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Abstract— This paper proposes an Adaptive CORBA Tem-
plate (ACT), which enables run-time improvements to CORBA
applications in response to unanticipated changes in either
their functional requirements or their execution environments.
ACT enhances CORBA applications by transparently weaving
adaptive code into their object request brokers (ORBs) at run
time. The woven code intercepts and adapts the requests, replies,
and exceptions that pass through the ORBs. ACT itself is
language- and ORB-independent. Specifically, ACT can be used
to develop an object-oriented framework in any language that
supports dynamic loading of code and can be applied to any
CORBA ORB that supports portable interceptors. Moreover,
ACT can be integrated with other adaptive CORBA frameworks
and can be used to support interoperation among otherwise
incompatible frameworks. To evaluate the performance and
functionality of ACT, we implemented a prototype in Java to
support unanticipated adaptation in non-functional concerns,
such as quality-of-service and system-resource management. Our
experimental results show that the overhead introduced by the
ACT infrastructure is negligible, while the adaptations offered
are highly flexible.
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erability, request interceptor, dynamic weaving, proxy, quality-
of-service, mobile computing.

I. INTRODUCTION

CORBA applications comprise autonomous programs typi-
cally hosted on heterogeneous platforms and distributed over
heterogeneous networks. Although an application may be
targeted at a particular type of execution environment when
originally developed, over its lifetime the application is likely
to be ported to new environments. Indeed, a key benefit of
CORBA and other middleware platforms is that they mask
the distribution of resources across a network and hide dif-
ferences among computing platforms and networks. However,
the need to achieve acceptable quality-of-service over different
underlying technologies has given rise to extensive research
and development in adaptive middleware [1]–[9]. Moreover,
the potential diversity of platforms and networks hosting a
given CORBA application increases the likelihood that the
application will be required to accommodate situations not
anticipated during the original development. In these cases,
new adaptive code needs to be introduced to the application

after it is deployed. Examples include code to enhance the
fault-tolerance of critical application components, to detect
and respond to new security attacks, and to mitigate variable
channel conditions and frequent disconnections that arise when
an application is ported to a wireless network. However,
adding new adaptive functionality to an extant application is
complicated when (1) the source code of the application is
unavailable, (2) the source code is available but modifying it
directly is undesirable, or (3) the application is required to run
continuously and cannot be easily taken off-line for upgrade.

In this paper, we propose the Adaptive CORBA Template
(ACT), which supports such “unanticipated” adaptation in
CORBA applications. ACT enables dynamic improvements to
CORBA applications in response to changes in their functional
requirements or in non-functional concerns, such as quality-
of-service, fault-tolerance, and security. We refer to ACT as
a framework template, because it provides a generic model
for constructing and enhancing adaptive CORBA frameworks.
Several such frameworks have been developed recently to sup-
port quality-of-service [4], [10], real-time processing [8], [9],
and fault tolerance [11], [12]. As depicted in Figure 1, ACT-
based frameworks can be implemented in different program-
ming languages such as Java and C++, and ACT can used to
extend existing adaptive CORBA frameworks such as QuO [4].
Moreover, ACT can be used to enable interoperation among
otherwise incompatible frameworks, such as OpenORB [2]
and TAO [8].

An ACT-based framework can be integrated with a CORBA
application transparently at run time: new types of adaptation
can be added without recompiling the application. The key
insight into how to achieve this transparency is the concept of
a generic interceptor, which is a particular type of CORBA
portable request interceptor [13]. Although a generic inter-
ceptor must itself be registered with the ORB of a CORBA
application at startup time, its presence enables registration of
specific request interceptors to be postponed until run time.
In this manner, a generic interceptor can dynamically weave
new adaptive code into the ORB as the application executes.
The adaptive code can intercept and adapt requests, replies,
and exceptions that pass through the ORB. In addition to a
generic interceptor, ACT also defines a rule-based interceptor,
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Fig. 1. ACT as a template for adaptive CORBA frameworks.

which adapts intercepted requests according to a set of rules
that also can be loaded dynamically at run time.

ACT can be used to develop an object-oriented framework
in any programming language that supports dynamic loading
of code and can be applied to any CORBA ORB that supports
portable interceptors [13]. We developed a Java prototype of
ACT as well as a set of administrative consoles that enable
manual adaptation of applications at run time. The prototype
uses ORBacus [14], a Java ORB from IONA Technologies.
To demonstrate the seamless interaction of ACT with other
adaptive CORBA frameworks, we coupled ACT with the
QuO framework [4] developed at BBN Technologies. The
resulting framework is able to weave quality-of-service (QoS)
aspects (referred to as qoskets in QuO terminology [15])
into CORBA applications both at compile time and at run
time. To evaluate the functionality and performance of this
hybrid framework, we used it to enhance an existing image
retrieval application [16] as it executes. The results at this
case study show that ACT introduces negligible overhead
to an application while supporting transparent and flexible
adaptation at run time.

The remainder of this paper is organized as follows. Sec-
tion II discusses background and related work. Section III
describes the ACT architecture and its prototype implementa-
tion. Section IV describes the case study in which we coupled
ACT with QuO. Finally, Section V concludes the paper and
discusses future work.

II. BACKGROUND AND RELATED WORK

In this section, we review two relevant topics: middleware
layers as defined by Schmidt [17], and CORBA portable
interceptors as defined by OMG [13]. We also describe how
ACT relates to other adaptive middleware projects.

A. Middleware Layers

Schmidt [17] decomposes middleware into four layers: host-
infrastructure, distribution, common-services, and domain-
services. Figure 2 illustrates these layers. Since the operation
of ACT involves all four, we provide a brief overview here.

The host-infrastructure layer resides directly atop the op-
erating system and provides a higher-level API that hides the
heterogeneity of hardware platforms, operating systems and, to
some extent, network protocols. The host-infrastructure layer

provides generic services to the upper middleware layers by
encapsulating functionality that would otherwise require many
tedious, error-prone, and non-portable code, such as socket
programming and thread communication primitives. ACE [18],
Rocks [19], MetaSockets [20], and Eternal [12] are examples
of adaptive middleware in this layer. ACT can be used to load
and instantiate such components in running systems so as to
enhance communication among the constituent ORBs.

Applications

Domain-Specific Middleware Services

Common Middleware Services

Distribution Middleware

Host-Infrastructure Middleware

Operating Systems and Protocols

Middleware Layers

Hardware Devices
System Platform

Fig. 2. Middleware layers defined by Schmidt [17].

The distribution layer resides atop the host-infrastructure
layer and provides high-level programming abstractions, such
as remote object operations, to the developer. Using the distri-
bution layer, a developer can write a distributed application
in a similar way to a stand-alone application. In addition,
this layer hides the heterogeneity of network protocols and,
in some cases, the heterogeneity of operating systems and
programming languages. CORBA [21], DCOM [22], and
Java RMI [23] are the main solutions to distribution mid-
dleware. Adaptive ORBs, which reside in this layer, include
TAO [8], DynamicTAO [1], CIAO [24], ZEN [9], UIC [25],
OpenORB [2], mChaRM [26], Electra [27], and FlexiNet [28].
By intercepting and modifying communication services, ACT
can be used to enable interoperation among ORBs that support
adaptability using different mechanisms.

The common-services layer resides atop the distribution
layer and provides services such as fault tolerance, secu-
rity, load balancing, event propagation, logging, persistence,
real-time scheduling, and transactions. Examples of adap-
tive CORBA frameworks that provide such services include
QuO [4], IRL [11], FRIENDS [29], and TAO load balanc-
ing [30]. ACT enables distributed applications to dynamically
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incorporate such adaptive services transparently.
The domain-specific layer resides atop the common-services

layer and is tailored to a specific class of distributed ap-
plications. Unlike the common-services layer, the services
in this layer can be reused only for a specific domain of
applications. The Boeing Bold Stroke architecture [31] is an
example of adaptive middleware in this layer that benefits
from the capabilities of real-time CORBA ORBs and supports
configurable and reusable avionics services.

B. CORBA Portable Request Interceptors

CORBA Portable Request Interceptors, defined by OMG
[13], provide a transparent mechanism to intercept messages
(defined as requests, replies, and exceptions) inside the ORBs
of a CORBA application. According to the specification, a
request interceptor is considered as part of an ORB and must
be registered with the ORB at its initialization time (notably,
a request interceptor cannot be registered with the ORB at
run time). Figure 3 shows the flow of a CORBA request/reply
sequence with interceptors present. This application comprises
two autonomous programs hosted on two computers connected
by a network. Let us assume that the client has a valid CORBA
reference to the CORBA object realized by the servant. The
client’s request to the servant is first received by the stub,
which represents the CORBA object at the client side. The
stub marshals the request and sends it to the client ORB, where
the request is intercepted by the client request interceptor.
The interceptor can inspect requests, create new requests, and
raise exceptions. For example, the ForwardRequest exception
can be used to forward a particular request to a different
CORBA object. However, to ensure portability, interceptors
are not allowed to reply to intercepted requests or to modify
the parameters [13]. This restriction limits the ability of
request interceptors alone to adapt the behavior of CORBA
applications.

ApplicationsClient

request flow

Client Application

Client ORB

Servant

Server Application

reply flow

Domain-Services
Common-Services

Distribution

Host-Infrastructure
System Platform

Client-Request Interceptor
Server ORB

Server-Request Interceptor

Network

Stub Skeleton

Fig. 3. A simple CORBA application with request interceptors.

Continuing the example, let us assume that the client-request
interceptor in Figure 3 simply passes the request unmodified.
In this case the client ORB sends the request to the server
ORB, where it is intercepted by the server-request interceptor.
Again, let us assume that the request is passed unmodified,

in which case it is delivered to the servant by way of a
skeleton, which unmarshals the request. The servant replies to
the request, by way of the server ORB, where the reply also
is intercepted. Eventually, the reply will be received by the
client ORB and is intercepted by the client-request interceptor
before it reaches the client.

As we shall discuss in Section III, the generic interceptors
in ACT are in fact CORBA portable interceptors. The intercep-
tors provide “hooks” into the interaction between clients and
servants. Moreover, they use the ForwardRequest exception
to deliver requests to a proxy, a CORBA object that is not
prohibited from replying to or modifying the request.

C. Relationship between ACT and other projects

ACT is intended to complement adaptive middleware frame-
works and to support interoperation among incompatible
frameworks. Specifically, ACT can be used to dynamically
load components of one adaptive framework into an existing
CORBA application that was developed using a different
framework. By transparently intercepting requests and replies,
ACT enables such applications to exploit adaptive functional-
ity defined in other frameworks. We refer to such a system as a
framework gateway. Next, we discuss several adaptive middle-
ware frameworks and their relationship to ACT. We group the
frameworks into three categories: aspect-oriented middleware,
reflective middleware, and interception-based middleware.

Aspect-Oriented Middleware. Aspect-oriented middleware
enables separation of functional aspects from its non-
functional aspects (e.g., quality-of-service, security, and fault-
tolerance) of a distributed application. One of the most exten-
sive projects in this area is Quality Objects (QuO) [4], which
provides an adaptable framework to support QoS in CORBA
applications. QuO weaves QoS aspects, referred to as qoskets,
into the applications at compile time by wrapping stubs and
skeletons with specialized delegates, which intercept requests
and replies for possible modifications [4]. In Section IV,
we show how ACT can interact with QuO transparently to
enable unanticipated adaptation by dynamically weaving new
qoskets into the application at run time. AspectIX [5] is an
aspect-oriented distribution middleware that is based on the
distributed object model [32], in which an object comprises
multiple fragments distributed across nodes. AspectIX enables
dynamic weaving of non-functional aspects into object frag-
ments. Although AspectIX is CORBA compliant, AspectIX
dynamic adaptation cannot be used if AspectIX interoperates
with other CORBA compliant non-AspectIX ORBs. To solve
this problem, ACT could be used as a framework gateway that
hosts fragments of a distributed object at the non-AspectIX
ORBs. Squirrel [6] is an adaptive distribution middleware, spe-
cialized for streaming data, that supports QoS for multimedia
applications. Again, ACT could be used as a gateway that
enables interoperation among non-Squirrel and Squirrel ORBs.
Specifically, ACT can enable non-Squirrel ORBs to accept
and use smart proxies [33] transparently so that they could
better communicate with Squirrel ORBs. Finally, in an earlier
study by our group [34], we proposed a two-step approach to
dynamic adaptation using aspects: (1) preparing hooks in the
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source code of an application at compile time using rule-based
aspects developed in AspectJ version 1.0 [35] and (2) loading
Java rules at run time to support dynamic adaptation. ACT
adds domain- and language-independence to this method and
enables run-time weaving of rule-based aspects.

Reflective Middleware. Reflective middleware uses compu-
tational reflection to enables inspection and modification of
middleware dynamically during application execution [36].
DynamicTAO [1] and UIC [25] are CORBA-compliant re-
flective ORBs that employ the component-configurator pat-
tern [37] to support dynamic adaptation. OpenORB [2] is a
reflective ORB that provides explicit binding of remote objects
and enables unanticipated dynamic adaptation using structural
and behavioral reflection [38]. ZEN [9] is a Java ORB that
use Java reflection and the virtual component pattern [39] to
provide a minimal-footprint ORB that loads ORB components
on demand. To exploit the adaptive features provided by these
ORBs, one must use the same ORB in all the autonomous
programs that constitute the CORBA application. ACT could
be used as a gateway between a non-reflective CORBA-
compliant ORB and a reflective ORB, as well as between two
reflective ORBs of different types, to enable interoperation
while exploiting the adaptive features of the reflective ORBs.
To do so, ACT can host different reflective ORBs transparently
while intercepting all CORBA requests, replies, and exceptions
and passing them to the appropriate reflective ORB.

Interception-Based Middleware. The concept of transpar-
ently intercepting CORBA requests and replies has been used
in several projects. Friedman et al. [40] use CORBA portable
interceptors [13] to enhance the client side of a CORBA
application by introducing proxies that can cache data and
forward requests to other servants. This work is among the
first to exploit CORBA portable interceptors for transparent
adaptation. In the IRL project, Baldoni et al. [11] use portable
interceptors to transparently introduce their implementation
of fault-tolerant CORBA [13] to CORBA-compliant ORBs.
Moser et al. [12] also use an interception-based approach to
transparently introduce their implementation of fault-tolerant
CORBA (Eternal [12] over Totem [41]) to CORBA ap-
plications. Eternal, however, employs an operating-system
interception-based approach instead of CORBA portable in-
terceptors. In general, the above projects focus on modifying
program behavior in a particular way, for example, to enhance
fault tolerance. In contrast, ACT uses the concept of generic
interceptors to enable adaptation of different types (security,
fault tolerance, QoS) in ways that were not anticipated at
application development time. Moreover, generic interception
enables ACT to be used as a framework gateway.

III. ACT ARCHITECTURE AND OPERATION

The Adaptive CORBA Template (ACT) is intended to
support the construction and enhancement of adaptive CORBA
frameworks. ACT enables CORBA applications to support
unanticipated adaptation at run time without the need to
modify, recompile, and relink the application source code.
We introduce ACT by defining its core components and by
describing their interaction with the rest of the system.

A. ACT Core Components

Figure 4 shows the flow of a request/reply sequence in a
simple CORBA application using ACT. For clarity, details
such as stubs and skeletons are not shown. ACT comprises
two main components: a generic interceptor and an ACT core.
A generic interceptor is a specialized request interceptor that
is registered with the ORB of a CORBA application at startup
time. The client generic interceptor intercepts all outgoing
requests and incoming replies (or exceptions) and forwards
them to its ACT core. Similarly, the server generic interceptor
intercepts all the incoming requests and outgoing replies (or
exceptions) and forwards them to its ACT core. A CORBA
application is called ACT-enabled if a generic interceptor is
registered with all its ORBs at startup time. If, in addition
to the generic interceptors, all the ACT core components are
also loaded into the application, the application is called ACT-
ready. Making the application ACT-ready can be done either
at startup time or at run time.

ApplicationsClient

Client Application

Servant

Server Application

Domain-Services

Common-Services

Distribution

Host-Infrastructure
System Platform

Network

Client GI 

Client ORB

Server GI

Server ORB

Client ACT Core Server ACT Core

request flow reply flow GI: generic interceptor

Fig. 4. ACT configuration in the context of a simple CORBA application.

Figure 5 shows the flow of a request/reply sequence inter-
cepted by the client ACT core. The components of the core
include dynamic interceptors, a proxy, a decision maker, and
an event mediator. Each component is described in turn.

Client ORB

Dynamic
Interceptors

Client ACT Core

Rule-Based
Interceptor

Proxy Decision 
Maker

Event 
Mediator

Client Generic Interceptor

request flow

to/from the host-infra. middleware

reply flow

to/from the common-services middleware

Fig. 5. ACT core components collaborating with the rest of the system.

Dynamic Interceptors. According to the CORBA specifi-
cation [13], a request interceptor is required to be registered
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with an ORB at the ORB initialization time. The ACT core
enables registration of request interceptors after the ORB
initialization time (at run time) by publishing a CORBA
interceptor-registration service. Such request interceptors are
called dynamic interceptors. Dynamic interceptors can be un-
registered with the ORB at run time also. In contrast, a request
interceptor that is registered with the ORB at startup time
is called a static interceptor and cannot be unregistered with
the ORB during run time. We note that the code developed
for a static interceptor and that for a dynamic interceptor can
be identical, the difference being the time at which they are
registered. In ACT, only generic interceptors are static.

A rule-based interceptor is a particular type of dynamic
interceptor that uses a set of rules to direct the operations
on intercepted requests. The rules can be inserted, removed,
and modified at run time. A rule consists of two objects: a
condition and an action. To determine whether a rule matches
a request, a rule-based interceptor consults its condition object.
Once a match is found, the interceptor sends the request to
the action object of the rule. Since it is part of a CORBA
portable interceptor, the action object cannot itself reply to
the request or modify the request parameters [13]. The action
object can, however, send new requests, record statistics, or
raise a ForwardRequest exception, causing the request to be
forwarded to another CORBA object such as a proxy.

Proxies. A proxy is a surrogate for a CORBA object that
provides the same set of methods as the CORBA object.
Unlike a request interceptor, a proxy is not prohibited from
replying to intercepted requests. A proxy can reply to the
intercepted request by sending a new request (possibly with
modified arguments) to either the target object or to another
object. Alternatively, a proxy can reply to the intercepted
requests using local data (e.g., cached replies).

Decision Makers. A decision maker assists proxies in re-
plying to intercepted requests as depicted in Figure 5. A
decision maker receives requests from a proxy and, similar
to a rule-based interceptor, uses a set of rules to direct the
operation on the intercepted requests. However, unlike a rule-
based interceptor, a decision maker is not prohibited from
replying to the requests.

Event Mediators. An event mediator is a CORBA object that
decouples event generators from event listeners. We adopted
this concept from the work by Bacon et al. [42]. An event
mediator publishes a listener service, enabling registration of
CORBA objects as event listeners. The event mediator is
informed of events through a notification service. An event
mediator forwards a copy of a new event to all listeners that
have registered interest in this type of event.

B. Interaction among ACT Components

To describe the interactions among the ACT components,
we provide a detailed sequence diagram [43] in Figure 6. The
diagram shows the flow of a request/reply sequence in an ACT-
ready application. The configuration shown in Figures 4 and
5 is used as the basis for this particular sequence diagram.
Here, we consider only the activities on the client side and,
for clarity, stubs and skeletons are not shown.

First, the request from the client to the servant is forwarded
to the proxy (messages #1 to #11). After the request is received
by the client ORB (#1), it is intercepted by the client generic
interceptor (#2), where it is forwarded to the client rule-
based interceptor (#3). The client rule-based interceptor checks
its active rules. In this scenario, we assume it finds a rule
that matches the request. The rule raises a ForwardRequest
exception, which is passed to the client generic interceptor (#4)
and then to the client ORB (#5), where a new request targeting
the proxy is created (#6). Before the new request is sent to the
proxy, it is intercepted again by the client generic and rule-
based interceptors (#7 and #8), but this time no exception is
raised (#9 and #10), and the calls simply return. The proxy
receives the request (#11).

Next, the proxy processes the request and forwards it to
the servant (messages #12 to #21). The proxy consults the
decision maker (#12), where an event may be raised to handle
an unknown situation (#13 and #14). The decision maker
may adapt the client application by modifying the request
parameters, sending new requests to other objects, or directing
the proxy to reply to the request (e.g., using cached replies).
We assume that in this scenario, the decision maker modifies
the request parameters and directs the proxy to send the
modified request to the servant (#15) via the client ORB
(#16). The modified request is also intercepted by the client
generic and rule-based interceptors (#17 and #18) but again
no exception is raised (#19 and #20). Therefore, the modified
request is sent to the server ORB (#21).

The reverse sequence of actions occurs at the server appli-
cation (not shown) and the reply to the modified request is
returned to the client ORB (#22). The reply is intercepted by
the client generic and rule-based interceptors (#23 and #24),
where no exception is raised (#25 and #26). The reply is
sent back to the proxy (#27), where it is forwarded to the
decision maker (#28) for possible modifications and possible
event raising (#29, #30, and #31).

Finally, using the reply from the servant and the direction
given by the decision maker, the proxy replies to the client’s
request (#32). The reply is intercepted by the client generic
and rule-based interceptors (#33 and #34). Again no exception
is raised (#35 and #36), and the client ORB sends the reply
back to the client (#37).

The extensive redirecting of messages in ACT raises the
issue of performance overhead. We deem such overhead as
necessary to provide flexibility and transparency. Moreover,
our experimental results, described in Section IV, indicate that
the overhead is actually quite small.

C. ACT Prototype

We have developed an ACT prototype in Java and tested
it over ORBacus [14], a CORBA-compliant ORB distributed
by IONA Technologies. ORBacus [14], like JacORB [44],
TAO [8], and many other CORBA ORBs, supports CORBA
portable interceptors [13], the only requirement for using ACT.

To make a CORBA application ACT-ready at the application
startup time, we need to resolve the following bootstrapping
issues. First, we need to register a generic interceptor with the
application ORB. Like many other ORBs, ORBacus [14] uses
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#27 sending the reply to the modified request back to the proxy

#32 sending the modified reply to the request back to the client #31 return #30 return
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GI: generic interceptor

RBI: rule-based interceptor

DM: decision maker     

EM: event mediator

request message

return  message (reply or exception)

Fig. 6. Request/reply sequence in the client side of an ACT-ready application.

a configuration file that enables an administrator to register
a CORBA portable interceptor with the application ORB.
JacORB [44] and TAO [8] use a similar approach. Second,
since the components in the ACT core are also CORBA
objects, they require an ORB to support their operation (reg-
istration of services, and so on). Therefore, we need either to
obtain a reference to the application ORB for this purpose,
or to create a new ORB. ORBacus does provide such a
reference, although the CORBA specification does not support
this feature. To implement ACT over an ORB that does not
provide such a reference, we simply create a new ORB,
although its use introduces additional overhead.

To test the operation of our ACT prototype, we devel-
oped two administrative consoles: the Interceptor Registration
Console and the Rule Management Console. The Interceptor
Registration Console enables a user to manually register
a dynamic interceptor. This console first obtains a generic
interceptor name from the user and checks if the generic

interceptor is registered with the CORBA naming service.
Next, the user can register a dynamic interceptor with the
generic interceptor. The Rule Management Console allows a
user to manually insert rules into rule-based interceptors.

IV. CASE STUDY: COUPLING ACT AND QUO

To investigate the integration of ACT with an existing
CORBA framework, we combined our ACT prototype with
the Quality Objects (QuO) framework [4], developed by
BBN Technologies and released under an open-source license.
QuO is a powerful adaptive framework that supports dynamic
adaptability in CORBA and Java RMI applications. ACT and
QuO can work together in two major ways. First, ACT enables
legacy CORBA applications to incorporate and benefit from
QuO functionality, without modifying the source code of the
application (indeed, even if the the source code is unavailable).
Such a need may arise if the application is to be executed in
an environment where conditions might be quite different than
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originally planned. Second, combining QuO and ACT enables
weaving of adaptive code into distributed applications at both
compile time and run time; we describe a specific example
later in this section. We begin a brief overview of QuO, for
completeness, followed by a discussion of how ACT and QuO
interact and a description of an experiment in which they were
combined to enhance an extant application.

A. QuO Background

QuO employs aspect-oriented programming [45] to separate
the non-functional (systematic) aspects from the functional
aspects of an application. Figure 7 illustrates a very simple
QuO application. The client wrapper (or delegate) is the main
point of contact between the client and the QuO core. The
client wrapper is generated from a program written in the
aspect-oriented structural description language (ASL) [15].
The QuO core comprises a contract and several system con-
ditions. A contract is written in the contract-description lan-
guage (CDL) [15] and defines acceptable regions of operation.
System conditions can be considered as software “sensors”
that record values representing the state of the execution
environment. QuO combines the code for the QuO core and
the code for wrapper into a package called a qosket. Using an
aspect weaver called quogen, QuO weaves a qosket into an
application at compile time.

Contract

Client ORB Server ORB

ApplicationsClient

request flow

Client Application

Servant

Server Application

reply flow

Domain-Services

Common-Services

Distribution

Host-Infrastructure
System Platform

Network

Client
Wrapper

Server
Wrapper

Client QuO Core Server QuO Core

Contract SCs

SCs: sytem conditions

SCs

Fig. 7. A simplified depiction of the QuO architecture.

As shown in Figure 7, a request from the client is first re-
ceived by the client wrapper. In a typical CORBA application,
a client has a reference to a CORBA object stub. In QuO,
however, the application developer explicitly creates the client
wrapper, which wraps the stub (not shown). The client wrapper
consults the contract in the client QuO core. The contract
evaluates the current acceptable region of operation according
to the details of the request and the status of the system as
monitored by the system-condition objects. Once the current
region of operation is identified, the actions specified in the
contract are carried out. These actions might include returning
a cached reply to the client, sending a request different than the
original, forwarding the request with modified parameters, or
redirecting the request to another CORBA object. If the reply
is not generated locally, the request (or a modified request) is
passed to the client ORB. The request is then sent to the server

side of the application, where the reverse sequence of actions
occurs. The reply generated by the servant, possibly modified
by the server QuO core, will eventually reach the client ORB,
where it is passed to the client wrapper. The client wrapper
consults the client QuO core again for possible modifications
and, finally, returns the reply to the client.

B. Dynamic Weaving of Qoskets Using ACT

Combining ACT with QuO enables transparent weaving of
new qoskets into applications at run time. We identify three
types of applications may benefit from such a capability. First,
dependable applications are required to operate continuously
without interruption; code for handling newly discovered faults
can be added to these applications as they execute. Second,
embedded applications are required to provide very small
footprints; a minimal adaptive core can be compiled with the
application, and optional adaptive code can be swapped in and
out as needed during run time. Third, the source code for some
legacy CORBA applications may be unavailable, or modifying
the source code may be undesirable. Such applications can be
adapted transparently using ACT and QuO, without modifying
or even recompiling the application source code.

Figure 8 shows a request/reply sequence in a simple
CORBA application using both QuO and ACT. The client
and server generic interceptors are registered with the client
and server ORBs, respectively, at startup time. To weave a
new qosket into the application at run time, a new rule can
be inserted in the client rule-based interceptor. The new rule
can direct the rule-based interceptor to load the code for a
proxy and a decision maker. The proxy in this case is simply
a modified QuO wrapper, and the decision maker is exactly
the contract defined in the new qosket. The rule then intercepts
all incoming and outgoing requests/replies and forwards them
to the proxy, where they are processed as if the qosket had
been woven in to the application at compile time.

ApplicationsClient

request flow

Client Application

Servant

Server Application

reply flow

Domain-Services

Common-Services

Distribution

Host-Infrastructure
System Platform

Network

Client ACT Core

Client GI 

Client ORB

Server GI

Server ORB

Server ACT Core

Client
Wrapper

Server
Wrapper

Client-
QuO Core

Server-
QuO Core

GI: generic interceptor

Fig. 8. Coupling ACT and QuO.

C. Example: Supporting Unanticipated Adaptation

To evaluate the performance and functionality of the hybrid
ACT/QuO architecture described above, we used it to insert
new adaptive functionality into an existing QuO application
at run time. The application [16], a distributed image re-
trieval system, was developed by BBN Technologies and is
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distributed with the QuO framework. The application has two
parts, a client that requests and displays images, and a server
that stores the images and replies to requests for them. This
application supports several different types of qoskets, which
are woven into the application at startup time. A particular
qosket called “UserAdapt” enables a user to modify the
application interactively by directing it to retrieve different
versions of the images. For example, selecting small instead
of large versions of images can be used to reduce bandwidth
consumption and delay.

First, we incorporated ACT into this application by in-
troducing generic interceptors. To do so, we started the ap-
plication with a command-line parameter directing it to an
ORBacus configuration file defining how to load, create and
register a generic interceptor with the application ORB. At this
point the application is ACT-enabled. Figure 9 compares the
round-trip delay for retrieving images of varying size, using
both the original application and the ACT-enabled version. As
shown, this overhead is negligible.
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Fig. 9. Round-trip delay in ACT/QuO application.

Next, we developed a new qosket called UserAdaptFrame-
Intervel to weave to the application at run time using ACT.
This qosket enables the user to interactively control the rate
at which images are retrieved. Figure 10 and 11 show the
code define the contract (in CDL) and the wrapper for the
new qosket (in ADL), respectively. We defined three regions
of operations Fast, Normal, and Slow in the contract,
enabling the user to control the frame rate, for example, to
conserve bandwidth. As illustrated in Figure 11, this control
is accomplished by inserting appropriate delays. For the Fast
region, we did not insert any delay, but for the Normal and
Slow regions, we inserted 50 and 100 milliseconds frame-
interval delay, respectively. We used the quogen utility to
compile the new qosket.

To demonstrate the interaction between ACT and QuO,
we ran an experiment that involves both static and dynamic
weaving of qoskets into this application. The experiment is
intended to represent run-time upgrading of a surveillance
system (implemented using the image retrieval application) to
add a new feature that controls the frame rate. Figure 12 shows
a sample image from a camera in an instructional laboratory.

We executed the server on a desktop computer connected to

contract UserAdaptFrameRate ( syscond quo::ValueSC
quo sc::ValueSCImpl userFrameRate )

f
region Fast (userFrameRate == 2) fg
region Normal (userFrameRate == 1) fg
region Slow (userFrameRate == 0) fg

g;

Fig. 10. Code for the contract of the new qosket written in CDL.

behavior UserAdaptFrameRate ()
f

void slide::SlideShow::read(in long gifNumber,
out string size, out octetArray buf)

f
before METHODCALL
f
region Fast fg
region Normal f ... Thread.sleep(50 ); ... g
region Slow f ... Thread.sleep(100); ... g
g

g
...
g

Fig. 11. Excerpted code for the wrapper of the new qosket written in ASL.

a 100 Mbps wired network and the client on a laptop computer
connected to an 11Mbps 802.11b wireless network; both
systems are running the Linux operating system. At startup the
“UserAdapt” qosket is woven into the application by specifying
the wrapper class as a command-line parameter. Later, at
run time, we used our Interceptor Registration Console to
weave the “UserAdaptFrameRate” qosket into the application.
Figure 13 shows screen dumps of the application as it displays
large and small versions of an image, respectively.

Figure 14 shows a trace of the rate at which frames are
displayed at the client application. During the experiment, a
user modifies the application as follows. When application
starts, large versions of frames (the default option) are re-
trieved from the server as fast as possible. The size of these
images, combined with the limited bandwidth of the wireless
network, produces a frame rate of approximately 2 images

Fig. 12. Sample image of a monitored instructional laboratory.
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(a)

(b)

Fig. 13. Screen captures of ACT/QuO image retrieval application: (a) 252
KB version of image displayed (b) 19 KB version of image displayed.

per second for the first 30 seconds of this experiment. At this
point, the user selects the small-images option by way of the
GUI in the “UserAdapt” qosket, thereby increasing the frame
rate to approximately 14 images per second.

At 60 seconds into the experiment, the user dynamically
weaves the UserAdaptFrameRate qosket into the application,
using the interactive administration utilities described in Sec-
tion III-C. Figure 14 shows a short, downward spike in the
frame rate caused by the delay for weaving the new qosket.
We consider such a one-time delay to be acceptable for this
type of application. Immediately after the qosket is inserted,
an interactive console is displayed by the qosket, enabling the
user to choose from the three options ( Fast, Normal, and
Slow) interactively at run time. The Fast option is the default.
At 90 seconds into the experiment, the user selects the Normal
option; the additional 50 msec delay reduces the frame rate
to approximately 7.5 images per second. At 120 seconds, the
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Fig. 14. Dynamic adaptation in a ACT/QuO hybrid application.

user chooses the Slow option (100 msec delay), which reduces
the frame rate to approximately 5.5 images per second. At
150 seconds, the user chooses the Fast option again, which
increases the frame rate to 14 images per second.

This experiment illustrates how ACT can be used to dy-
namically incorporate new behavior (in this case, a new QuO
qosket) into a CORBA application at run time. The process
is transparent to the application, in that we did not modify
the application code or the QuO code. We simply started
the application with generic interceptors registered with the
application ORB.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed an adaptive CORBA template
(ACT), which can be used to develop new adaptive CORBA
frameworks and to enhance existing frameworks with unantici-
pated adaptive functionality and interoperability features. ACT
can adapt legacy CORBA applications at run time without
the need to modify or recompile their source code. The only
requirement is that the application use a CORBA ORB that
supports portable interceptors [13]. We developed an ACT
prototype in Java and conducted a case study in which we
integrated ACT with QuO. Our experiments show that the
overhead introduced by ACT is negligible. We also showed
that ACT can enable transparent integration of new adaptive
code into extant QuO applications.

Further Information. A number of related papers and
technical reports of the Software Engineering and Network
Systems Laboratory can be found at the following URL:
http://www.cse.msu.edu/sens.
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