
Composing Aggregate Web Services in BPEL

Onyeka Ezenwoye and S. Masoud Sadjadi
Autonomic Computing Research Laboratory

School of Computing and Information Sciences
Florida International University

11200 SW 8th St., Miami, FL 33199foezen001,sadjadi g@cs.fiu.edu

ABSTRACT
Web services are increasingly being used to expose applications
over the Internet. These Web services are being integrated within
and across enterprises to create higher function services.BPEL
is a workflow language that facilitates this integration. Although
both academia and industry acknowledge the need for workflow
languages, there are few technical papers focused on BPEL. In this
paper, we provide an overview of BPEL and discuss its promises,
limitations and challenges.

Keywords
Web services, workflow language, BPEL, business processes,A2A
integration, and B2B integration.

1. INTRODUCTION
The rapid growth of theelectroniccommerce (e-commerce) has

forced business organizations to offer their services electronically,
not only to their end customers, but also to their business part-
ners. In order to quickly respond to the ever changing business
needs, enterprises need to electronically interact with one another,
effectively integrating their fine-grained business functions (e.g.,
accounting, production, inventory and delivery services)into more
coarse-grained business processes (e.g., a sales service) [7, 12].
Business functions are typically developed separately as software
applications, possibly implemented in different programming lan-
guages and targeted to run on different platforms. Therefore, one
key challenge that enterprises face when trying to interactelectron-
ically is how to convert the data and commands among their het-
erogeneous software applications.

The advent of middleware – which hides differences among pro-
gramming languages, computing platforms, and network protocols [1,
3, 6] – in the 1990’s, mitigated the difficulty of heterogeneous ap-
plication integration. Indeed, the maturity of middlewaretechnolo-
gies has produced several successful approaches tocorporate-wide
application integration [8, 18], where applications developed and
managed by the same corporation are able to interoperate with one
another. The efficient integration of enterprise applications entails

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SE’06March 10-12, 2006, Melbourne, Florida, USA
Copyright 2006 ACM 1-59593-315-8/06/0004 ...$5.00.

development that is rapid, utilizes existing applicationsand saves
cost. Successful middleware technologies such as Java RMI [10],
CORBA [15], and DCOM/.NET Remoting [5, 14] have been able
to integrate corporate-wide applications.

Traditional middleware technologies are often unable to inte-
grate applications managed by different corporations connected via
the Internet. The reasons are twofold: (1) different corporations se-
lect different middleware technologies, which are more appropriate
to integrate their own applications; and (2) middleware packets of-
ten cannot pass through Internet firewalls (see Figure 1). Also, the
tightly coupled integration model of traditional middleware tech-
nologies creates inflexible application connections, making the de-
velopment ofdynamiccross-enterprise applications with such tech-
nologies arduous and expensive. Moreover, the difficulty ofappli-
cation integration, once alleviated by middleware, has reappeared
with the proliferation ofheterogeneousmiddleware technologies.
As a result, there is a need for a “middleware for middleware”to
enable Internet-wide and business-to-business application integra-
tion [19].

To simplify application-to-application communication, the Web
service paradigm was invented. [2]. AWeb serviceis a program
delivered over the Internet that provides a service described in the
Web Service Description Language (WSDL) [4] and communicates
with other programs, typically through SOAP messages [9]. Web
services provide the desired abstraction uniformity that is needed to
bridge applications regardless of the heterogeneity of platforms and
implementation languages. They provide a middleware layerthat
is relatively lightweight and have neither the object modelnor pro-
gramming language restrictions imposed by other traditional mid-
dleware systems. WSDL and SOAP are both independent of spe-
cific platforms, programming languages, and middleware technolo-
gies. Moreover, SOAP leverages the optional use of the HTTP pro-
tocol, which can bypass firewalls, thereby enabling Internet-wide
application integration.

Web services, which are typically used to represent reusable busi-
ness functions (e.g., flight reservation), can be the building blocks
of more complex business processes. Although complex business
processes can be developed in general-purpose languages such as
Java and C++, such languages do not provide high-level constructs
to readily define workflow processes that represent composite Web
services. Business Process Execution Language (BPEL) is a high-
level workflow language that can be used to create coarse-grained
business processes that constitute a number of related business func-
tions [13, 17, 20]. By representing a workflow that coordinates ac-
tivities among other Web services, BPEL allows for the creation
of coarse-grained Web services by wiring together activities that
can invoke other Web services, manipulate data and handle excep-
tions. BPEL and Web services make it possible for organizations

458

DCOM / .NET

App. 1 App. 2 App. N…

Proprietary MW

App. 1 App. 2 App. N…

CORBA

App. 1 App. 2 App. N…

Java RMI

App. 1 App. 2 App. N…

Firewall

Firewall Firewall

Firewall

Enterprise A

Enterprise B

Enterprise C

Enterprise D

Internet

Figure 1: Middleware technologies used for corporate-wideapplication integration failed the Internet-wide application integration,
because of heterogeneity of the middleware technologies and the presence of Internet firewall.

to deploy flexible Service Oriented Applications (SOA) [2, 11].
SOA-based integration permits the discovery and use of existing
resources and thereby reducing the cost and speed with whichap-
plications can be developed.

In this paper, we introduce BPEL, a language that facilitates the
development of composite Web services. This paper is not meant
to be a guide to the usage and syntax of BPEL but rather a high-
level executive overview of the language, its challenges and some
of the limitations we have encountered in its use. The rest ofthis
paper is structured as follows. Section 2 discusses the integration of
Web services and shows how BPEL facilitates this integration using
a commonly-used example. In section 3, we present an overview
of BPEL activities and constructs in the context of the example.
Section 4 provides a layered architecture for BPEL processes and
shows how supporting technologies such as WSDL, SOAP, and
HTTP are used in the context of the running example. A discussion
of some of the limitation of the language is provided in Section 5.
Finally, some concluding remarks are presented in Section 6.

2. WEB SERVICE INTEGRATION
To help illustrate the need for integration of services, consider

a fictitious company, Bloggs Financial Services (BFS), thatpro-
vides loan services to car dealerships. The car dealershipsmake
loan requests (on behalf of their respective customers) to BFS. As
illustrated in Figure 2, BFS has a loan assessor service thatelec-
tronically receives requests for loan, assesses the risk involved, and
if the risk associated with a loan request is low, then issuesa loan.
In case the risk is high, BFS forwards the corresponding requests
to its partner bank, the XYZ bank.

Figure 2: BFS forwards high-risk loan requests to XYZ.

We argue that it is in the best interest of BFS (and its partners) to
have a business process that encapsulates the logic of this transac-

tion by aggregating the BFS risk assessor and XYZ loan approver
services: first, car dealerships enjoy the customized and unified
loan service provided by BFS and do not need to interact with
potentially different loan approver services provided by different
lenders; second, banks do not need to provide customized services
for each business domain and do not need to interact directlywith
each end customer; and third, BFS do not lose customers to other
lenders as it will be in the loop of all transactions by providing a
one-stop-shop for its customers. Moreover, this business process
would not only allow BFS to expedite loan approvals but also pro-
vides the flexibly of integrating with new partners without the need
to modify the logic of its own business.

As illustrated in Figure 3, the BPEL process itself is a Web ser-
vice that specifies the logic of the interaction with its partners. The
partner Web services are the BFS risk assessor service and the XYZ
loan approver services. This model allows for changes to be made
to those business functions without necessarily affectingthat of the
BPEL process. For instance, there might be changes to the poli-
cies for evaluating loan requests, as well as changes to the actual
banking partners.

Figure 3: BFS provides an aggregate service to its customers.

Because BPEL is a very high-level language, business analysts
and managers (non-technical personnel) are able to easily compose
business processesgraphically with tools such as ActiveWebflow
Professional and Oracle BPEL Manager. These development tools

459

Figure 4: A screen dump of the graphical representation of the loan service BPEL process from ActiveWebflow Professional.

allow for the logic of the business process to be specified by graph-
ically linking together desired activities. The flowchart in Figure 4
is a screen dump from ActiveWebflow Professional1. It is a graphi-
cal representation of the BPEL process implementing the BFSloan
service (see Figure 3).

As shown in the flowchart, the BPEL process receives as input a
loan request (ReceiveCustomerRequest) from a car dealership.
The loan request message comprises two variables: the name of
the customer and the loan amount (not shown in the figure). If the
loan amount is less than $10,000, then the BFS risk assessor service
is invoked (InvokeRiskAssessor), otherwise the XYZ loan ap-
prover service is invoked (InvokeLoanApprover). After the risk
assessor is invoked, the BPEL process expects to receive as reply a
value of either “high” or “low”. When the risk assessment is “low”,
this means the loan is approved and the BPEL process sends an ap-
proval message (with “yes” value,AssignYestoAccept) to the
car dealership and terminates (ReplyCustomerRequest). If the
risk assessment message is “high”, the XYZ loan approver service
is invoked (InvokeLoanApprover). The loan approver service
returns either “yes” or “no”, which is then sent as reply to the car
dealership.

Both the risk assessor service and the loan approver servicecan
also return a predefined fault message to the BPEL process. When
any of these services reply with a fault message, the BPEL process
sends an error message to its user and terminates (not shown in the
figure).

3. BPEL OVERVIEW
Any workflow language that is used to compose and manage

business processes involving multiple Web services must meet some
key requirements: (1) The ability to adequately represent the busi-
ness logic of the process; (2) The ability to provide asynchronous as
well as synchronous invocations of Web services; (3) The ability

1We have added some annotation to this image for clarity.

to support long-running transaction; and (4) The ability toman-
age failures, exceptions and recovery. The BPEL specification at-
tempts to meet these requirements, although some of the available
features have certain limitations, as we will cover in a later sec-
tion. BPEL is the result of collaborative effort by IBM, Microsoft
and BEA. Earlier work to create a business process workflow lan-
guage includes, amongst others, Microsoft’s XML business pro-
cess language (XLANG) and IBM’s Web Services Flow Language
(WSFL) [16]. BPEL combines the best features of XLANG and
WSFL as well as additional functionality and flexibility. Inthis sec-
tion, we present some key BPEL constructs. For some of the con-
structs, we will use code snippets from the Loan Approval BPEL
process described in Section 2.

BPEL is simply a flow language that weaves togetherbasicand
structuredactivities to create the logic of a business process. A
basicactivity is a primitive BPEL activity that performs an atomic
action, while astructuredactivity is derived from a combination
of several activities (either basic or other structured activities). For
example, theinvoke activity is a basic activity that performs an
operation on a partner Web service. The XML code in Figure 5 is
an example of a service invocation. The code instructs the BPEL
engine (a virtual machine that interpretes and executes BPEL pro-
cesses) to invoke a partner web service. The actual web service
partner is defined by thepartnerLink (line 6). Lines 7 and 3
identify the interface (portType) of the partner and what method
(operation) the invocation wishes to call. The input and expected
output variables are specified in lines 4 and 5.

Some other examples of basic activities include thereceive and
reply activities. Thereceive activity waits for external input
from a partner via some predefined operation, while thereply ac-
tivity sends back a message to the partner that invoked areceive
operation. Figure 6 shows the code that defines the receive activity
(ReceiveCustomerRequest) from Figure 4. Thereceive activity
contains properties that specify what partner makes the input, the
operation and the required variable (lines 4, 5 and 7 respectively).

460

1. <invoke
2. name="InvokeLoanApprover"
3. operation="approve"
4. inputVariable="request"
5. outputVariable="approval"
6. partnerLink="approver"
7. portType="loanApprovalPT">
8. <target linkName="receive-to-approve"/>
9. <target linkName="assess-to-approve"/>
10. <source linkName="approver-to-reply"/>
11.</invoke>

Figure 5: The invocation of the XYZ loan approver service.

The transition conditions from thereceive activity to the other
activities are defined in thesource properties on lines 8-10 and
11-13.

1. <receive
2. createInstance="yes"
3. name="ReceiveCustomerRequest"
4. partnerLink="customer"
5. operation="approve"
6. portType="loanApprovalPT"
7. variable="request">
8. <source
9. linkName="receive-to-assess"
10. transitionCondition="bpws:getVariableData\

(’request’, ’amount’) < 10000"/>
11. <source
12. linkName="receive-to-approve"
13. transitionCondition="bpws:getVariableData\

(’request’, ’amount’) >= 10000"/>
14.</receive>

Figure 6: The receive activity of the BFS aggregate loan service
(the BPEL process).

Structured activities specify the order in which combined activ-
ities execute. They provide support for asynchronous interactions
which is important for efficiency and scalability. For instance, ac-
tivities that are meant to execute concurrently or sequentially are
enclosed inflow and sequence tags, respectively. Other struc-
tured activities includeswitch for conditional branching,pick
for alternative choices andwhile for looping activities. Structured
activities can be nested and the execution order between blocks of
activities can be defined with the use of links.

According to Peltz, about 80 percent of the total amount of time
spent in developing business processes is spent in exception man-
agement [16]. Therefore the management of faults is a key feature
in any business processes. BPEL processes can manage excep-
tions generated from a service invocations. Faults can be gener-
ated through thethrow construct. Faults are caught withcatch
or catchAll handlers defined inside afaultHandlers tag. The
catch elements specify custom fault-handling activities that exe-
cute on a given fault name or fault variable, while thecatchAll
element specify fault-handling activities that execute when a fault is
not caught by acatch fault handler. The code in Figure 7 shows a
fault handling mechanism for the process. Inside the fault handler
is a catch clause (lines 2-12) for a predefined fault (loanProcess-
Fault at line 3). The action to take upon this fault is to send a reply
(with an error message) back to customer as specified by lines5 to
11.

The BPEL specification also comes with other constructs includ-
ing thescope , correlation , andcompensation activities. Us-

1. <faultHandlers>
2. <catch
3. faultName="loanProcessFault"
4. faultVariable="error">
5. <reply
6. faultName="loanProcessFault"
7 name="ReplyToFault"
8. operation="approve"
9. partnerLink="customer"
10. portType="loanApprovalPT"
11. variable="error"/>
12. </catch>
13.</faultHandlers>

Figure 7: Fault handler from the BPEL process

ing thescope tag, activities can be grouped into a single transac-
tion. Thescope container provides a context for a subset of ac-
tivities. It can contain fault and event handler for activities nested
within it. Thescope allows a group of activities to be managed as
one logical unit.

Thecorrelation andcompensation provide support for long-
running transactions. In the BPEL process described in Section 2,
for instance, multiple customers could be making requests for loan
at the same time, meaning that several of the same type of messages
are flowing to the business process and its partner services.It is thus
important that there is some sort of message correlation to ensure
that messages are being routed properly. This feature is especially
important in the case of asynchronous interactions. BPEL utilizes
a correlation construct for managing groups of messages that be-
long to a specific business partner interaction.Compensation en-
ables a BPEL process to specify an activity at thescope or process
level whose execution serves to undo some application logicthat
has already successfully completed. Compensation is important to
ensure that activity groups do not complete partially, for instance in
the event of a fault. An example of a compensation activity could
be to cancel a reservation.

4. SUPPORTING TECHNOLOGIES
As illustrated in Figure 8, the key to achieving interoperability

in BPEL is its layered architecture. The dependency relation be-
tween each two adjacent layers is top-down. While the process
layer (BPEL) takes care of the composition of Web services, the
service layer (WSDL) provides a standard for describing theser-
vice interfaces. At the messaging layer (typically SOAP), the oper-
ations defined in the service layer are realized as two related output
and input messages, which serialize the operation and its param-
eters. At the bottom of the stack is the transport layer (typically
HTTP) that facilitates the physical interaction between the Web
Services. Although Web services are independent of transport pro-
tocols, HTTP is the most commonly used protocol for Web service
interaction. Except for the transport layer, all the protocols in the
other layers are typically based on XML. In the rest of this section,
we presents a brief description of WSDL, SOAP, and HTTP in the
context of the running example.

WSDL. Web Services Description Language (WSDL) is an XML-
based standard for describing a Web service [4]. A WSDL defini-
tion is divided into two parts: abstract and concrete. Theabstract
part describes the service interface, the operations it performs and
the messages involved; theconcretepart describes the location of
the service and how to access and bind to a Web service.

Figure 9 shows the abstract portion of the BPEL process de-

461

Figure 8: The BPEL protocol stack.

1. <message name="creditInformationMessage">
2. <part name="firstName" type="string"/>
3. <part name="lastname" type="string"/>
4. <part name="amount" type="integer"/>
5. </message>
6.
7. <message name="approvalMessage">
8. <part name="accept" type="string"/>
9. </message>
10.
11.<portType name="loanApprovalPT">
12. <operation name="approve">
13. <input message="creditInformationMessage"/>
14. <output message="approvalMessage"/>
15. </operation>
16.</portType>

Figure 9: The abstract portion of the WSDL description for the
BFS aggregate loan service.

scribed in Section 2, while Figure 10 shows the concrete portions
of this process2. Recall that a BPEL process itself is a Web ser-
vice and its interface is described by WSDL (similar to its part-
ners). The abstract portion of the WSDL (Figure 9) contains the
description of the input message (creditInformationMessage ,
lines 1-5), the expected output message (approvalMessage , lines
7-9). The service port type (loanApprovalPT , lines 11-16) de-
scribes the interface of the BPEL process, that is, what operations
it exposes and the input and output messages involved. In thecon-
crete portion of the WSDL (Figure 10), the binding to the porttype
(loanApprovalPT , lines 1-17) and the physical location of the ser-
vice (lines 19-23) are defined. An abstract definition can be mapped
to multiple concrete implementations. Both abstract and concrete
WSDL definitions are independent of the service implementation.
In other words, the description of service endpoints, the operations
and messages, the message formats and the network protocolsused
in the communication are independent of how the services areim-
plemented.

SOAP.SOAP is an XML-based messaging protocol designed to be
independent of specific platforms, programming languages,mid-
dleware technologies, and transport protocols [9]. SOAP messages
are used for interactions among Web services. Unlike object-oriented
middleware such as CORBA, which requires an object-oriented
model of interaction, SOAP provides a simple message exchange
among interacting parties.

A SOAP message is an XML document with one element, called
an envelope, and two children elements, called header and body.
The contents of the header and body elements are arbitrary XML.
The header is an optional element, whereas the body is not; there
must be exactly one body defined in each SOAP message. To pro-
vide the developers with the convenience of a procedure-call ab-
straction, a pair of related SOAP messages can be used to realize a

2Some detail has been omitted from the WSDL portions for clarity.

1. <binding name="SOAPBinding"type="loanApprovalPT">
2. <binding style="rpc" transport=
3. "http://schemas.xmlsoap.org/soap/http"/>
4. <operation name="approve">
5. <operation soapAction="" style="rpc"/>
6. <input>
7. <body use="encoded" namespace=
8. "http://www.bfs.com/wsdl/loanapprover"
9. encodingStyle="http://schemas.xmlsoap\

.org/soap/encoding/"/>
10. </input>
11. <output>
12. <body use="encoded" namespace=
13. "http://www.bfs.com/wsdl/loanapprover"
14. encodingStyle="http://schemas.xmlsoap\

.org/soap/encoding/"/>
15. </output>
16. </operation>
17.</binding>
18.
19.<service name="LoanApprover">
20. <port name="SOAPPort" binding="SOAPBinding">
21. <address location="http://www.bfs.com/\

services/approver"/>
22. </port>
23.</service>

Figure 10: The concrete portion of the WSDL description for
the BFS aggregate loan service.

request and its corresponding response. SOAP messaging isasyn-
chronous, that is, after sending a request message, the service re-
quester will not be blocked waiting for the response messageto
arrive.

Figure 11 shows the structure of a HTTP request containing an
output SOAP message that corresponds to calling theapprove
method of the XYZ loan approver service3. A HTTP post request
contains a header (lines 1-4) and a body (lines 6-18). The body
of this post request is a SOAP message. The body of the SOAP
message contains the serialized method call (lines 10-17) to the
approve operation with the required parameters.

1. POST /LoanApprover
2. SOAPAction: "http://www.bfs.com/services\

/approver"
3. Content-Type: text/xml; charset=‘‘utf-8"
4. ...
5.
6. <soap:Envelope xmlns:soap= "http://schemas\

.xmlsoap.org/soap/">
7. <soap:Header>
8. <!-- Optional header contents.>
9. </soap:Header>

10. <soap:Body>
11. <approve>
12. <creditInformationMessage
13. firstName = "Jane"
14. lastName = "Doe"
15. amount = "5000"/>
16. </approve>
17. </soap:Body>
18. <soap:Envelope>

Figure 11: The HTTP request containing the SOAP message
for calling the approve method.

3The SOAP message is simplified for clarity. Details of names-
paces are not present.

462

5. BPEL SHORTCOMINGS
BPEL is not a general-purpose language and as such lacks many

traditional programming language constructs. This amongst other
factors have created several limitations for the language.In this
section we present some of those limitations we have encountered
in our use of this language.

Fault handling: As stated in Section 3, the BPEL specification
provides two constructs for handling faults;catch andcatchAll .
The catch clause is used to handle custom predefined program-
matic faults and thecatchAll handler used for all other undefined
faults. Before a fault can be caught within the BPEL process by
the catch handler, that fault would have had to be defined in the
WSDL description of the service partner as part of the possible
messages of that interface. The specification makes no provision
for system faults that are common in this type of architecture. For
example, the fault generated when a BPEL process tries to invoke
an unavailable Web service. Currently these type of faults can be
caught only by thecatchAll construct. SincecatchAll has no
way of distinguishing between faults, this approach is not desirable
because the course of action to take in the event of a fault is often
determined by the type of fault that was generated. This inadequacy
limits the quality of service of BPEL business processes.

Data manipulation: BPEL offers limited data manipulation. The
main purpose of BPEL is to orchestrate the interaction amongWeb
services which includes moving data from one service to another.
The language thus has very little facilities for manipulating the
data. It is currently not possible to dynamically create or destroy
variables. Each variable used has to be declared at design time and
at the process level. Local variables cannot be declared within ac-
tivity blocks (e.g., scope). Also BPEL is not able to recognize
whether two variables are composed of the same primitive types.
Therefore, a message can be passed from one Web service to an-
other, only if the message have the exact same definition fromthe
exact same XML namespace. If this is not the case, a BPELcopy
operation would be needed to copy the contents of one variable
to the other before a message can be sent between services. This
severely hampers the flexibility of BPEL process because it often
means that the Web service partners of a process have to sharethe
same WSDL interface descriptions for operations that exchange
messages. Robust data manipulation often has to be delegated to
a Web service which sometime often complicates the process and
limits its dynamism.

6. CONCLUSION
In this paper we have presented the need for organizations to

electronically interact with one another. We discussed therole
BPEL plays in enabling the required application-to-application (A2A)
and business-to-business (B2B) integration. In the context of an
aggregate loan service example, we have presented a high-level
overview of the language constructs and some of its limitations as
we have experienced them. Although it is not a traditional general-
purpose programming language, some of its inadequacies do limit
its effectiveness as a dynamic and flexible language for Web service
integration. Some factions may argue that its not necessaryto ex-
tend the language, since it is purely intended for orchestration and
does not actually implement business logic components, thereby
making it user friendly for business managers. But we believe the
language can be improved in a way that still allows business man-
agers to compose business process while permitting more experi-
enced programmers to transform such processes into more robust
and efficient solutions.

Further Information. A number of related papers, technical re-
ports, and a download of the software developed for this paper can
be found at the following URL:http://www.cs.fiu.edu/
˜sadjadi/ .

7. REFERENCES
[1] D. E. Bakken.Middleware. Kluwer Academic Press, 2001.
[2] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion,

C. Ferris, and D. Orchard.Web Services Architecture. W3C,
2004.

[3] A. T. Campbell, G. Coulson, and M. E. Kounavis. Managing
complexity: Middleware explained.IT Professional, IEEE
Computer Society, (5):22–28, September/October 1999.

[4] R. Chinnici, M. Gudgin, J.-J. Moreau, J. Schlimmer, and
S. Weerawarana.Web Services Description Language
(WSDL) Version 2.0. W3C, 2.0 edition, March 2004.

[5] D. Conger.Remoting with C# and .NET. Wiley Publishing,
Inc., Indianapolis, Indiana, 2003.

[6] W. Emmerich. Software engineering and middleware: a
roadmap. InProceedings of the Conference on The future of
Software engineering, pages 117–129, 2000.

[7] Gartner.Application Integration & Web Services Summit
2004, May 2004.

[8] A. Gokhale, B. Kumar, and A. Sahuguet. Reinventing the
wheel? CORBA vs. Web services. InProceedings of
International World Wide Web Conference, Honolulu,
Hawaii, 2002.

[9] M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau, and
H. F. Nielsen.SOAP Version 1.2. W3C, 1.2 edition, 2003.
Available at URL:http://www.w3.org/TR/soap12 .

[10] Java Soft.Java Remote Method Invocation Specification,
revision 1.5, JDK 1.2, Oct. 1998.

[11] H. Kreger.Web Services Conceptual Architecture (WSCA
1.0). IBM Software Group, May 2001. Available at URL:
http://www-306.ibm.com/software/
solutions/webservices/pdf/WSCA.pdf .

[12] J. Lee, K. Siau, and S. Hong. Enterprise integration with erp
and eai.Communications of the ACM, 46(2), February 2003.

[13] F. Leymann, D. Roller, and M.-T. Schmidt. Web services and
business process management.IBM Systems Journal, 41(2),
2002.

[14] Microsoft Corporation.Microsoft COM Technologies -
DCOM, 2000.

[15] Object Management Group, Framingham, Massachusett.The
Common Object Request Broker: Architecture and
Specification Version 3.0, July 2003.

[16] C. Peltz. Web services orchestration a review of emerging
technologies, tools and standards.Technical Paper, January
2003.

[17] D. Sherman. Business flows with bpel4ws.Online article,
2005. Available at URL:
http://xml.sys-con.com/read/39780.htm .

[18] S. Vinoski. Where is middleware?IEEE Internet Computing,
March-April 2002.

[19] S. Vinoski. Integration with Web services.IEEE Internet
Computing, November-December 2003.

[20] S. Weerawarana and F. Curbera. Business process with
bpel4ws: Understanding.Online article, 2002. Available at
URL:
http://www-128.ibm.com/developerworks/
webservices/library/ws-bpelcol1/ .

463

