Composing Aggregate Web Services in BPEL

Onyeka Ezenwoye and

S. Masoud Sadjadi

Autonomic Computing Research Laboratory
School of Computing and Information Sciences
Florida International University
11200 SW 8th St., Miami, FL 33199

{oezen001,sadjadi

ABSTRACT

Web services are increasingly being used to expose applisat
over the Internet. These Web services are being integraitbchw
and across enterprises to create higher function serviB&EL

is a workflow language that facilitates this integration.thdugh
both academia and industry acknowledge the need for workflow
languages, there are few technical papers focused on BREhis|
paper, we provide an overview of BPEL and discuss its prasnise
limitations and challenges.

Keywords

Web services, workflow language, BPEL, business proceA24s,
integration, and B2B integration.

1. INTRODUCTION

The rapid growth of thelectroniccommerce (e-commerce) has
forced business organizations to offer their servicesterically,
not only to their end customers, but also to their businest pa
ners. In order to quickly respond to the ever changing bssine
needs, enterprises need to electronically interact withamother,
effectively integrating their fine-grained business fims €.9,
accounting, production, inventory and delivery serviéeg) more
coarse-grained business processeg,(a sales service) [7, 12].
Business functions are typically developed separatelyotiware
applications, possibly implemented in different prograimgran-
guages and targeted to run on different platforms. Theeefame
key challenge that enterprises face when trying to intexi@ctron-
ically is how to convert the data and commands among their het
erogeneous software applications.

The advent of middleware —which hides differences among pro
gramming languages, computing platforms, and networlopas [1,
3,6] — in the 1990’s, mitigated the difficulty of heterogens@p-
plication integration. Indeed, the maturity of middlewg&eehnolo-
gies has produced several successful approactessgorate-wide
application integration [8, 18], where applications depeld and
managed by the same corporation are able to interoperateongt
another. The efficient integration of enterprise applarai entails

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

ACM SE’06March 10-12, 2006, Melbourne, Florida, USA

Copyright 2006 ACM 1-59593-315-8/06/0004$5.00.

458

}@cs.fiu.edu

development that is rapid, utilizes existing applicatiamsl saves
cost. Successful middleware technologies such as Java EWI [
CORBA [15], and DCOM/.NET Remoting [5, 14] have been able
to integrate corporate-wide applications.

Traditional middleware technologies are often unable te-in
grate applications managed by different corporations eoted via
the Internet. The reasons are twofold: (1) different coafions se-
lect different middleware technologies, which are morerappate
to integrate their own applications; and (2) middlewarekpés of-
ten cannot pass through Internet firewalls (see Figure Bo,Ahe
tightly coupled integration model of traditional middlengatech-
nologies creates inflexible application connections, mgkihe de-
velopment ofdynamiccross-enterprise applications with such tech-
nologies arduous and expensive. Moreover, the difficultgygdli-
cation integration, once alleviated by middleware, hagppeared
with the proliferation ofheterogeneousiddleware technologies.
As a result, there is a need for a “middleware for middlewace”
enable Internet-wide and business-to-business applicattegra-
tion [19].

To simplify application-to-application communicatioiget\Web
service paradigm was invented. [2]. Web servicas a program
delivered over the Internet that provides a service desdrib the
Web Service Description Language (WSDL) [4] and commueisat
with other programs, typically through SOAP messages [9%bW
services provide the desired abstraction uniformity thaeieded to
bridge applications regardless of the heterogeneity ¢fqglas and
implementation languages. They provide a middleware |&yatr
is relatively lightweight and have neither the object mauai pro-
gramming language restrictions imposed by other traciiomd-
dleware systems. WSDL and SOAP are both independent of spe-
cific platforms, programming languages, and middlewarerteln-
gies. Moreover, SOAP leverages the optional use of the HT®P p
tocol, which can bypass firewalls, thereby enabling Intewide
application integration.

Web services, which are typically used to represent readalsi-
ness functionse.g, flight reservation), can be the building blocks
of more complex business processes. Although complex éssin
processes can be developed in general-purpose languagieasu
Java and C++, such languages do not provide high-level manst
to readily define workflow processes that represent compgib
services. Business Process Execution Language (BPEL)igda h
level workflow language that can be used to create coarseegra
business processes that constitute a number of relatetbisgdiinc-
tions [13,17, 20]. By representing a workflow that coordésaac-
tivities among other Web services, BPEL allows for the ¢orat
of coarse-grained Web services by wiring together aotisithat
can invoke other Web services, manipulate data and handépex
tions. BPEL and Web services make it possible for orgaronati



Enterprise A

App. 1] App. 2] .- [App. N
Java RMI

Enterprise B

App. 1 |App. 2 | ---|App. N
CORBA

Enterprise C

App.1[App. 2] .- [App. N
DCOM/ .NET

Enterprise D

App. 1 |App. 2| ---|App. N
Proprietary MW

Figure 1: Middleware technologies used for corporate-widepplication integration failed the Internet-wide application integration,
because of heterogeneity of the middleware technologieséthe presence of Internet firewall.

to deploy flexible Service Oriented Applications (SOA) [2]1
SOA-based integration permits the discovery and use ofiegis
resources and thereby reducing the cost and speed with &hich
plications can be developed.

In this paper, we introduce BPEL, a language that facilitdhe
development of composite Web services. This paper is hohinea

to be a guide to the usage and syntax of BPEL but rather a high-

level executive overview of the language, its challenges some

of the limitations we have encountered in its use. The reshief
paper is structured as follows. Section 2 discusses thgratien of
Web services and shows how BPEL facilitates this integnaising

a commonly-used example. In section 3, we present an overvie
of BPEL activities and constructs in the context of the exi@mp
Section 4 provides a layered architecture for BPEL proceasd

tion by aggregating the BFS risk assessor and XYZ loan agprov
services: first, car dealerships enjoy the customized aiftedn
loan service provided by BFS and do not need to interact with
potentially different loan approver services provided fiffedent
lenders; second, banks do not need to provide customizedesr
for each business domain and do not need to interact diretty
each end customer; and third, BFS do not lose customers ¢o oth
lenders as it will be in the loop of all transactions by prangla
one-stop-shop for its customers. Moreover, this businessegs
would not only allow BFS to expedite loan approvals but alss p
vides the flexibly of integrating with new partners withol¢ theed
to modify the logic of its own business.

As illustrated in Figure 3, the BPEL process itself is a Web se
vice that specifies the logic of the interaction with its pars. The

shows how supporting technologies such as WSDL, SOAP, and partner Web services are the BFS risk assessor serviceaX/th

HTTP are used in the context of the running example. A disonss
of some of the limitation of the language is provided in Sath.
Finally, some concluding remarks are presented in Section 6

2. WEB SERVICE INTEGRATION

To help illustrate the need for integration of services,sioar
a fictitious company, Bloggs Financial Services (BFS), thak
vides loan services to car dealerships. The car dealershée
loan requests (on behalf of their respective customersy®. As
illustrated in Figure 2, BFS has a loan assessor servicestaat
tronically receives requests for loan, assesses the nskvied, and
if the risk associated with a loan request is low, then issulesn.
In case the risk is high, BFS forwards the correspondingeasigu
to its partner bank, the XYZ bank.

Car Dealership

BFS Risk
Assessor Service

XYZ Loan
Approver Service

Figure 2: BFS forwards high-risk loan requests to XYZ.

We argue that it is in the best interest of BFS (and its pasjrter
have a business process that encapsulates the logic ofethst-

459

loan approver services. This model allows for changes to dgem
to those business functions without necessarily affe¢tiagof the
BPEL process. For instance, there might be changes to tie pol
cies for evaluating loan requests, as well as changes tocthala
banking partners.

© _ CarDealership 1
C ~—————

Car Dealership 2 ,-re‘-
" [

\

(| ; )

/
M)
1 \! -

BFS Aggregate
Loan Service

BFS Risk
Assessor Service

XYZ Loan
Approver Service

Figure 3: BFS provides an aggregate service to its customers

Because BPEL is a very high-level language, business dralys
and managers (non-technical personnel) are able to easilpase
business processegaphically with tools such as ActiveWebflow
Professional and Oracle BPEL Manager. These developmelst to



ff

ReceiveCustomerRequest

< $10.000
>=$10,000

h
f’fb InvokeRiskAssassar P

| high

> “low” !

L (-5 Invokeloandpprover
e 4 -.-| Assignestodocept

L
ReplyCustomerRequest

Figure 4: A screen dump of the graphical representation of tle loan service BPEL process from ActiveWebflow Professional

allow for the logic of the business process to be specifiedragty
ically linking together desired activities. The flowchartRigure 4
is a screen dump from ActiveWebflow Professichat is a graphi-
cal representation of the BPEL process implementing the IB&$
service (see Figure 3).

to support long-running transaction; and (4) The abilityman-
age failures, exceptions and recovery. The BPEL specificatt-
tempts to meet these requirements, although some of thialaleai
features have certain limitations, as we will cover in aratec-
tion. BPEL is the result of collaborative effort by IBM, Msoft

As shown in the flowchart, the BPEL process receives as input a and BEA. Earlier work to create a business process workflow la

loan requestRKeceiveCustomerRequest ) from a car dealership.

guage includes, amongst others, Microsoft's XML business p

The loan request message comprises two variables: the name ocess language (XLANG) and IBM’s Web Services Flow Language

the customer and the loan amount (not shown in the figurehelf t
loan amount is less than $10,000, then the BFS risk assessae
is invoked (nvokeRiskAssessor ), otherwise the XYZ loan ap-
prover service is invokedrvokeLoanApprover ). After the risk
assessor is invoked, the BPEL process expects to receieplasr
value of either “high” or “low”. When the risk assessmentlsA/”,
this means the loan is approved and the BPEL process seng@s an a
proval message (with “yes” valu@ssignYestoAccept ) to the
car dealership and terminateReplyCustomerRequest ). If the
risk assessment message is “high”, the XYZ loan approvercger
is invoked (nvokeLoanApprover ). The loan approver service
returns either “yes” or “no”, which is then sent as reply te tar
dealership.

Both the risk assessor service and the loan approver seraice
also return a predefined fault message to the BPEL processnWh
any of these services reply with a fault message, the BPEtesm
sends an error message to its user and terminates (not shah i
figure).

3. BPEL OVERVIEW

Any workflow language that is used to compose and manage
business processes involving multiple Web services must soene
key requirements: (1) The ability to adequately repredembusi-
ness logic of the process; (2) The ability to provide asyocbus as
well as synchronous invocations of Web services; (3) Thétabi

We have added some annotation to this image for clarity.

460

(WSFL) [16]. BPEL combines the best features of XLANG and
WSFL as well as additional functionality and flexibility. tinis sec-
tion, we present some key BPEL constructs. For some of the con
structs, we will use code snippets from the Loan Approval BPE
process described in Section 2.

BPEL is simply a flow language that weaves togetbesicand
structuredactivities to create the logic of a business process. A
basicactivity is a primitive BPEL activity that performs an atani
action, while astructuredactivity is derived from a combination
of several activities (either basic or other structuredvaigs). For
example, thenvoke activity is a basic activity that performs an
operation on a partner Web service. The XML code in Figure 5 is
an example of a service invocation. The code instructs theLBP
engine (a virtual machine that interpretes and executed Bip@=
cesses) to invoke a partner web service. The actual webcservi
partner is defined by thpartnerLink  (line 6). Lines 7 and 3
identify the interfacedortType ) of the partner and what method
(operation ) the invocation wishes to call. The input and expected
output variables are specified in lines 4 and 5.

Some other examples of basic activities includertoeive and
reply activities. Thereceive activity waits for external input
from a partner via some predefined operation, while¢hy ac-
tivity sends back a message to the partner that invokedeive
operation. Figure 6 shows the code that defines the recedivéyc
(ReceiveCustomerRequesbm Figure 4. Theeceive activity
contains properties that specify what partner makes thet,itibe
operation and the required variable (lines 4, 5 and 7 reisedot



<invoke
name="InvokeLoanApprover"
operation="approve"
inputVariable="request"
outputVariable="approval"
partnerLink="approver"
portType="loanApprovalPT">
<target linkName="receive-to-approve"/>
. <target linkName="assess-to-approve"/>
10. <source linkName="approver-to-reply"/>
11.</invoke>

1.
2
3.
4.
5
6
7
8

© -

Figure 5: The invocation of the XYZ loan approver service.

The transition conditions from theceive activity to the other
activities are defined in thsource properties on lines 8-10 and
11-13.

. <receive
createlnstance="yes"
name="ReceiveCustomerRequest"
partnerLink="customer"
operation="approve"
portType="loanApprovalPT"
variable="request">
<source
linkName="receive-to-assess"
transitionCondition="bpws:getVariableData\
(request’, 'amount’) &lt; 10000"/>
<source
linkName="receive-to-approve"
transitionCondition="bpws:getVariableData\
(request’, 'amount’) &gt;= 10000"/>
14.</receive>

1
2
3
4.
5.
6
7
8
9
1

0.
11.

12.
13.

Figure 6: The receive activity of the BFS aggregate loan seite
(the BPEL process).

Structured activities specify the order in which combinetiva
ities execute. They provide support for asynchronous actens
which is important for efficiency and scalability. For inste, ac-
tivities that are meant to execute concurrently or seqakytare
enclosed inflow andsequence tags, respectively. Other struc-
tured activities includeswitch  for conditional branchingpick
for alternative choices anghile for looping activities. Structured
activities can be nested and the execution order betweekdluf
activities can be defined with the use of links.

According to Peltz, about 80 percent of the total amountroéti
spent in developing business processes is spent in exaepto-
agement [16]. Therefore the management of faults is a kayriea

<faultHandlers>
<catch
faultName="loanProcessFault"
faultvVariable="error">
<reply
faultName="loanProcessFault"
name="ReplyToFault"
operation="approve"
partnerLink="customer"
10. portType="loanApprovalPT"
11. variable="error"/>
12. </catch>
13.</faultHandlers>

1.
2
3
4.
5
6
7
8.
9.

Figure 7: Fault handler from the BPEL process

ing thescope tag, activities can be grouped into a single transac-
tion. Thescope container provides a context for a subset of ac-
tivities. It can contain fault and event handler for actestnested
within it. Thescope allows a group of activities to be managed as
one logical unit.

Thecorrelation andcompensation  provide support for long-
running transactions. In the BPEL process described in@e2t
for instance, multiple customers could be making requestén
at the same time, meaning that several of the same type obgess
are flowing to the business process and its partner seniésshus
important that there is some sort of message correlationgare
that messages are being routed properly. This feature éciedly
important in the case of asynchronous interactions. BPHizes
a correlation construct for managing groups of messagéstia
long to a specific business partner interactionmpensation en-
ables a BPEL process to specify an activity atdtwpe or process
level whose execution serves to undo some application lihgic
has already successfully completed. Compensation is tapcio
ensure that activity groups do not complete partially, fistance in
the event of a fault. An example of a compensation activityldo
be to cancel a reservation.

4. SUPPORTING TECHNOLOGIES

As illustrated in Figure 8, the key to achieving interopdigb
in BPEL is its layered architecture. The dependency raiabie-
tween each two adjacent layers is top-down. While the psoces
layer (BPEL) takes care of the composition of Web servides, t
service layer (WSDL) provides a standard for describingstae
vice interfaces. At the messaging layer (typically SOARg, dper-
ations defined in the service layer are realized as two celaigout
and input messages, which serialize the operation and iigsrpa
eters. At the bottom of the stack is the transport layer ¢ty

in any business processes. BPEL processes can manage excefyTTp) that facilitates the physical interaction betweea Web

tions generated from a service invocations. Faults can herge
ated through theéhrow construct. Faults are caught withtch
or catchAll  handlers defined insidefaultHandlers tag. The
catch elements specify custom fault-handling activities tha-ex
cute on a given fault name or fault variable, while tiagchAll
element specify fault-handling activities that executewh fault is
not caught by aatch fault handler. The code in Figure 7 shows a
fault handling mechanism for the process. Inside the faaridher
is a catch clause (lines 2-12) for a predefined falolr{Process-
Fault at line 3). The action to take upon this fault is to send a reply
(with an error message) back to customer as specified by3ites
11.

The BPEL specification also comes with other constructsighcl
ing thescope , correlation , andcompensation activities. Us-

461

Services. Although Web services are independent of trahppo
tocols, HTTP is the most commonly used protocol for Web servi
interaction. Except for the transport layer, all the protedn the
other layers are typically based on XML. In the rest of thistiem,

we presents a brief description of WSDL, SOAP, and HTTP in the
context of the running example.

WSDL. Web Services Description Language (WSDL) is an XML-
based standard for describing a Web service [4]. A WSDL defini
tion is divided into two parts: abstract and concrete. @hstract
part describes the service interface, the operations fibpes and
the messages involved; tieencretepart describes the location of
the service and how to access and bind to a Web service.

Figure 9 shows the abstract portion of the BPEL process de-



Process Layer BPEL

Service Layer WSDL

Il

Messaging Layer SOAP

Transport Layer HTTP

Figure 8: The BPEL protocol stack.

<message name="creditinformationMessage">
<part name="firstName" type="string"/>
<part name="lastname" type="string"/>
<part name="amount" type="integer"/>
</message>

<message name="approvalMessage">
<part name="accept" type="string"/>
</message>

©CeNorwONE

10.
11.<portType name="loanApprovalPT">

12. <operation name="approve">

13. <input message="creditinformationMessage"/>
14. <output message="approvalMessage"/>

15. </operation>

16.</portType>

Figure 9: The abstract portion of the WSDL description for the
BFS aggregate loan service.

scribed in Section 2, while Figure 10 shows the concreteigst
of this process Recall that a BPEL process itself is a Web ser-
vice and its interface is described by WSDL (similar to itstpa
ners). The abstract portion of the WSDL (Figure 9) contahes t
description of the input messagedditinformationMessage ,
lines 1-5), the expected output messagiovalMessage |, lines
7-9). The service port typdoanApprovalPT |, lines 11-16) de-
scribes the interface of the BPEL process, that is, whatatioes

it exposes and the input and output messages involved. lcothe
crete portion of the WSDL (Figure 10), the binding to the pigpe
(loanApprovalPT |, lines 1-17) and the physical location of the ser-
vice (lines 19-23) are defined. An abstract definition can bppad

to multiple concrete implementations. Both abstract antboete
WSDL definitions are independent of the service impleméntat
In other words, the description of service endpoints, trerajons
and messages, the message formats and the network pratsedls
in the communication are independent of how the servicegare
plemented.

SOAP.SOAP is an XML-based messaging protocol designed to be
independent of specific platforms, programming languaged;
dleware technologies, and transport protocols [9]. SOABsages
are used for interactions among Web services. Unlike olnigented
middleware such as CORBA, which requires an object-oréente
model of interaction, SOAP provides a simple message egghan
among interacting parties.

A SOAP message is an XML document with one element, called
an envelope, and two children elements, called header adyl bo
The contents of the header and body elements are arbitraty. XM
The header is an optional element, whereas the body is rere th

1. <binding name="SOAPBInding"type="loanApprovalPT">

2. <binding style="rpc" transport=

3. "http://schemas.xmlsoap.org/soap/http"/>

4. <operation name="approve">

5. <operation soapAction="" style="rpc"/>

6. <input>

7. <body use="encoded" namespace=

8. "http://lwww.bfs.com/wsdl/loanapprover"

9. encodingStyle="http://schemas.xmlsoap\
.org/soap/encoding/"/>

10. </input>

11. <output>

12. <body use="encoded" namespace=

13. "http://www.bfs.com/wsdl/loanapprover"

14. encodingStyle="http://schemas.xmlsoap\
.org/soap/encoding/"/>

15. </output>

16. </operation>

17.</binding>

18.

19.<service name="LoanApprover">

20. <port name="SOAPPort" binding="SOAPBInding">

21. <address location="http://www.bfs.com/\
services/approver"/>

22. </port>

23.</service>

Figure 10: The concrete portion of the WSDL description for
the BFS aggregate loan service.

request and its corresponding response. SOAP messagisyris
chronous that is, after sending a request message, the service re-
quester will not be blocked waiting for the response message
arrive.

Figure 11 shows the structure of a HTTP request containing an
output SOAP message that corresponds to callingatingove
method of the XYZ loan approver serviceA HTTP post request
contains a header (lines 1-4) and a body (lines 6-18). Thg bod
of this post request is a SOAP message. The body of the SOAP
message contains the serialized method call (lines 10d e
approve operation with the required parameters.

. POST /LoanApprover

. SOAPAction: "http://lwww.bfs.com/services\
/approver"

. Content-Type: text/xml; charset="utf-8"

N -

oo w

. <soap:Envelope xmins:soap= "http://schemas\
.xmlsoap.org/soap/">

7. <soap:Header>

<l-- Optional header contents.>

9. </soap:Header>

10. <soap:Body>

11. <approve>

12. <creditinformationMessage
13. firstName = "Jane"

14. lastName = "Doe"

15. amount = "5000"/>

16. </approve>

17. </soap:Body>

18. <soap:Envelope>

must be exactly one body defined in each SOAP message. To pro-Figure 11: The HTTP request containing the SOAP message

vide the developers with the convenience of a proceduteabal
straction, a pair of related SOAP messages can be used izeraal

2Some detail has been omitted from the WSDL portions for iglari

462

for calling the appr ove method.

3The SOAP message is simplified for clarity. Details of names-
paces are not present.



5. BPEL SHORTCOMINGS

Further Information.

A number of related papers, technical re-

BPEL is not a general-purpose language and as such lacks manyPorts, and a download of the software developed for this pege

traditional programming language constructs. This ambotyer
factors have created several limitations for the langudgethis
section we present some of those limitations we have enecatht
in our use of this language.

Fault handling: As stated in Section 3, the BPEL specification
provides two constructs for handling faultatch andcatchAll

The catch clause is used to handle custom predefined program-
matic faults and theatchAll  handler used for all other undefined
faults. Before a fault can be caught within the BPEL process b
the catch handler, that fault would have had to be defined in the
WSDL description of the service partner as part of the pdssib
messages of that interface. The specification makes nosiwavi
for system faults that are common in this type of architextdor
example, the fault generated when a BPEL process tries tdénv
an unavailable Web service. Currently these type of fautslme
caught only by theatchAll  construct. SinceatchAll  has no
way of distinguishing between faults, this approach is msiichble
because the course of action to take in the event of a fauftés o
determined by the type of fault that was generated. Thisigadcy
limits the quality of service of BPEL business processes.

Data manipulation: BPEL offers limited data manipulation. The
main purpose of BPEL is to orchestrate the interaction anvidal
services which includes moving data from one service tohaarot
The language thus has very little facilities for manipuigtithe
data. It is currently not possible to dynamically create esttby
variables. Each variable used has to be declared at desigratid
at the process level. Local variables cannot be declarddmaic-
tivity blocks (e.g, scope ). Also BPEL is not able to recognize
whether two variables are composed of the same primitivestyp

Therefore, a message can be passed from one Web service to an-
[11] H. Kreger.Web Services Conceptual Architecture (WSCA

other, only if the message have the exact same definition finem
exact same XML namespace. If this is not the case, a Bédpl
operation would be needed to copy the contents of one variabl

to the other before a message can be sent between servidss. Th

severely hampers the flexibility of BPEL process becausé&eéno
means that the Web service partners of a process have totebare
same WSDL interface descriptions for operations that exgba
messages. Robust data manipulation often has to be dalemate
a Web service which sometime often complicates the proaass a
limits its dynamism.

6. CONCLUSION

In this paper we have presented the need for organizations to

electronically interact with one another. We discussed rtie
BPEL plays in enabling the required application-to-apgtian (A2A)
and business-to-business (B2B) integration. In the cordgan
aggregate loan service example, we have presented a high-le
overview of the language constructs and some of its linaitegtias
we have experienced them. Although it is not a traditionakgal-
purpose programming language, some of its inadequacigsdo |
its effectiveness as a dynamic and flexible language for \&felice
integration. Some factions may argue that its not necedeagy-
tend the language, since it is purely intended for orchéstrand
does not actually implement business logic componentseliye
making it user friendly for business managers. But we belt&e
language can be improved in a way that still allows businems-m
agers to compose business process while permitting moeriexp
enced programmers to transform such processes into moustrob
and efficient solutions.

463

[18]
[19]

[20]

be found at the following URLhttp://www.cs.fiu.edu/
“sadjadi/

7. REFERENCES

[1] D. E. Bakken.Middleware Kluwer Academic Press, 2001.
[2] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion,
C. Ferris, and D. Orchar®Veb Services Architecturé/3C,

2004.
[3] A. T. Campbell, G. Coulson, and M. E. Kounavis. Managing
complexity: Middleware explainedT Professional, IEEE
Computer Society(5):22—28, September/October 1999.
R. Chinnici, M. Gudgin, J.-J. Moreau, J. Schlimmer, and
S. WeerawaranaVeb Services Description Language
(WSDL) Version 2.0N3C, 2.0 edition, March 2004.
D. Conger.Remoting with C# and .NEWiley Publishing,
Inc., Indianapolis, Indiana, 2003.
[6] W. Emmerich. Software engineering and middleware: a
roadmap. IrProceedings of the Conference on The future of
Software engineeringpages 117-129, 2000.
Gartner.Application Integration & Web Services Summit
2004 May 2004.
[8] A. Gokhale, B. Kumar, and A. Sahuguet. Reinventing the
wheel? CORBA vs. Web services. Rroceedings of
International World Wide Web Conferend¢onolulu,
Hawaii, 2002.
M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau, and
H. F. NielsenSOAP Version 1.2V3C, 1.2 edition, 2003.
Available at URL:http://www.w3.0org/TR/soapl12

(4]

(5]

(7]

(9]

[10] Java SoftJava Remote Method Invocation Specification,

revision 1.5, JDK 1.20ct. 1998.

1.0). IBM Software Group, May 2001. Available at URL:
http://www-306.ibm.com/software/
solutions/webservices/pdf/WSCA.pdf

[12] J. Lee, K. Siau, and S. Hong. Enterprise integratiorn it

and eaiCommunications of the ACM6(2), February 2003.

[13] F. Leymann, D. Roller, and M.-T. Schmidt. Web serviced a

business process manageméBM Systems Journaft1(2),
2002.

[14] Microsoft CorporationMicrosoft COM Technologies -

DCOM, 2000.

[15] Object Management Group, Framingham, MassachuSiett.

Common Object Request Broker: Architecture and
Specification Version 3,Quly 2003.

[16] C. Peltz. Web services orchestration a review of enmgrgi

technologies, tools and standar@ischnical PaperJanuary
2003.

[17] D. Sherman. Business flows with bpel4vmline article

2005. Available at URL:
http://xml.sys-con.com/read/39780.htm

S. Vinoski. Where is middlewardEEE Internet Computln,g
March-April 2002.

S. Vinoski. Integration with Web servicd&EE Internet
Computing November-December 2003.

S. Weerawarana and F. Curbera. Business process with
bpeldws: Understandin@nline article 2002. Available at
URL:

http://www-128.ibm.com/developerworks/
webservices/library/ws-bpelcoll/



