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ABSTRACT

The increasing heterogeneity between applications in emerging vir-
tualized data centers like clouds introduce significant challenges in
estimating the power drawn by the data center. In this work, we
present WattApp: an application-aware power meter for shared data
centers that addresses this challenge. In order to deal with hetero-
geneous applications, WattApp introduces application parameters
(e.g, throughput) in the power modeling framework. WattApp is
based on a carefully designed set of experiments on a mix of di-
verse applications: power benchmarks, web-transaction workloads,
HPC workloads and I/O-intensive workloads. Given a set of N ap-
plications and M server types, WattApp runs in O(N) time, uses
O(N × M) calibration runs, and predicts the power drawn by any
arbitrary placement within 5% of the real power for the applications
studied.
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General Terms
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1. INTRODUCTION
Energy management has emerged as one of the most challeng-

ing problems faced by data center administrators. According to an
estimate [13] based on trends from American Society of Heating,
Refrigerating and Air-Conditioning Engineers (ASHRAE)[11], by
2014, Infrastructure and Energy (I&E) costs would contribute about
75% while IT would contribute a significantly smaller 25% towards
the overall total cost of operating a data center. The current power
density of data centers is typically estimated to be in the range of
100 Watt per sq.ft. and growing at the rate of 15−20% per year [2].
Surveys by Data Center Institute[1] predict that unless corrective
actions are taken, power failures and limits on power availability
will halt data center operations at more than 90% of all companies
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within the next five years. Thus, energy is no longer a second class
citizen and is getting a lot more emphasis in data center design.

A second important trend in data centers has been the increased
diversity of applications hosted on a shared server cluster. Out-
sourced data centers that host multiple customers and the emer-
gence of the cloud paradigm for computing has led to such a sce-
nario. Power management techniques have slowly evolved to this
emerging reality by moving up from the hardware level to a mid-
dleware level. The early work in energy management had focused
only on power-aware design of hardware and on mechanisms like
Dynamic Voltage Frequency Scaling (DVFS) that reduce power
consumption in a single server [24, 27]. While applications were
hosted on standalone servers, such an approach was sufficient. How-
ever, as virtualized and shared data centers became common-place,
techniques leveraging the reconfiguration capabilities offered by
virtualization to manage power were designed that took cognizance
of the heterogeneity between applications.

Virtualization allows a provider to consolidate applications run-
ning on a large number of low utilization servers to a smaller num-
ber of highly utilized servers. Each application runs in its own Vir-
tual Machine (VM), which provides the required isolation and pro-
tection from other applications. Further, virtualization platforms
today provide the capability of migrating a virtual machine trans-
parently from one server to another, thus enabling dynamic con-
solidation. A dynamic consolidation based approach allows server
clusters to increase or decrease the number of operational servers
by adapting to the workload intensity, thus enabling even higher
energy efficiency [31, 32, 27, 16, 26].

The power drawn by a commercial server consists of a static
component and a dynamic component. The static component of
power is a fixed power drawn even if the server is not doing any
processing. The dynamic component of power depends on the us-
age of various components of the server. For servers with a small
dynamic range, power modeling is not relevant as the server power
can always be approximated by the idle power. Earlier servers used
to have a very large static component but the increased focus on
energy awareness has resulted in vendors adding support to reduce
power consumption in unused server components. Hence, there is
a distinct trend towards increase in the dynamic power range.

The ever-increasing dynamic range of server power makes power
modeling a fundamental piece in power management, which is re-
quired to estimate the impact of various reconfiguration actions.
Since the early work in power management was designed for ho-
mogeneous applications and focussed at the hardware layer, power
modeling methodologies also implicitly assumed homogeneous ap-
plications. Hence, the impact of power management actions was
modeled in an application-oblivious manner. Even though power
management techniques have now become more inclusive and are



aware of heterogeneous applications, power modeling techniques
still make this simplifying assumption. It has been observed that
modeling power in an application-oblivious manner has significant
errors for heterogeneous applications [31, 19].

1.1 CPU Utilization Based Modeling
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Figure 1: Power Vs CPU Utilization for all TPC-W, SpecPower,

Domino and variants. TPC-W- is a variant of TPC-W that does

not load images. TPC-W- 3VM is clustered TPC-W- running

on 3VMs hosted on the same server. Domino- is a variant of

Domino with small number (10) of users.

CPU utilization based power models are the most popular in
practise because of their inherent simplicity. Since the static com-
ponent of a server power if fixed, the accuracy of a power model lies
in its ability to predict the dynamic power consumed by a server.
Hence, we first study the Accuracy of an application-oblivious CPU
utilization driven model to predict the dynamic power usage on a
given server. Fig. 1 shows the power drawn by a server at differ-
ent CPU utilization for TPC −W (a web serving workload [10]),
Domino (a commercial mail server [5]), SpecPower (a server power
benchmark [8]) and variants of the same.

We observe a wide disparity in the observed values of power
at the same utilization for different applications. We note that there
are many points beyond the ±20% error range (solid lines in Fig. 1)
of the fitted dynamic power curve, indicating an error greater than
40%. I/O bound applications like Domino tend to have higher
power consumption relative to other applications at low CPU uti-
lization. However, since I/O bound applications do not use many
compute components significantly (e.g., Floating Point Units (FPUs)),
the increase in power with increased CPU utilization is much lower
for these applications. Further, these applications may get bottle-
necked by another resource and the range of CPU utilization may
be low (e.g., 30% for Domino). Hence, the model is not even de-
fined for higher CPU utilization, implying the need of a different
input parameter in modeling. This clearly underlines the require-
ment of a better model for estimating server power.

1.2 Contribution
In this work, we introduce application-awareness in power mod-

eling and present WattApp, an application-level power meter for
shared data centers hosting heterogeneous applications. Our key
contributions are

• We establish a linear relationship between marginal power
and marginal application throughput (number of jobs exe-
cuted per second) on a diverse set of enterprise applications
and benchmarks (TPC-W, SpecPower, Domino). We show
that incorporating the virtualization ratio 1 is important to

1Virtualization Ratio is defined as the number of VMs on a server

build accurate power models. Our most important result is
to establish that a linear combination of the power models
for individual applications (at their virtualization ratio) can
estimate the power drawn by a mix of applications.

• We employ our observations to design WattApp, a power me-
ter, that takes a set of M servers and N applications and per-
forms O(N × M) calibration runs to build a power model.
We validate WattApp on a new set of applications (Linpack,
daxpy, fma) to verify that the principles behind the design
of WattApp are not tied to a specific class of applications.
WattApp reduces error by up-to 10 times over the utilization-
based predictor most commonly used, achieving an accuracy
of 95% on many real application and benchmarks. Further,
WattApp uses a Server Stealing technique to ensure that
power models can be built with minimum disruption in a pro-
duction server farm.

The rest of the paper is organized as follows. In Sec. 2, we detail
the usage and requirements for a power model. We describe our ex-
perimental tested in Sec. 3 and establish the relationship between
power and application throughput in Sec. 4. We extend our obser-
vations to multiple applications in Sec. 5 and use them to design
and validate WattApp in Sec. 6. We conclude with a discussion of
the related work in Sec. 7.

2. POWERMODELING: USAGE AND

REQUIREMENTS

2.1 Power Modeling Use Case
The emergence of virtualization and live migration of virtual

machines (VM) have led to a scenario where a server may host
multiple applications and possible power management actions in-
clude migrating these applications to other servers in the farm. The
flow in a power-aware placement controller (for example, refer to
[31, 26, 33]) consists of (i)Application Usage Prediction (ii) Can-
didate Placement Generation and (iii) Final Placement Decision
(Fig. 2(a)). The Placement Controller needs to compare various
candidate placements with respect to (i) the estimated power con-
sumed and (ii) the performance of all applications in that place-
ment. A Power Modeler provides an answer to the first question,
helping the Placement Controller to make a decision.
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Figure 2: (a) Power-aware Dynamic Consolidation (b) Candi-

date Placement

The input to the Power Modeler component is a placement of
applications on servers (Fig. 2(b)). In addition to the above, certain
characteristics of each application may be available. To take an ex-
ample, an application A1 may be executing 100 daxpy operations
per second on a virtual machine with an entitlement of 1.5 cores
on a Power6 p570 server at 70% utilization in the current place-
ment. Similarly, another application A2 may be executing 10 ma-
trix transpose operations on a virtual machine with an entitlement



of 1.5 cores on the same Power6 p570 server at 50% utilization. In
a new candidate placement, both of them may be moved to a virtual
machine on a Power6 JS-22 blade with 2.0 cores each. Hence, in
this case, the application throughput, characteristics of the source
and target server, and the CPU utilization on the source server may
be available. The Power Modeler should be able to infer the power
drawn by the JS-22 blade for running the two applications from the
available application data. In the past, the idle power of a proces-
sor constituted 80% of a server’s power and hence, many Place-

ment Controllers rely on a coarse estimate of power (typically peak
power of the server) to make their decision. However, the trend of
an increasing dynamic (workload-dependent) range of the servers
makes such an approach infeasible [12]. A look at different power
models in [31, 32, 28] indicate that the dynamic power range is
typically higher for HPC applications, underlining even more the
necessity of an accurate power model for HPC applications.

2.2 Desirable Characteristics for a Model
The key motivation for power modeling is to estimate the impact

of various power management actions, before taking these actions.
We now enumerate four important requirements, similar to [28],
which are desirable in any good power estimation model. Further,
a power model for shared servers need to deal with diverse appli-
cations, leading to a fifth requirement of Heterogeneity Support.

1. Accuracy: The static power drawn by a server if fixed and
does not require any model. Hence, the accuracy of a power
model captures its ability to predict the dynamic power of a
server. Hence, we define the error in accuracy of a power
model as the absolute difference between the predicted dy-
namic (active) power and the real dynamic power, normal-
ized by the real dynamic power.

2. Usable Parameters: The input parameters of a power model
should be readily available and monitored in server farms.
Typically, a ’Usable’ model would require parameters that
require no dedicated instrumentation code, has minimal over-
heads, and can be collected from user space. A survey of
more than 100 data centers revealed that they only monitor
high level system parameters that can be collected via stan-
dard tools (e.g, nmon).

3. Predictable Input: In a virtualized data center, an applica-
tion is co-located with other applications on a shared phys-
ical server. With time, energy management actions would
move the applications and both the hosted server and the co-
located applications for a modeled application would change.
A model with Predictable Input has input parameters that ei-
ther do not change with reconfiguration or can be predicted
after reconfiguration. Further, based on history, one should
be able to make a short-term prediction of the parameter.

4. Speed: Once built (or calibrated), a good power model should
be able to give an estimate of the power drawn by a candidate
placement of N applications on M servers in a reasonable
time (of the order of a second or less).

5. Heterogeneity Support: In a shared data center hosting het-
erogeneous applications, the model should be accurate for a
diverse set of workloads hosted on the same physical server.

Existing research in power modeling has tried to model power as
a function of system parameters independent of the applications
running on the server. We argue in this paper against such an
application-oblivious power modeling approach and show that an
accurate and practical power model for heterogeneous applications
needs to be application aware. The motivation for an application

aware power model stems from two reasons:(i) System level power
models based on easily available parameters like CPU utilization
can have an error as high as 50% for heterogeneous applications
(Fig. 1) (ii) More accurate system level power models are based
on event counters like memory bandwidth that are not available on
all platforms (not Usable). Even on platforms with available coun-
ters, they have associated overheads. We observed CPU overhead
of more than 5% on an IBM JS-22 blade with Power6 processors
using the hpmstat utility [6].

Most importantly, if an application moves from one server to an-
other and the set of applications co-located with it change, the new
event counters can not be inferred easily from the monitored values
on the server it is currently placed on (not Predictable). This is be-
cause on a target server, the applications would be co-located with
a different set of applications (VMs) that may use non-partitioned
resources (e.g, cache) in a different way than the VMs hosted on the
previous server. This directly impacts event counters like memory
bandwidth and may indirectly impact other event counters like In-
structions Dispatched per Second (IDS) as well. The complete lack
of Predictability is the greatest obstacle in using a model based on
event counters. Hence, we explore a power model that takes the
throughput (number of jobs executed per second) of an application
as input in order to estimate power, as opposed to existing applica-
tion oblivious power models.

3. EXPERIMENTAL TESTBED AND

PARAMETERS
We conducted a large number of experiments to investigate the

key application and server parameters that dictate the power con-
sumed by a server. We start by describing our experimental testbed.

3.1 Hardware Setup
The experiments were performed on 3 machines (2 blade servers

and and 1 commodity rack server) detailed in Table 1. These ma-
chines were used to run the tested applications directly or as hosts
for virtual machines which hosted the applications. We use IBM
Active Energy Manager [4] to monitor power for bluestar1 and
bluestar4 and a power meter at the plug for mad-max.

3.2 Applications
Name Description Nature

TPC-W TPC-W with images CPU, Memory
TPC-W- TPC-W with no images CPU, Cache
SpecPower Benchmark from SPEC CPU
Domino Mail server with 500 users Disk I/O
Domino- Mail server with 10 users Network

daxpy BLAS-1 routine CPU
fma Vector HPC Application CPU
HPL LinPack Benchmark CPU

Table 2: Applications Used for (a) Design and (b) Validation

The goal of this work was to create a modeling methodology
that is applicable across a wide variety of workloads. Hence, we
use enterprise applications to design our methodology and HPC
applications to validate it. The disparity in the applications used
for Design and Validation avoids any application biases to creep in
the methodology.

The first application we select for modeling is the SpecPower
benchmark [8]. SpecPower is the first industry-standard SPEC
benchmark that evaluates the power and performance characteris-
tics of volume server class computers. The benchmark exercises
the CPUs, caches, memory hierarchy and the scalability of shared



Name Processor Model L2 Memory HyperVisor

bluestar1 Intel Xeon 2 x 3.2GHz HS21 Bladecenter 2MB 4 GB VMWare ESX 3.5
bluestar4 Intel Xeon 2 x 3.2GHz HS21 Bladecenter 2MB 4 GB VMWare ESX 3.5
mad-max Intel Core 2 Duo 2GHz Desktop 4MB 2 GB Xen 3.2

Table 1: Hardware setup

memory processors (SMPs) and is a representative of typical CPU-
intensive applications. SpecPower allows a "calibration value" to
be set, which represents the unique maximum throughput and we
set this value to 10115. This calibration value corresponds to the
maximum throughput obtainable on all three servers we use in our
experiments.

We used TPC-W [10], as a representative benchmark for a trans-
actional workload that stresses CPU, but also has large memory us-
age. We used the freely available implementation of TPC-W from
University of Wisconsin [9]. TPC-W uses a web server front-end
to handle the requests and a database server to process the database
queries corresponding to the web requests. The application embeds
images in the HTML document that is sent in the response to the
web request and these images create a large memory footprint. In
order to study applications that use cache well, we create a variant
of TPC-W, termed TPC-W-, by disabling the images from being
loaded. This ensure that all the content is dynamically generated,
leading to a small footprint. The throughput of TPC-W and variants
was modified by the use of the browsers think time variant.

The third application we selected was Lotus Domino [5]; a real
I/O-bound application. Domino is an IBM collaboration appli-
cation that provides enterprise e-mail, messaging, directory ser-
vices, web services, and application services. A variant of Domino
(Domino-) simulates 10 users instead of 500. It was observed that
the Domino application has a significant use of disks, hence this
variant tries to rely less on disk and more on the OS page cache. For
the validation experiments, we used HPC applications that contrast
well with the applications used to design the methodology. We
used two vector-based routines (daxpy and fma) as well as HPL,
a widely used Linpack implementation. All our applications and
their variants are listed in Table 2.

3.2.1 Application Parameter

We use application throughput or the number of jobs executed
per second as the attribute to describe the application. The notion of
throughput is well defined for transactional applications like TPC-
W and Domino. The same notion can be trivially extended to long
running batch HPC jobs in the following manner. For any batch of
n HPC jobs that are expected to complete in time T , we define the
throughput of the HPC application as n/T , which may be less than
1job/second for long running jobs. This notion of throughput has
been used for all HPC jobs considered in this paper.

4. APPLICATION-AWARE POWER

MODELING
We have conducted a large number of experiments to investi-

gate the feasibility of an application-aware power model. We now
present some of our key observations.

4.1 Application Throughput Based Power
Models

We first explored the feasibility of estimating power drawn by
a server running a single application on a server as a function of
readily available application parameters like application through-
put. For a set of applications, we run the application with increasing
throughput and measure power (Fig. 3) till we reach saturation and
throughput can not be increased any further. These experiments
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Figure 3: Power Vs Transaction Rate for all applications on

bluestar1. The vertical lines denote the throughput bound for

each application.

thus cover the entire possible operating range for the server. We
observe that marginal (dynamic) power for any application Ai has
a linear relationship with application throughput (λi). The actual
slope of the power-throughput curve varies across applications but
the relationship can be expressed by a curve of the form αi + βiλi

with error in dynamic power less than 5% for most (more than
90%) of the operating range (Fig. 3). Hence, we conclude that
an application throughput based power model is quite accurate and
can be captured as

P (Ai) = αi + βiλi (1)

Since the constants α and β vary with each application, separate
calibration runs are required for each application on every server
type that the application is placed on. We note that the model needs
us to infer only two coefficients, which can be done using two cali-
bration runs. However, we recommend using multiple runs and use
simple linear regression [7] to estimate αi and βi. Once we deter-
mine αi and βi, we can predict power by (i) first predicting if the
given throughput can be achieved and (ii) if yes, then use Eqn. 1 to
predict the power.

We next investigated the reason behind the linear relationship
between marginal power and application throughput. We conjec-
tured that resource consumption for jobs would increases linearly
with throughput, resulting in the linear increase in power. Earlier
research suggests that the resource metrics of importance for server
power are CPU, memory, disk and network [21]. However, virtu-
alized server farms that use dynamic consolidation for power man-
agement [31] require data to be stored on network disks so that ap-
plications can be migrated. Hence, disk power is not really a com-
ponent of server power and needs to be modeled separately. For
experiments involving TPC-W and variants, a separate database
server is used and disks are network attached. However, for all
other applications, we use local disks. The power usage of the
memory component depends on memory bandwidth. On this plat-
form we did not have a counter for memory bandwidth and we used
the number of L2 cache misses per second measured using Opro-
file [25] as a proxy for memory bandwidth. L2 cache misses do not
account for any memory used through prefetching. However, we
were not interested in the actual estimate of memory used but we
only needed to know if memory activity increased as throughput
was increased. Since an increase in number of L2 cache misses in-
dicate an increase in memory bandwidth, this proxy was acceptable
to us.

Figure 4 confirms our conjecture that resource utilization of CPU,
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Figure 4: (a) CPU (b) Memory and (c) Network Activity Vs Transaction Rate on bluestar1
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Figure 5: Power Vs Aggregated Transaction Rate for (a) TPC-W, (b) SpecPower and (c) TPC-W- at different virtualization ratio on

bluestar1

memory and network depend linearly on application throughput.
We also observe that the throughput bounds are a result of spe-
cific resources. For example, SpecPower, Domino- and TPC-W are
bounded by CPU and Domino is bounded by disk usage. TPC-W -
is a much more interesting case as it did not seem to be resource
bounded by any of the resources but still reaches saturation. We
conjectured that a distributed application like TPC-W or TPC-W -
may be bounded by other components and looked at the system
logs of the database server that hosted the database for TPC-W -
. We found that the database server for TPC-W - was running at
close to 100% CPU utilization. This observation underlines the
importance of taking all components of a distributed application
into account, while predicting the throughput bound of such an ap-
plication. The observations emphasize that modeling power as a
function of application parameters is not only more user-friendly
but may capture the actual system load better than a model based
on a single metric like CPU utilization.

4.2 Virtualization-aware Power Modeling
Our first experiments aimed at characterizing the power drawn

by a server running an application without virtualization. We con-
cluded that application-level power modeling is feasible on non-
virtualized systems. Modern Hypervisors use various optimiza-
tions to ensure that the Hypervisor overhead is fairly low for CPU-
intensive applications. However, virtualization has other overheads
due to I/O [18] and cache contention [32] and we now study the
impact of the virtualization ratio (defined as the number of vir-
tual machines on the server) on the power models. We run the
same application natively and at the same throughput divided on
one or more virtual machines and study any difference in power
consumed. Virtual machines can be assigned resources, which are
either dedicated or shared with other virtual machines. The impact
of virtualization is more intricate for shared resources, and hence
we use virtual machines with shared resources in our study to make
it more widely applicable.

We observed that the impact of virtualization depends on the
application characteristics. Fig. 5(a) studies the power drawn by
TPC-W on bluestar1 machine at various throughput running na-

tively. Further, we also run TPC-W on one or more virtual ma-
chines such that the total throughput combined over all the virtual
machines equals the one obtained running natively. We observe that
the power drawn for the same application throughput increases with
the number of virtual machines. On the other hand, virtualization
seems to have minimal impact on the power usage for SpecPower
workload (Fig. 5(b)). In order to understand the impact of virtual-
ization better, we added one more application TPC-W - to the mix.
We observed an even higher virtualization overhead for TPC-W -
(Fig. 5). The findings made it very clear that power modeling
oblivious of virtualization ratio made little sense and depending on
the application, the models need to be aware of the setting in which
the application will be running.
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We also conjectured that the increase in power due to virtualiza-
tion was a result of higher resource consumption due to virtualiza-
tion, while serving the same number of application requests. To
validate this conjecture, we also measured the CPU utilization for
the same set of experiments. We observed (Fig. 6) that SpecPower
showed minimal increase in CPU as we increased the number of
virtual machines running the application. On the other hand, TPC-
W - showed a marked increase in CPU utilization as we increased
the number of virtual machines (Fig. 7). This proved our conjec-
ture that the increased power consumption was a result of higher
resource consumption, due to virtualization overheads for I/O and



cache contention. Further, the virtualization overhead was applica-
tion dependent, stressing even more the need for application aware
power models.
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We further tried to characterize the applications that show higher
virtualization overhead as compared to applications that exhibit
lower overhead. We observe that SpecPower has low I/O activity
(lower disk activity as well as memory activity in Fig. 4) as com-
pared to TPC-W . It has been noted [18] that I/O instructions are
a prominent source of virtualization overhead. However, we note
that TPC-W -, which has no images, also has low disk activity
but has the highest virtualization overhead amongst the three appli-
cations studied. Hence, we needed to look beyond I/O activity to
understand this behavior.

It has been observed that HPC applications with moderate sized
working set face cache contention due to virtualization and ob-
serve a drop in performance [32]. Hence, we measured the L2
cache hit and miss rate for the modeled applications. We observed
that TPC-W - has a smaller working set size and is able to serve
most of its requests from cache (miss/hit ratio of 2%), whereas
SpecPower has a much larger Active Memory (indicative of a larger
working set) and a higher miss/hit ratio (about 8% in Table 3).
These observations extend the earlier result on cache usage impact-
ing virtualization overhead for HPC applications [32] to enterprise
applications as well. The above observation also impacts power
modeling as it implies that applications that have a small working
set need to be aware of virtualization. Hence, we conclude that
applications with high I/O activity or low working set need to be
aware of the virtualization ratio, while building their power models.
On the other hand, for applications characterized by large working
set and low I/O activity, we may not need to build power model
separately for each virtualization ratio.

App L2 hit/inst L2 miss/inst Memory

TPC-W- 0.036 0.0006 57 MB
SpecPower 0.042 0.0033 781 MB

Table 3: Cache Hit and Miss rates for TPC-W- and SpecPower

It is interesting to note that the overhead due to I/O activity and
cache contention are qualitatively different. At low throughput, I/O
intensive applications like TPC-W do not have much overhead. On
the other hand, for multiple VM’s, TPC-W - requires expensive
cache thrashing context switches even at low throughput leading to
significant overhead (Fig. 5). Since the impact of the virtualization
ratio on power varies across applications and can not be quantified
in a closed form, we build separate models of an application for
each virtualization ratio. Hence, we extend Eqn. 1 for an applica-
tion Ai running at virtualization ratio d as

P (Ai,d) = αi,d + βi,dλi (2)

We have conducted similar experiments for other (application,server)
pairs at different virtualization ratios(from 1 to 7) using both VMWare

ESX and Xen. We observed that ESX and Xen have differ-
ent overheads for I/O intensive applications (TPC-W ). On Xen,
CPU overhead due to I/O is mainly proportional to the number of
page flips (transfers) [18] and increasing the number of VM’s at
constant throughput doesn’t increase the CPU overhead. On the
other hand, ESX issues I/O requests that due to binary translation
are emulated in contexts whose contention only increases with the
number of VM’s. However, in all cases, they conform to Eqn. 2.
For lack of space, those plots are omitted in this paper.

4.3 Extending Power Models

 0

 20

 40

 60

 80

 100

 120

 140

 0  50  100  150  200  250

P
ow

er
 in

 W
at

ts

Requests per second

3200 MHz
1600 MHz

800 MHz
400 MHz

Figure 8: Power Vs Transaction Rate for TPC-W at different

frequency

In typical data centers, new servers get added over time to cope
up with increased workload. Hence, they consist of servers that
are of the same family and differ in minor versions, typically only
processor frequency. Hence, if we can use the power models of
old servers to generate models for new servers, it allows us to build
the models with very few calibration runs. Hence, we performed a
preliminary study to investigate the feasibility of extending power
models from one server to another.

To simulate multiple processors those belong to the same pro-
cessor family but differ in frequency, we used cpufreq to scale
the processor frequency. We then studied the impact on power at
various throughput values at all the available frequencies. Fig. 8
shows the study for TPC-W (other applications are omitted for
lack of space). We observed that, at least for CPU-bound appli-
cations like TPC-W and SpecPower, the power model does not
change (beyond the noise value) at different frequencies. However,
as we increase or decrease CPU frequency, the available CPU re-
source changes and, as a result, the throughput bound shrinks as
we decrease the CPU frequency. Hence, our study indicates that
it is reasonable to use power model of an older server in the same
family for newer servers in the same family, at least for CPU bound
application. We are also conducting experiments on different pro-
cessor families with changing Cycle Per Instruction (CPI) as part
of future work.

5. MODELING POWER USAGE OF

MULTIPLE APPLICATIONS
We have presented insights on modeling the power drawn by an

application as a function of application throughput on a native as
well as virtualized server. The second model (Eqn. 2) can be ap-
plied to servers that support a single application type. We now ex-
plore the possibility of building power estimation models for server
clusters that support multiple applications, i.e., different applica-
tions may run on a shared server in their own virtual machines.

Our study for building application-level power models for a sin-
gle application brings out two important observations. Firstly, marginal
power drawn by a server has a linear relationship with the marginal
increase in application throughput. Secondly, for many applica-
tions, the virtualization overhead needs to be factored in while build-



Application Machine Model Bound/Type

TPC-W Bluestar1-host 0.18*x + 125 190/CPU
TPC-W- Bluestar1-host 0.05*x + 125 218/DB CPU
SpecPower Bluestar1-host 0.0044*x + 124 10115/Input
Domino Bluestar1-host 0.16*x + 131 49/disk
Domino- Bluestar1-host 0.15*x + 132 184/CPU

TPC-W Bluestar1-1VM 0.197*x + 125 180
TPC-W mad-max-1VM 0.056*x + 247 -
TPC-W- Bluestar1-1VM 0.075*x + 128 -
SpecPower Bluestar1-1VM 0.0044*x + 124 -
SpecPower mad-max-1VM 0.00162*x + 244 -

TPC-W Bluestar1-2VM 0.25*x + 125 168
TPC-W mad-max-2VM 0.115*x + 247 -
TPC-W- Bluestar1-2VM 0.085*x + 131 -
SpecPower Bluestar1-2VM 0.0044*x + 124 -
SpecPower mad-max-2VM 0.00162*x + 244 -

TPC-W- Bluestar1-3VM 0.093*x + 134 -
SpecPower Bluestar1-3VM 0.0044*x + 124 -

Table 4: Single Application Power Models. Models for mad-

max use Xen Hypervisor.

ing their power model. We conjecture that the power drawn by a set
of applications running on the same server can be inferred as a lin-
ear combination of the power models of each application running
independently. We also conjecture that the power model of indi-
vidual applications to be used for this linear combination should be
the model at the same virtualization ratio for the application.

Our conjecture is based on the intuition (obtained from Fig.3,4)
that power consumed by different resources have a static compo-
nent, independent of usage and a dynamic component, that is di-
rectly proportional to usage. Since the static component of power
usage is consumed by all applications running independently as
well, we use only the largest static power among all co-located ap-
plications for the static power usage of the consolidated server. To
estimate the dynamic power of the consolidated server, we com-
bine the standalone dynamic power of all co-located applications,
at their respective throughputs. This is based on the insight that the
resource usage of any resource gets combined from all applications.
If the applications use different resources, the combination happens
trivially. If applications use same resources, the intuition still holds
due to (a) linearity of resource consumption with throughput and
(b) linearity of dynamic power consumption with resource usage
(Fig.3,4).

To elaborate the linear combination with an example, consider
a server running two VMs, first with application Ai at throughput
λi and second with application Aj at throughput λj , with power
models αi,2+βi,2λi and αj,2+βj,2λj at virtualization ratio 2. The
linear combination estimates power as max{αi,2, αj,2}+λiβi,2 +
λjβj,2. We study both these hypothesis in this section. We use the
individual models for each application created in Sec. 4.2 for this
linear combination and summarize them in Table. 4.

We study our conjecture for the heterogeneous application sce-
nario in Fig. 9 with TPC-W- and SpecPower. We observe an ex-
pected value with an error in dynamic power less than 5% of the
real value for most of the workload range. To strengthen our ob-
servation, we experiment with a completely different setup: a com-
modity rack server (mad-max) running Xen Hypervisor instead of
a production-level blade server (bluestar1) running VMWare ESX.
We study a combination of TPC-W and SpecPower and find a
similar pattern (Fig. 10). bluestar1 is an IBM HS-21 blade server
with advanced power management features and has a much larger
dynamic power range, whereas mad-max is a rack server with a
very limited dynamic power range. However, our observations hold
for both these diverse cases. We do note that an accurate model is
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needed more for blade servers with a larger dynamic range like
bluestar1 instead of rack servers like mad-max. However, in
both these cases, our experiments validate the conjecture that a
linear combination of the models of individual applications at the
same level of virtualization can infer the power drawn by a mix of
applications on the same server.
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We also observe that a utilization-based power model is insuf-
ficient to estimate the power drawn by a server. In fact, we see
that the utilization-based model has an error higher than 50% in
all cases for the bluestar machine, even approaching 75%, mak-
ing it completely useless for predicting dynamic power. Further,
we also observe that taking the level of virtualization into account
is very important since the power model of TPC-W - is heavily
dependent on the virtualization ratio. A model that is unaware of



virtualization ratio may have an error as high as 30%. Hence, we
conclude that taking the virtualization level of individual applica-
tions model into account is very important, especially if at least one
of the applications being co-located has a small working set. Our
observations hold as we increase the number of hosted applications
as well (Fig. 11). Hence, we model the power for a mix of appli-
cations running on a shared server as a linear combination of the
models of individual applications in the following manner.

P (Ai1,d + Ai2,d + · · · + Aid,d) = max{αi1,d, . . . , αid,d}+

βi1,dλi + · · · + βid,dλid (3)

6. WATTAPP: AN APPLICATION AWARE

POWERMETER
We now present WattApp, an application aware power meter that

encapsulates our experimental observations.

WattApp
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Figure 12: WattApp Architecture

The architecture of WattApp is described in Fig. 12. WattApp has
three distinct flows that execute independently of each other. The
first flow is called the Model Builder flow. In this flow, the Model

Builder reads the system and application logs (power, throughput
values) to create individual application-level power models (Ap-
plication Power Table with αi,d, βi,d) of each application Ai for
each server type that hosts the application. Further, as more data is
logged, the models are continuously refined and enriched to include
more server types and/or virtualization ratios.

The second flow in WattApp is the Configuration Management

flow, executed by the Configuration Orchestrator. The job of the
Configuration Orchestrator is to refer to the Application Power Ta-
ble and identify applications and server types that do not have a
power model at the required virtualization ratio and perform cali-
bration runs to generate the required log data. To achieve this, the
Configuration Orchestrator directs the Virtualization Manager to
copy the VM for the application on all the servers that can host
it and executes them at up-to 5 workload intensities. The aim of
this exercise is to identify the application throughput bound on the
given server and to get at least two observations of power versus
application throughput. The same set of experiments are repeated
at the virtualization ratio that the application is intended to run at
(default is 5).

The Configuration Orchestrator can quickly create the power
model for servers that are not running production workload. How-
ever, in an operational server farm, the biggest challenge is to per-
form the calibration runs without disrupting the normal workload.
WattApp achieves this by a technique that we call Server Steal-
ing by interfacing with a Power Manager. The Power Manager

provides a list of idle servers and any servers that will be moved to

Standby mode due to power management. If a server that is planned
to be switched to a standby mode belongs to a server type for which
model data is not available for some applications, the Configura-

tion Orchestrator negotiates a lease from the Power Manager for
the duration required to run the calibration runs. Once the required
runs are performed, WattApp returns the lease back and the server
can be switched to standby. This Server Stealing technique allows
WattApp to build the Application Power Table in an operational
server farm in an unobtrusive manner.

The third flow in WattApp is called the Oracle flow and exe-
cuted by the Oracle Query Interface. In the Oracle flow, any power
manager can use the Query Interface with a server, and a set of
applications along with their required throughput, and WattApp re-
turns a power estimate. In cases where the required throughput can
not be supported within the resource bounds, WattApp also returns
a flag to pass this information. In the Oracle flow, WattApp uses
the Application Power Table and Eqn. 3 to predict the power drawn
by any given set of applications on a specified server. WattApp also
uses a frequency-based normalizer if an estimate is required for a
new server type (for which data is not available in the Table).

6.1 Implementation and Validation
We have implemented WattApp using VMWare ESX as the vir-

tualization manager on an IBM HS-21 Bladecenter chassis with 4
blades. We re-use the two blades ’bluestar1 and ’bluestar4’ from
the initial modeling and add two additional blades ’bluestar2’ and
’bluestar3’ in our managed environment. The two new blades use
Intel Xeon 5148 quad-core processor, with 2.33 GHz core frequency.
The rest of the specifications are same as the earlier blades. All the
blades have a RAM of 3.4 GB and share a single datastore of size
160 GB. We use IBM Active Energy Manager to monitor power
[4] for the blade servers. The Power Manager is based on an ex-
tension of our earlier work [32, 31]. The server cluster hosts the
existing applications (TPC-W, Domino and SpecPower) as well as
three HPC applications. The first two applications are daxpy from
a HPC suite [20] and fma. The third application is a Linpack
benchmark called HPL [3] that has been extensively used in many
performance studies. We use HPL with a 4 × 2 process grid and
vary the number of problems (jobs).
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We use WattApp to benchmark all the applications on all the
servers, which provides an upper bound estimate for ’model cre-
ation time’. Since WattApp only needs to build power models for
individual applications (as opposed to all possible combinations of
co-located applications), the number of calibration runs required by
WattApp is linear in the number of applications. Further, WattApp
uses one server of each server type to run concurrent characteriza-
tion of any given application ensuring a linear time. Hence, the
running time of WattApp was independent of the number of servers
in the server farm. This property ensures that WattApp is scalable
and hence can be used in large server farms. Further, for each ap-
plication, WattApp ran no more than 50 calibration runs, with each



run lasting around 2 minutes. Note that the length of the run de-
pends on the time granularity at which the monitoring module can
report power numbers, which for IBM Active Energy Manager, is
1 minute. In our experiments, we never needed to go beyond 5
virtualization ratio and 3 runs for each ratio and hence, the bench-
marking time for each application was around 30 minutes. For a
total of 6 applications, we needed a total time of 3 hours to com-
pletely create the power models. Given that the different number
of server types in a server farm may be relatively small, WattApp
is very likely to get a lease for each server type using Server Steal-

ing to compute the power models in even less time.
We now investigate the Accuracy of WattApp. For lack of

space, we only present one study. To establish the applicability
of WattApp across a wide variety of applications, we present a sce-
nario with the three new HPC applications that were not used dur-
ing the design of WattApp. During a period of low activity, the
Power Manager considered moving the daxpy, fma and HPL
application on the same server. As a result, it requested WattApp

for an estimate of the power consumed by the server to host the 3
applications. In this particular case, daxpy had an entitlement of
0.5 of the server, wheras fma and HPL had an entitlement of 0.25
each. Based on the estimate given, the applications were eventually
placed on bluestar2, which is a different machine from the ones
used in our initial experiments (Sec. 4). Post reconfiguration, we
change the throughput of the applications and measure the power
consumed by the server.

Fig. 13 shows the dynamic power (actual power - idle power)
drawn by the server after the applications were moved with change
in application throughput. We observe that WattApp is able to
predict the actual power drawn to within 5W for the entire oper-
ating range, with an error of less than 2W for more than half of
the operating range. To compare against the CPU Utilization based
method, we also build a model of server power versus CPU uti-
lization of the server. This model was derived from all the earlier
measurements of CPU utilization and power on the server. We ob-
serve that the CPU-based predictor has an error greater than 50%
for the entire operating range. As we have shown before, this is a
direct consequence of the fact that the CPU utilization model is
application-unaware, leading to inaccuracies with heterogeneous
applications. The case study further establishes the strengths of
WattApp w.r.t Accuracy, Usability, Predictable Input, Speed and
Heterogenity Support, making it applicable to emerging clouds as
well as traditional data centers.

7. RELATEDWORK AND DISCUSSION
Research in power modeling can be broadly classified into (i)

Simulator-based, (ii) CPU Utilization-based (iii) Event or perfor-
mance counters based and (iv) Coarse-grained. Table. 5 presents a
summary of their relative strengths and weakness. Early work in
power modeling focused on simulators of various hardware, whose
goal was a power-aware design of servers. Wattch [15] is a widely
used CPU power simulator whereas SoftWatt [22] estimates power
for complete systems. These models are based on detailed activity
count registers and are Accurate but are limited in terms of Speed,
Usability and Predictable Input.

Bellosa [14] address the problem of speed in simulation-based
models by proposing a model based on Instructions Dispatched per
Second (IDS) and memory bandwidth (accesses per second). The
model is fairly accurate to ascertain power consumed by memory
subsystem and reasonably accurate for processor power. However,
performance event counters like memory bandwidth are not avail-
able on some platforms (e.g, IBM Power5) and expensive to mon-
itor on the platforms they are available on. Further, due to non-

linear nature of some of these parameters, estimating them on a tar-
get server is non-trivial. The issues in translating system counters
across platforms led to power modeling based on readily available
system parameters like CPU utilization [21]. A CPU utilization
based model is currently the most popular power estimation model
used in practise [23, 27] and works well for estimating the im-
pact of actions like workload redistribution for a fixed application.
However, different applications make differing use of various CPU
units and other system resources like memory and a CPU utiliza-
tion model is useful only if the application used during prediction
is same as the one used during model building [30, 32, 31]. Inter-
estingly, the workload-sensitive nature of CPU-based models has
been recently cited as a reason to go back to using detailed event
counters in [29] for predicting processor and memory power usage
under voltage scaling. A good comparison of various system-level
power models is presented in [28].

Early power management research used analytical power models
based on voltage and frequency [17], which are fast, but only pro-
vide rough estimates. Coarse-grained estimates based on the type
and state (active, off) of the processor have been used in [34]. How-
ever, with the increase in the dynamic power range of servers [12], a
more accurate power prediction method is needed. The work clos-
est to ours is the power modeling in [19]. The authors create power
profiles for each application and use it to estimate the power drawn
by a consolidated server hosting the applications. However, the ap-
plications are assumed to be in a stable state (a fixed throughput in
our model) and the model ignores any impact due to virtualization.
Further, the authors use a CPU-based averaging technique and ob-
serve that their model may not be accurate for a mix of workloads,
where at least one workload is not CPU-dominated.

The lack of an accurate power model for heterogeneous servers
and applications has been cited as the primary reason to restrict dy-
namic consolidation methodologies to sub-optimal algorithms [32,
31]. Further, as observed in [31], the lack of an accurate power
model makes the problem of enforcing a power budget on a shared
data center a challenging one. WattApp significantly enhances the
ability to estimate the power drawn by a shared data center running
heterogeneous applications, this providing this missing piece in the
overall power management framework.

7.1 Discussion and Conclusion
We have investigated the problem of modeling power for hetero-

geneous applications and servers in a virtualized server farm. We
propose an application throughput based power model and estab-
lish its Accuracy, Usability, Predictable Input, Speed and Hetero-

geneity Support. We show that I/O activity and working set size are
important parameters that determine if virtualization ratio needs to
be included during modeling. We conjecture and show experimen-
tally that linear combination of power models can be used to create
a power model for multiple applications hosted on the same server.
We present the architecture and implementation of an application-
aware scalable power meter WattApp that uses only a linear num-
ber of experimental runs to create a power model with error less
than 5%.

We had also investigated the feasibility of building an application-
aware model using per-application CPU utilization as the input pa-
rameter in place of application throughput. In this work, we pre-
ferred to use an application-aware application-level power model
for two reasons: (i) In the managed server clusters we investigated,
CPU utilization for each application was not monitored. We have
observed that application throughput is often the only parameter
monitored in SLA-driven server clusters. The same is likely go-
ing to be the case for emerging clouds that provide application-



Method Accuracy Usable Params Predictable Input Speed Heterogenity Support
Simulator

√√ × × × √√
CPU-based

√ √ √ √√ ×
Event Counters

√√ × × √ √√
Coarse × √√ √√ √√ ×

WattApp
√√ √√ √√ √√ √√

Table 5: Power Modeling Methodologies

level resource abstractions. (ii) Application throughput also has the
advantage of accurately reflecting resource usage, as opposed to
resource-specific metrics like CPU utilization that may be inaccu-
rate for workload that uses other resources. Our detailed experi-
mental study validated our intuition. This has been independently
noted by Choi et al. [19] as well. Further, if application throughput
is not available in a cluster, our technique can be extended to model
power based on any other parameter that is (a) application-aware
and (b) accurately captures the resource usage of an application,
thus underlining the applicability to a wide variety of data centers.
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