥ TP
2⇥ TP + FP + FN

TM algorithm runs in one minute on one core of a 2.16GHz
Intel Core Duo machine with 2GB of RAM, while unified
segmentation runs in 21 minutes.

3.2. Clinical Brain MRI Data

We also tested our brain MRI segmentation algorithm on real
clinical brain MRI data with corrected bias field. The dataset
is T1-weighted brain MRI with 256⇥ 256 pixels matrix. The
dataset was acquired from University of San Fracisco Medical
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Fig. 4. Segmentation results on clinical brain
dataset.a)Original bias-corrected brain MRI data b)EMS
c)EM-style geo-cuts d)Our approach (Color: white matter -
white, gray matter - gray, CSF - deep gray)

School. The dataset has more ambiguity than simulated data
due to instrumental noise and sampling inaccuracies. Figure
4 shows the comparison of segmentation results on real brain
MRI data, which clearly shows the improvement from our al-
gorithm on the segmentation of fine structures of white matter
and CSF in the central part of the brain, where both EMS and
geo-cuts fails to represent the complete white matter struc-
tures.

4. CONCLUSION
In this paper we presented a novel approach to apply graph
cuts algorithm with tree metrics using pruning to the medical
image segmentation problem and compare our results with the
state-of-art methods. Our approach, which is efficient in com-
putation and globally optimized in the tree-metrics labeling,
performs better than the conventional approaches in terms of
the overall accuracy, and avoids the iterated method which is
computational intense.

There are several interesting directions for future work on
this problem. To learn the proper structure of the tree, for in-
stance, the optimal degree of the tree and the clustering crite-
rion, will improve the segmentation result for arbitrary num-
ber of segments in the output. Moreover, since the compu-
tational time is mostly spent on the agglomerative clustering
stage, where ANN is applied to find the nearest neighbors, we
could explore better methods to generate the tree with higher
efficiency.
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