
Available online at www.sciencedirect.com
www.elsevier.com/locate/jss

The Journal of Systems and Software 81 (2008) 1640–1662
CVM – A communication virtual machine

Yi Deng, S. Masoud Sadjadi *, Peter J. Clarke, Vagelis Hristidis,
Raju Rangaswami, Yingbo Wang

School of Computing and Information Sciences, Florida International University, Miami, FL 33199, USA

Available online 20 February 2008
Abstract

The convergence of data, voice, and multimedia communication over digital networks, coupled with continuous improvement in net-
work capacity and reliability has resulted in a proliferation of communication technologies. Unfortunately, despite these new develop-
ments, there is no easy way to build new application-specific communication services. The stovepipe approach used today for building
new communication services results in rigid technology, limited utility, lengthy and costly development cycle, and difficulty in integration.
In this paper, we introduce communication virtual machine (CVM) that supports rapid conception, specification, and automatic reali-
zation of new application-specific communication services through a user-centric, model-driven approach. We present the concept, archi-
tecture, modeling language, prototypical design, and implementation of CVM in the context of a healthcare application.
Published by Elsevier Inc.

Keywords: Model-driven architecture; Communication services; Multimedia; Middleware; Telemedicine
1. Introduction

The convergence of data, voice, and multimedia over
digital networks coupled with the continuous improve-
ment in network capacity and reliability has enabled a
wide range of communication-intensive applications.
Examples range from general-purpose communication
applications such as VoIP telephony, voice, video or
multimedia conferencing to specialized applications such
as disaster management and telemedicine. The pace of
innovation of new communication-intensive applications
will undoubtedly accelerate further as both capacity
and demand increase. This trend in communication-
intensive applications is reminiscent of the rise of data-
intensive applications during the late 1970s through the
1990s.
0164-1212/$ - see front matter Published by Elsevier Inc.

doi:10.1016/j.jss.2008.02.020

* Corresponding author. Tel.: +1 305 348 1835; fax: +1 305 348 3549.
E-mail addresses: deng@cis.fiu.edu (Y. Deng), sadjadi@cis.fiu.edu (S.

Masoud Sadjadi), clarkep@cis.fiu.edu (P.J. Clarke), vagelis@cis.fiu.edu
(V. Hristidis), raju@cis.fiu.edu (R. Rangaswami), ywang002@cis.fiu.edu
(Y. Wang).
There are several problems, however, with the current
approach for developing communication-intensive applica-
tions. First, today’s communication tools are developed in
stovepipe fashion with limited separation between user-
level communication logic, device types, and underlying
networks. This has led to the use of multiple specialized
communication tools like email, answering machines, fax,
and custom-made teleconferencing applications. Unfortu-
nately, these tools cannot serve unanticipated communica-
tion needs without first incurring a lengthy development
cycle, and consequently, high cost. Second, such vertically
developed systems typically have fixed functionality and
interface, and do not interoperate with each other because
of the differences in design, architecture, API, and network/
device assumptions. It is difficult to adapt these systems to
fit changing user needs, the dynamics of underlying net-
works, and new device and network technologies (Krebs,
2005). Users, particularly sophisticated domain specific
users, are forced to switch between tools to satisfy their
communication needs. Third, the fragmented development
approach poses major challenges with respect to integra-
tion when providing integrated communication solutions.

mailto:deng@cis.fiu.edu
mailto:sadjadi@cis.fiu.edu
mailto:clarkep@cis.fiu.edu
mailto:vagelis@cis.fiu.edu
mailto:raju@cis.fiu.edu
mailto:ywang002@cis.fiu.edu

Y. Deng et al. / The Journal of Systems and Software 81 (2008) 1640–1662 1641
Last but not the least, it hinders the development of new
communication tools, particularly for domain specific
applications (e.g., telemedicine), because of the complexity,
cost, and lengthy cycle required for vertical development.

In this paper, we present a fundamentally different
approach for engineering communication solutions. This
approach, which we call communication virtual machine

(CVM), represents a paradigm shift on how communication
applications are conceived and delivered. We argue that the
CVM approach provides the basis to effectively address the
problems discussed above. The basic premise of the CVM
approach is that such a costly development process can be
bypassed and largely eliminated by providing a model-dri-
ven platform for formulating, synthesizing, and executing
new communication services. When a new (communication)
service is needed, a model called communication schema that
specifies the requirements and flow for the service is built
and fed as input to the CVM. The CVM synthesizes the
communication schema into a communication control script,
which contains step by step instructions (e.g., initiating a
voice call), on how the new service should be executed.
The CVM then executes the script and delivers services
required by the user. (See Section 4 for more detailed discus-
sion of this process.) Consequently, the CVM approach
transforms a full blown development process of delivering
a new communication service into a modeling process.

We argue that this approach is feasible for most conceiv-
able communication services. This is because the basic
functions of communication (e.g., voice/video call, confer-
encing, file/data exchange, and messaging) are common
across different applications; therefore, the interface to
data sources, underlying networks, and different device
types can be normalized. The logic and workflow for com-
munication services are fairly simple (compared to general
software systems), and thus can be synthesized from
higher-level models. We make no claim that this approach
can handle every possible application, but we do argue that
it is general enough to have far reaching utility and impact.

Furthermore, this approach offers a number of advanta-
ges over the vertical development-based approach in terms
of flexibility, adaptability, and interoperability, because it
separates the logic and control of user communication
from communication networks, devices, data sources, and
add-on functions. For instance, security and privacy func-
tions are not addressed in our current prototypical imple-
mentation of CVM. However, the extensible design of
CVM allows existing tools for password protection,
authentication, access control, and auditing to be readily
added to the CVM platform and made available to all com-
munication services. A change of device type will amount
to adding a new device interface in CVM. A change in
user-communication requirements only leads to change of
a communication schema. A new mediator can be added
for access new data sources, etc. Since even a sophisticated
communication schema can be built in terms of hours or
days, rather than months or years needed for designing
and implementing a major communication application
(e.g., telemedicine), CVM provides an effective way to sup-
port complex application-specific communication needs.

A layered CVM architecture will be presented. These lay-
ers are common to and shared by different communication
applications. This architecture separates and encapsulates
major concerns of communication modeling, synthesis,
coordination, and the actual delivery of the communication
by the underlying network and devices, into self-contained
compartments with clear interface and responsibility. We
will show that this architectural principle of separation of
concerns employed in CVM is the basis for its automation
and flexibility. This is because system components and com-
munication protocols that are common to different applica-
tions can be identified and shared without having to be hard
coded into a stovepipe system. This will also enable the
CVM architecture to be independent of the underlying net-
working infrastructure and communication devices.

Coupled with the CVM architecture, there are several
major components that together form the CVM system:
A communication modeling language that provides an intu-
itive graphic form for users (or user organizations) to
declaratively model their communication requirements (in
terms of communication schema); a synthesis engine that
negotiates and synthesizes user-communication sessions; a
communication engine that executes user-communication
logic; and network communication broker that interfaces
with the underlying network infrastructure.

The design of CVM draws from the concepts of model-
driven engineering (Bettin, 2004; Schmidt, 2006) communi-
cation middleware (Schmidt, 1997) and middleware-based
architecture (Schmidt, 2002). However, by focusing on the
communication aspects of the application, CVM achieves
a high degree of automation and effectiveness, and avoids
the pitfalls of many general purpose methods and tech-
niques for model-driven engineering that are overreaching
and consequently ineffective. Furthermore, the CVM
approach goes far beyond the goals of communication mid-
dleware towards end-to-end communication solutions.

A prototypical design of the CVM is implemented and is
fully functional. In addition to supporting general purpose
communication functions (e.g., multimedia conferencing),
we have worked with physicians and technical staff at the
Miami Children’s Hospital (MCH) and the Teges Corpora-
tion, which supplies MCH with its patient medical infor-
mation system called i-RoundsTM (TegesTM Corporation,
2005; Burke and White, 2004). We have conducted case
studies of using the CVM to support communication
between doctors involved in cardiovascular operations
based on scenarios and criteria formulated by the doctors.
We have demonstrated that it takes less than a day to dis-
cuss, formulate and structure the telemedicine scenarios
into CVM communication schemas; and it takes two grad-
uate students a week to integrate the CVM system with the
i-Rounds patient information systems, which transforms
CVM into a communication platform capable of support-
ing a variety of telemedicine communications with struc-
tured exchange of patient information.

1642 Y. Deng et al. / The Journal of Systems and Software 81 (2008) 1640–1662
In the rest of this paper, we present the concept, archi-
tecture, modeling language, prototypical design, and
implementation of CVM. Without compromising the appli-
cability of CVM in other application domains, we use a
healthcare communication application as the case study.

2. Motivating example

The authors have been collaborating with members of
the cardiology division of Miami Children’s Hospital
(MCH) over the last 2 years to study the applications of
CVM in healthcare. One such scenario is post-surgery con-
sultation among the heart surgeon, attending physician,
and referring physician.

Scenario: Baby Jane, who appears to have a heart con-
dition, has been referred to MCH by Dr. Sanchez for
observation and additional tests. Dr. Monteiro, the attend-
ing physician for baby Jane at MCH, performs additional
tests on baby Jane and determines that her heart condition
is severe. Dr. Monteiro consults with Dr. Burke, the chief
cardiovascular surgeon at MCH, and a decision is made
to perform surgery the following day. After Dr. Burke per-
forms the surgery, he returns to his office and contacts both
Dr. Sanchez and Dr. Monteiro to let them know how the
surgery went and to share several aspects of Jane’s medical
record with them, including the post-surgery echocardio-
gram (echo), images of the patient’s heart captured during
the surgery, and the vital signs. Dr. Burke also needs to
outline the post surgery care for baby Jane that should
be followed by Dr. Monteiro at MCH for the next two
weeks.

Supporting such a communication requires voice/video
conferencing, compiling the data to be shared, exchange
different types of data (e.g., text, image, and video), access
to medical information system, exchange (part of) the
patient’s medical record, and logging the consultation for
later reference.

Clearly, carrying out this scenario is possible with
today’s technology. For instance, Dr. Burke can make a
conference call with Dr. Sanchez and Dr. Monteiro using
a conferencing tool. Although feasible, it would be prob-
lematic for Dr. Burke during his conversation to compile
the data from baby Jane’s patient record and send it in
real-time. In case either Dr. Sanchez or Dr. Monteiro does
not have access to this specific application, Dr. Burke
would have to use a separate means to share the patient’s
medical record with his colleagues, either through a cus-
tom-developed telemedicine application, or extracting the
part of the record into a file, or more likely, fax the data
sheets to the other doctors. A paper record or separate data
entry is also needed for logging the session. In general,
although such scenarios can be accommodated with
today’s technology, the users would either have to switch
between different tools (e.g., phone, email, file-sharing,
and messenger applications), or to rely on custom-devel-
oped applications, which are typically expensive and rigidly
designed.
In the following sections, we show how this scenario, as
well as any other similar scenarios, can be satisfied on-
demand and with ease using CVM.

3. CVM overview

To better understand the motivation for CVM, let us
consider what has taken place in the data management area.
Fig. 1 captures the parallelism between the CVM paradigm
and the one for managing heterogeneous data sources. The
increased use of computers and databases has resulted in
data being dispersed across a large number of data sources
with different data models (e.g., relational, XML, text, and
so on), data schemas and querying interfaces (e.g., SQL,
XQuery, and keyword search). This heterogeneity meant
that applications were now required to access multiple data
sources, with possibly different data models and querying
interfaces, resulting in the development of specialized access
mechanisms for each data source. Using specialized access
mechanisms to access data is cumbersome and inflexible
since, if a legacy database is replaced by a newer one, the
application has to be changed. Hence, the logical data
abstraction paradigm was proposed, to hide the specifics
of the underlying sources and export a uniform interface
to the applications for querying data. The right-hand side
of Fig. 1 shows a popular mediator architecture (Chawathe
et al., 1994), where XQuery (see www.w3.org/XML/Query/)
is used as the common data extraction language.

In the communication domain there is a similar need to
hide the underlying device and network infrastructure and
provide a unified communication abstraction layer. The
CVM plays the role of the mediator and it handles the exe-
cution of communication requests specified in CML (com-
munication modeling language explained in Section 5,
which corresponds to XQuery). The wrappers on the left
and right side of Fig. 1 play the role of abstracting the net-
work/device and data specifics, respectively. Finally, the
SIP messages (see www.iptel.org) play the same role as
break-down of XQuery queries. Notice that the dashed lines
with arrows between the left and right sides of Fig. 1 depict
the correspondences between the two paradigms.

In the rest of this section, we present a CVM architec-
tural model for achieving the vision discussed earlier. There
are four major tasks need to be performed to serve the
users’ communication needs (Deng et al., 2006):

(1) Conceive and describe the users’ communication
requirements. For example, (1) a multimedia confer-
ence involves specifying who the participants of the
conference are and what kind of media or data are
to be exchanged, and (2) a telemedicine application
includes specifying the policy that governs who can
access which part(s) of the patient’s medical record.

(2) Transform the user-communication requirements
into a sequence of commands or actions, which when
executed will control the flow of user communication
as dictated by the requirements.

http://www.w3.org/XML/Query/
http://www.iptel.org

Fig. 1. Parallelism to mediator technology in data management.

Y. Deng et al. / The Journal of Systems and Software 81 (2008) 1640–1662 1643
(3) Provide a platform or environment in which the said
sequence of commands can be executed to regulate
the flow of communication.

(4) Deliver the media or data among the communicating
parties through one or more communication
networks.

Today, these tasks are typically hard coded in a commu-
nication system or tool, which pre-defines the way that a
user will use the system. Such a stovepipe design is the root
cause of the problems discussed in Section 1. At the heart
of CVM is a layered architecture, which provides a clean
separation and compartmentalization of these major con-
cerns in the spirit of Buschmann et al. (1998), as illustrated
in Fig. 2. The CVM architecture divides the major commu-
nication tasks into four major levels of abstraction, which
correspond to the four key components of CVM men-
tioned above:

(1) User-communication interface (UCI), which provides
a language environment for users to specify their
communication requirements in the form of a user-

communication schema or schema instance1;
(2) Synthesis engine (SE), which is a suite of algorithms

that automatically synthesize a user-communication
schema instance to an executable form called commu-

nication control script;
1 A schema is a generic model of communication; a schema instance is
an instantiation of the schema for a particular communication session. We
will use the terms interchangeably until Section 5.
(3) User-centric communication middleware (UCM),
which executes the communication control script to
manage and coordinate the delivery of communica-
tion services to users, independent of the underlying
network configuration; and

(4) Network communication broker (NCB), which pro-
vides a network-independent API to UCM and works
with the underlying network protocols to deliver the
communication services.

This layered division of responsibility is reminiscent of
the OSI layered stack model for network communication
(Day and Zimmermann, 1995). Each layer has a specific
role in the stack and communicates logically with the
peer-layer at a remote site during communication sessions.
Each layer builds on the upper layers in the stack to finally
realize the user-communication schema.

UCI is responsible for providing users with a means to
define and manage their communication schema, which
describes the role of communicating parties and the com-
munication logic (e.g., participants, flow of data or infor-
mation). For this purpose, a communication modeling
language is needed (Clarke et al., 2006). Such a language
(see Section 5) should be intuitive enough to support on-
the-fly communication modeling without requiring knowl-
edge of underlying networks and yet rich enough to
describe a variety of communication tasks. The language
design poses many interesting research issues in its own
right. In addition, it is responsible for maintaining consis-
tency between the views of participants, and for serving
as the runtime interface for users to manage their sessions.

User / Application (initiator)

User Communication Interface
(UCI)

Synthesis Engine (SE)

User-Centric Comm. Middleware
(UCM)

Network Communication Broker
(NCB)

Communication Networks

CVM

CML Model Comm.

User Session Comm.

Network Session Comm.

CML Instance Comm.

User / Application (Participant)

User Communication Interface
(UCI)

Synthesis Engine (SE)

User-Centric Comm. Middleware
(UCM)

Network Communication Broker
(NCB)

Communication Networks

CVM

Legend
Control and Data Flow Virtual Communication

Fig. 2. Layered architecture of the communication virtual machine.

1644 Y. Deng et al. / The Journal of Systems and Software 81 (2008) 1640–1662
SE performs two major tasks (Rangaswami et al., 2007):
The first is schema negotiation among participants of com-
munication to ensure that all parties agree to a consistent
schema. Second, SE automatically transforms the schema
to an executable communication control script. This script
represents the network-independent control logic for user-
level communication session specified in the schema. A
basic requirement for SE is that the synthesis process must
be fully automated. SE uses a repository of pre-defined
components for common, as well as domain-specific com-
munication functions. SE puts together the communication
control script by combining pre-defined components (e.g.,
communication session establishment or transmission of
text message) based on the user-defined schema. Conse-
quently, the capability of a schema synthesizer can be
improved incrementally as more ‘‘middleware” compo-
nents are developed. The design of automated and efficient
synthesis techniques and the middleware components rep-
resents another class of interesting research issues.

UCM is the execution engine for communication control
scripts. Based on the communication logic defined in the
script, UCM invokes the common services provided by
the NCB layer to perform tasks including (1) creating ses-
sion, (2) adding a participant to the session, (3) adding a
media to the session, (4) transmitting media, and (5) adjust-
ing media QoS. UCM is also responsible for updating the
user-communication schema resulted from runtime
changes. These changes (received in the form of signals
from the NCB layer) may include (1) initiate session, (2)
receive media, (3) end media transmission, and (4) connec-
tion failed. Furthermore, UCM is responsible for providing
a safe state transition between the running and updated
communication control scripts. For example, when a ses-
sion participant changes the communication schema by
switching from a person-to-person call to a multi-way con-
ference, SE will generate a new communication control
script that reflects the change. Once the new communica-
tion control script is deployed to UCM, it should transfer
the state of the old control script to the new one seamlessly
and safely (Zave et al., 2004). The UCM is also responsible
for the enforcement of policies contained in the communi-
cation schema instance. The policies may include commu-
nication constraints, security properties and other QoS
concerns.

NCB is responsible for providing a uniform API of high-
level and network-independent communication services to
diverse communication applications (Zhang et al., 2006),
in such a way to shield user applications from the underly-
ing network/device heterogeneity and dynamics. It utilizes
and coordinates networking functions (e.g., signaling,
encoding and decoding, and transmitting and receiving)
provided by the underlying networks, systems, and
libraries. Given the variety and complexity of network con-
figurations, it must exhibit a self-managing behavior that
can respond to dynamics of the underlying device and net-
work infrastructure. The concept of NCB offers a novel
approach that simplifies application development and
interoperation, and introduces many important research
issues including self-management, dynamic configuration,
definition of application independent communication
API, and software framework for hiding network
heterogeneity.

These layers collectively fulfill the promise of CVM
that of generating communication applications that are

Table 1
High-level tasks of CVM layers

CVM
layer

Tasks

UCI 1. Create/modify the communication schema instance based
on user input

2. Check the correctness and validity of the user-communica-
tion schema

3. Maintain consistency between participants’ instances

SE 1. Ensure the consistency of user-communication schema
through schema negotiation

2. Perform schema synthesis to obtain the communication
control script

3. Deploy the script to the user-centric communication
middleware

UCM 1. Execute the communication control script
2. Update the user-communication schema based on changes

made by other participants
3. Perform a safe state transition from an older schema to an

updated one
4. Enforcement of schema policies

NCB 1. Provide a high-level communication API, which is inde-
pendent of the platform

2. Utilize and coordinate the available, low-level network
and hardware services

3. Provide self-management in response to dynamics of the
underlying infrastructure

Y. Deng et al. / The Journal of Systems and Software 81 (2008) 1640–1662 1645
reconfigurable, adaptive, and flexible based only on a high-
level description of communication requirements. A sum-
mary of the high-level responsibilities assigned to each of
these layers is presented in Table 1.
4. Design of CVM

In this section, we present a design for CVM that pro-
vides communication services to a user application and
support the querying of a data source using a specialized
CVM mediator. Fig. 3 shows the top-level architecture of
User Interface

Native Server

Data Source

CVM Mediator

Schema

Contact

CVM
Reposito

CVM

NETWO

Fig. 3. Top-level architecture of CV
CVM which consists of the following major components:
the User Interface that provides a easy to use GUI for nov-
ice users; the CVM Mediator that queries the data source
and formats the results using pre-defined forms; and the
CVM Repository that stores the profile for each CVM user.
The data in the CVM repository is partitioned into: (1)
data on contacts – a list of participants that have been
added to the user’s profile; and (2) a set of communication
schemas and instances – these are schemas and instances
that the user decided to store to the repository. The separa-
tion of the contact information and communication sche-
mas allows the NCB layer in the CVM to include other
systems that provide low-level communication services
such as Skype (Skype Limited, 2007), Google Talk, (Goo-
gle, 2007), or applications developed using the Eclipse
Communication Framework (Eclipse, 2007). Based on
the design presented in this section we have developed a
prototype, described in Section 6, that supports the practi-
cality of our design.

In the rest of this section, we introduce the internal
design of the CVM’s four layers and the Mediator. The
components of the four layers in the CVM communicate
using the following interfaces: Provides, Uses, Handles,
and Signals (adopted from Hill et al., 2000). Table 2 sum-
marizes the method invocations and the callbacks used to
realize communication services provided by the CVM.
Notice that each layer uses (resp. handles) what the lower
level provides (resp. signals).
4.1. User-communication interface

The architectural design of UCI, shown in Fig. 4, con-
sists of five major components: (1) the UI Adapter – pro-
vides an API to the user interface that allows for the
creation of a communication service schema or instance;
(2) the Communication Modeling Environment – provides
the user with an environment to develop communication
s

s

ry

User Interface

Native Server

Data Source

CVM Mediator

CVM

RK

M and associated components.

Table 2
Interface between CVM components

Layer Provides Signals

UCI msg login(userid, passwd) notifyUserProfile(data)

msg logout(userid) notifyCommServiceStatus(commServiceList)

msg createConnection() notifyConnectionException()

msg addParticipant(connect_id, userid) notifyCommServiceID()

msg addMedia(connect_id, media)
msg send(connect_id, data)
msg invoke(commService_id)
msg store(commService_id)
msg load(commService_id)

SE msg login(userid, passwd) notifyUserProfile(data)

msg logout(userid) notifyMediaStatus(connect_id, media_id)
msg invoke(schema_inst) notifyParticipantStatus(connect_id, participant_id)
msg invoke(schema_data) notifyException()

notifySIStatus()

UCM executeScript(string) notifyUserProfile(data)

notifyMediaStatus()

notifyParticipantStatus()

notifyException()

NCB authenticate(userid, passwd) notifyUserProfile(data)

createSession(session_id) notifySessionStatus(session_id)
closeSession(session_id) notifySessionInvitation(sender_id, x-cml)
addParty(userid) notifyNetworkFailure()

addMedia(mediaURI)

applyPolicy(xmlString)

UCI-SE Interface

Communication
Modeling Environment

Local
Repository

User/Developer
(interactive)

UCI

X-CML
X-CML

X-CML instance

UI Adapter

Function Calls

Schema Transformation
Environment

User Interface

Legend

1646 Y. Deng et al. / The Journal of Systems and Software 81 (2008) 1640–1662
schemas and instances in G-CML2 which are then auto-
matically transformed to X-CML; (3) the Schema Transfor-
mation Environment – transforms an X-CML instance into
a synthesis-ready X-CML instance or stores the X-CML
model in the repository; (4) the CVM Repository – stores
artifacts (e.g., grammar rules and CML schemas) to sup-
port the creation of CML schemas/instances; and (5) the
UCI-to-Synthesis Engine Interface – provides a conduit
for interaction with the synthesis engine. The User Inter-
face provides a user-friendly GUI that allows users or
developers to easily create communication services schemas
or instances.

UCI provides several functions via the API of the UI
adapter to the user interface as shown in Fig. 4. These func-
tions are listed in the first row of Table 2. The first function
login allows a user to be authenticated, and if successful
the user’s profile is retrieved from the central repository.
The function notifyUserProfile passes a user’s pro-
file form the NCB to the UI after the user successfully logs
in so that the appropriate data is made accessible to the
user. The user profile consists of the contact list for the user
and the set of communication schemas and schema
instances accessible to the user.

The functions createConnection, addPartici-

pant, addMedia, and send, provide the user interface
with the required operations to allow the UI adapter to
construct an X-CML schema instance. Once the schema
instance has been created, the function invoke(comm-
2 We developed two equivalent variants of CML: the XML-based (X-
CML) and the graphical (G-CML). They are introduced in Section 5.
Service_id) is called to start the negotiation process
in the synthesis engine. The parameter commService_id
is the unique identifier for a communication service being
executed by the CVM. The notifyCommServiceID

event signals the UI with the unique identifier associated
with a given communication service. Note that although
only one communication schema is being executed by the
User interactions

Flow of control and data

Flow of data only

Flow of control only

Fig. 4. Block diagram showing the detailed architecture of UCI.

SE

Fig. 5. Block diagram showing the detailed architecture of the synthesis
engine.

Y. Deng et al. / The Journal of Systems and Software 81 (2008) 1640–1662 1647
CVM, it may consist of more than one application. The
user/developer has no knowledge of the underlying schema
instance running on the CVM to support the applications.
However, the user interface needs to know the components
of the applications so that they can be updated accordingly
in the GUI presented to the user/developer.

The functions load/store provide the user (or devel-
oper) interacting with the user interface the ability to
retrieve/save an application from/to the user’s temporary
profile in the local CVM repository. The functions return
an acknowledgment or error message in the form of a mes-
sage (msg). Note that when the user invokes the logout
function his/her user profile is stored to the central reposi-
tory. For example, in the scenario described in Section 2,
Dr. Burke builds the communication application in the
user interface, which makes the appropriate calls to the
UI adapter to build the X-CML model for the schema
instance. After the construction of the application is com-
plete, Dr. Burke starts the application via the invoke

function provided by the UCI.
In addition to constructing a communication schema

instance, UCI checks the syntactic and semantic correct-
ness of a communication schema instance by building an
abstract syntax tree of the X-CML representation and tra-
versing the tree to check type compatibility of the media
types and the values of the fields of the attributes. Some
schema instances require that their abstract syntax trees
be annotated with meta-data associated with a communica-
tion schema (a template for a class of communication
schema instances). This meta-data is defined using the com-
munication modeling environment and stored in the
repository.

During the execution of a schema instance UCI stores
the current state of the schema instance, which includes
the unique identifier for each application, the unique iden-
tifier for the participants and media in the communication,
and the current state of the media being transmitted. The
state is required during communication with the synthesis
engine and is updated based on the signals from the synthe-
sis engine (see Table 2). Any changes to the schema are
passed to the user interface using the notifyCommSer-
viceStatus event. If there is a problem with a particular
connection the UCI signals the UI by sending the noti-
fyConnectionException event. For example, if there
is a problem in transmitting the images of the patient
record (scenario from Section 2) to Dr. Sanchez or Dr.
Monteiro (e.g., bandwidth of the connection is too small)
the UCI signals the user interface of the problem. This sta-
tus update allows Dr. Burke, the sender of the images, to
send text describing the images.

4.2. Synthesis engine

The synthesis engine (SE) automatically transforms a
declarative user-communication schema (specified using
CML) to an imperative communication control script for
deployment on the UCM. It is invoked by UCI via its pro-
vides interface functions, invoke(schema_inst) and
invoke(schema_data), as shown in Table 2. The SE
is defined by its algorithms, processes, and techniques,
which are used to generate the communication control
scripts. These control scripts represent the network-inde-
pendent control logic for user-level communication
sessions.

The key challenge for the SE is complete automation,
free of human intervention. In the rest of this subsection,
we demonstrate how such automation can be achieved in
the domain of user-centric multimedia communication ser-
vices, at least for the functional aspects of the communica-
tion such as coordination of communication requirements
and capabilities, as well as media delivery.

Given the role of the SE, we identify the following tasks
that it must perform: (1) probe the local environment to
align needs with communication capabilities and con-
straints and also determine the need for negotiation; (2)
ensure the consistency of user-communication schema
across participating end-points in a communication
session; and (3) perform schema synthesis to obtain the
communication control script to be deployed on the user-
centric communication middleware.

The design of the SE supports a three-stage process: (1)
schema population, during which the SE probes the environ-
ment to determine and account for local device communica-
tion capabilities and to handle communication constraints;
(2) schema negotiation among participants of communica-
tion, to determine the feasibility of the desired communica-
tion and to ensure that all parties agree to a consistent
communication schema; and (3) schema synthesis, during
which the SE determines the needs of communication and
automatically transforms the schema to a communication

control script deployable on a user-centric communication
middleware. Fig. 5 depicts the architecture of the SE. The

1648 Y. Deng et al. / The Journal of Systems and Software 81 (2008) 1640–1662
arrows depict control flow. The SE also contains an event
handler for external negotiation requests, media progress/
delivery notifications, and exceptions. Such handling may
involve re-negotiation or user notification/feedback.
4.2.1. Schema population

The first step in synthesizing the desired communication
is schema population, which probes the local environment
to align communication needs with local device capabilities
and constraints. Schema population augments the commu-
nication schema instance with the communication capabil-
ities of the local device such as the media types supported,
including specific format (or subtype) information (e.g.,
real-media format of type video). The capability informa-
tion is further enriched with type-specific information such
as resolution and frame-rate of video or the bit-rate of
audio supported. The populated schema instance is then
aligned with the communication needs declared in the
schema instance, employing user-feedback to resolve
inconsistencies, if any. Schema population also determines
the need to negotiate communication parameters with
remote participants involved in the communication. The
need for schema negotiation arises the first time a commu-
nication is initiated and whenever there is a modification to
the current communication schema instance. Specifically, it
is required in the following scenarios: (a) the initiator of a
new communication instantiates the corresponding schema
with remote participant information for the first time; (b) a
participant in an ongoing communication adds or deletes a
participant; and (c) a participant in an ongoing communi-
cation adds/deletes a medium type to the current schema.
Addition or deletion of a participant requires re-negotia-
tion to inform other participants of the change as well as
to accommodate the communication capabilities of the
new set of participants. Addition or deletion of a medium
type requires re-negotiation to conform to the capabilities
and preferences of the communicating participants. Note
that the addition of a new instance of a medium-type
(e.g., sending audio-file myfile.mp3) does not require re-
negotiation as this addition will occur only after the
‘‘audio” medium-type has been negotiated. No new capa-
bilities are required of the end participants.
4.2.2. Schema negotiation

Schema negotiation is required to determine the feasibil-
ity of the desired communication and to ensure the consis-
tency of the communication schema instance across the
participating end-points in a user-communication session.
A communication schema instance defined by user A
may require a video connection to user B. However, if
B’s device is not capable of video communication, this
communication is not possible. In a multi-party communi-
cation scenario among A, B, and C, where A initiates the
communication, C may not agree to communicate with B
after it receive the invitation from A. Apart from negotiat-
ing the initial schema instance before actual communica-
tion starts, schema re-negotiation may also be required
when a communication session is in progress.

Each participant in a communication session has a local
copy of the schema instance. Any change to the schema
made locally may require an update to the local schema
instances at all participating end-points. If two users in a
session are simultaneously altering their schemas, concur-
rency problems arise. The synthesis engine uses a modified
non-blocking three-phase commit protocol Rangaswami
et al. (2007) for schema synchronization.

Each schema instance change initiates a negotiation pro-
cess, which proceeds in three distinct phases. The final
phase is the commit phase. In Phase 1, the initiator reports
the requested change to the schema instance to all remote
participants, including any new participants being added,
by sending the desired schema instance. In Phase II, the
remote parties receive the changes and append their own
un-committed changes, if any, to the schema instance. If
this is the first time a schema instance is being negotiated
or in case new participants are being added, the new partic-
ipants also declare their device capabilities in the schema
instance. Each remote participant sends this modified
schema instance to the initiator. In Phase III, after the ini-
tiator receives the responses from all participants, all mod-
ifications from remote participants are merged. If the new
schema instance differs from the original intent of the initi-
ator, user feedback is employed to authorize the communi-
cation. The initiator then sends a final confirmation, either
in the form of a consistent schema instance to be used for
communication or to cancel the session.

Since multiple parties may initiate schema negotiation
simultaneously, negotiation requests from remote parties
are queued together with the locally generated negotiation
requests in a synchronized negotiation request queue. These
requests are handled in order to ensure the consistency of
the append operations described above. Out of order
requests at multiple nodes are automatically handled due
to the mechanics of the negotiation algorithm, which would
merge requested changes to create a consistent schema.

4.2.3. Schema synthesis

As shown in Fig. 5, the schema synthesis process is
invoked either directly after schema population or after
negotiation. Regardless of the path taken, the schema syn-
thesis process is the same. Its purpose is to transform the
declarative communication schema instance into an imper-
ative communication control script, executable on the user-
centric communication middleware (described in Section
4.3).

A schema instance for a communication session defines
all device types and device instances that are part of the ses-
sion, followed by the attributes of all participants, and the
association between participants and device instances in the
session. The synthesis algorithm is as follows:

(1) Obtain the difference (X-CML’) between the current
X-CML schema instance and the previous (already

Y. Deng et al. / The Journal of Systems and Software 81 (2008) 1640–1662 1649
synthesized) schema instance. If no previous schema
instance exists, the entire new schema instance is used
as X-CML’.

(2) Augment X-CML’ with context information includ-
ing session ID and connection ID for each new entity
(e.g., new participant or new medium instance), if
absent. Now the X-CML’ is composed of one or
more connection blocks.

(3) Create an empty communication control script. For
each connection block in the X-CML’, (i) for each
connection, if this connection did not exist in the pre-
vious version of the schema, add to the script a com-
mand to create a new session that implements this
connection; (ii) for each participant, add to the script
a command for adding a participant to the corre-
sponding session; and (iii) for each medium instance,
add to the script a command for adding the medium
instance to the corresponding session.

(4) Dispatch the communication control script to the
UCM layer for execution.

The X-CML schema of any communication session
defines all devices, persons, and associations of the session,
in sequence as a tree. As the synthesis algorithm processes
the X-CML as described above, it is evident that code for
all features of the communication session will be generated.

In Section 6, we elaborate an actual instance of synthesis
for the telemedicine communication scenario that we
described in Section 2.

4.2.4. Event handler

The event handler of the SE handles system notifications,
exceptions, or error conditions and dispatches the event to
the appropriate subhandler. Remote negotiation requests
UCM-SE Interface

UCM Manager

Loader

Script Interpreter

Event Handler

UCM-NCB Interface

Local Respoistory
(macros, logging

facility)

UCM

NCB-specific
commands

Exception
Handler

Fig. 6. Block diagram for the user-centric communication middleware.
are dispatched to the negotiation handler by adding them
to the synchronized negotiation request queue. Exception
conditions such as loss of communication with a specific
participant or temporary loss in network connectivity are
dispatched to the exception handler, which may either initi-
ate a re-negotiation request to handle the exception or inti-
mate the user via the UCI layer if the exception cannot be
handled internally due to schema instance-specific con-
straints. Finally, communication status updates such as
the amount of progress in media delivery are directly noti-
fied to the UCI layer.

The synthesis engine delivers four types of notifications
to the UCI layer. The notifyMediaStatus and noti-

fyParticipantStatus signals notify the UCI about
media delivery and participant connectivity, respectively.
The notifySI Status signal notifies the UCI about
changes to the schema instance as a result of external
changes due to other participants such as addition of new
participant to an existing session or a change in capabilities
of an existing participant, etc. Finally, the notifyExcep-
tion signals the UCI about exceptions such as lost net-
work connection, when it cannot be handled internally.

4.3. User-centric communication middleware

UCM is responsible for executing the communication
control script and for maintaining the states of user-level
communication (as opposed to network level one). Fig. 6
shows the architecture of UCM. The components of the
UCM include UCM-SE interface and UCM-NCB interface

that exposes the provides and signals functions shown in
Table 2, Row 3; UCM Manager that coordinates the activ-
ities of UCM; Script Interpreter, interprets the control
script, load libraries and generates a sequences of calls to
the NCB to realize communication; Loader loads the
appropriate component macros required for enforcement
of policies such as communication constraints, security
properties and other QoS concerns; Local Repository stores
the macros, current state and logs to support the opera-
tions of UCM; Exception Handler passes exceptions to
the UCM manager to be handled; and Event Handler, han-
dles events, including exceptions, generated by the underly-
ing communication services provider, NCB.

The UCM provides one service to the SE, execute-
Script(string), that takes a string consisting of the
communication control script generated by the SE to be
executed. The control script contains the control flow logic
to either perform schema negotiation, or realize the com-
munication schema instance. The UCM manager takes
the control script and passes it to the Script Interpreter
for translation and execution. During the translation pro-
cess the control script is parsed and the Loader is invoked,
if there are any script commands that correspond to
macros required during execution. Although we have not
yet incorporated the facilities to process policies such as
communication constraints (e.g., if bandwidth is low then
substitute video with images) or security properties (e.g.,

NCB Unified API

NCB Manager

Call
Processing

Participants

Media
Delivery

QoS & Self-
management

Session Manager

User Session

Presence Signaling Media Processing & Transmission

Network Session

Network Interface to the Underlying IP Network Protocols

NCB

Signaling Protocols, Real-Time Prototcols, Best Effort Protocols

Fig. 7. Block diagram showing the detailed architecture of the network
communication broker.

1650 Y. Deng et al. / The Journal of Systems and Software 81 (2008) 1640–1662
encrypt all patient data), we expect that such policies will
be introduced in the future and a macro facility will be
needed to support the enforcement of the policies. In the
current prototype the Script Interpreter takes the control
script generated by the SE and invokes the appropriate
NCB commands. We provide an example of the code gen-
erated by the Script Interpreter for the scenario in Section
6.

The Exception Handler processes exceptions from both
the Script Interpreter and the Event Handler. Possible
exceptions from the Script Interpreter include illegal-
ScriptFormat or missingMacro. These exceptions
are passed to the UCM manager where a decision is made
to interrupt the Script Interpreter and terminate execution
or allow execution to continue. The Event Handler pro-
cesses all the events coming from the NCB including the
exceptions generated from the NCB (e.g., networkFai-
lure, which is passed on to the SE via the UCM man-
ager). Other events handled by the Event Handler include
notifyUserProfile(data) containing the user pro-
file after the user has successfully logged into the CVM
repository and retrieved the user’s schemas (see Fig. 3);
notifySessionStatus(session_id) informs the
UCM of the current status of a session related to a partic-
ular connection; and notifySessionInvita-

tion(sender, x-cml) is an event that invites the user
to join a communication session, the x-cml contains the
schema for the communication.

The Local Repository stores the state for the communi-
cation application being executed. This state information
includes the connection unique identifier and associated
session unique identifiers; logs containing the policy
macros that were executed and the exceptions that were
raised during execution; and locations of data that needs
to be sent on demand during the connection session.

4.4. Network communication broker

NCB’s job is to manage network sessions. (It should be
clear that each user session may result in many network
and transport layer connections and connectionless com-
munications.) Each participant of a session can multicast
to all the other participants. The NCB API (detailed in
Zhang et al., 2006) to UCM is both application- and net-
work-independent, through which high-level communica-
tion tasks can be specified. A new session is created by
invoking the createSession call provided by NCB,
with a session ID, which maintains a unique association
between each user and network sessions. NCB provides
addParticipant, and addMedia services to UCM to
dynamically add participants and media types in user ses-
sions. The NCB interface allows an application to custom-
ize NCB behavior under specific network and system
conditions, based on user or application preference. The
interface, applyPolicy, takes as input an XML string
which describes the policy for self-management. The
NCB callback interface presented in Table 2 allows it to
signal the status of the network, the status of the existing
sessions, and a session invitation from a remote user (i.e.,
the new session will be created after the local user agrees
to join the session).

NCB translates a high-level communication task into a
series of operations that control the underlying networking
facilities. It encapsulates and abstracts the heterogeneity of
the network protocols and their interfaces. As illustrated in
Fig. 7, the internal architecture of NCB is complex in that
it coordinates both the control plane (i.e., signaling proto-
cols negotiating the communication) and the data plane
(i.e., transport protocols delivering media). The NCB core
further includes modules such as Session Management,
Participant Management, Media Management, and QoS
and Self-Management. The current prototype implementa-
tion utilizes the JAIN SIP and the JMF library, and sup-
ports SIP and RTP as underlying networking protocols.

The communication messages between different NCBs
following standard networking protocols may have their
own notions of low-level network sessions. To encapsulate
various network sessions (e.g., audio, video, etc.) within one
user session, the NCB must internally maintain the map-
ping from the user-level session ID to the network-level ses-
sion IDs of the underlying protocols. In the rest of the
paper, the term ‘‘session” is used to denote a NCB user ses-
sion, unless otherwise stated. In Fig. 7, only the modules
above the dotted line are aware of user sessions, while all
the modules below that line are responsible only for indi-
vidual network-level sessions. The extensible design of the
NCB can facilitate the integration of new communication
features over heterogeneous network condition. We briefly
describe and discuss each module as follows.

Mediator
Repository

Form Generator

Format Data &
Tags

Data source(s)
(Medical Data)

CVM Data Mediator

Domain App..
Interface

Data Request

Transformer

Data

Mediator Controller

Presentation
Handler

Data & Layout Request

 Query mapping info.

Formatted Data

Fig. 8. Block diagram showing the architecture of the CVM data mediator.

Y. Deng et al. / The Journal of Systems and Software 81 (2008) 1640–1662 1651
The NCB Manager is responsible for the initialization
and the configuration of the entire NCB middleware. For
example, it maintains the signaling server information (IP
address, etc.). Upon receiving an application request for
creating a new session (at the caller side), or a signaling
message INVITE (at the callee side) from a remote user
negotiating a new conversation, NCB Manager creates a
new Session Manager (see below) to handle the new com-
munication session. The NCB Manager maintains the list
of Session Managers for all active sessions.

A Session Manager deals with a single user session. Since
the states associated with a session include the call status,
the participants, and the media transfer, this module fur-
ther delegates the tasks to the ‘‘Call Processing”, ‘‘Session
Participants”, and ‘‘Media Delivery” submodules within
the Session Manager. The Session Participants module
keeps the list of participants of this session. The Call Pro-

cessing module controls, at the level of user sessions, the
logic of a session. It converts high-level control actions
(such as ‘‘addParticipant”) of a user session to low-
level signaling operations, based on the underlying Signal-
ing module, which carries out the basic signaling. It main-
tains the states of the user session, such as the mapping
between the user session and individual SIP signaling ses-
sions maintained by the Signaling module. The Media

Delivery module manages, at the level of user sessions,
the transfer of media in a session. It translates an ‘‘addMe-
dia” call from the application into a number of internal
operations. It first relies on the Call Processing module to
negotiate transmission parameters (port numbers and
encoding/decoding schemes) before the actual media trans-
mission. It then pass the control to the ‘‘Media Processing
and Transmission” module to actually transmit the media.

The Media Processing and Transmission carries out
media transmission and reception. In addition, media will
be pre-processed (e.g., encoding) at the sender side, and will
be post-processed (e.g., decoding) at the receiver side. The
Signaling module carries out the basic signaling operations
according to the signaling protocols, such as registration,
invite a participant, media type and parameter negotiation.
The Signaling module encapsulates the signaling heteroge-
neity, such as different signaling protocols (SIP vs. H.323),
with or without NAT traversal.

The QoS and Self-Management module autonomously
monitors and adapts the behavior of the Media Delivery
module. The self-management behavior of this module fol-
lows the high-level policies specified through the apply-

Policy interface (see Table 2) as the guideline from
upper-layer applications. For example, if the available
bandwidth is low, depending on user/application prefer-
ences specified through high-level policies, this module can
instruct the Media Delivery module to either (i) use encoding
schemes that provide less resolution; or (ii) suspend video
transmission in order to maintain high-quality voice com-
munication; or (iii) slow down (by decreasing socket buffer
sizes) file transfer for high-quality video/audio.

4.5. CVM data mediator

The CVM Data Mediator, shown at the top of Fig. 3, is
an extension to the prototypical design presented by Deng
et al. (2006). Although the mediator is external to the
CVM, it provides an interface that allows the CVM to
extract data from domain specific information systems to
be sent to participants in a communication. The task of
interfacing with other information systems is particularly
important in the domain we are currently exploring, the
healthcare domain (Hristidis et al., 2006).

The architecture of the CVM Data Mediator, shown in
Fig. 8 consists of four major components: (1) the Mediator

Fig. 9. EBNF representation of X-CML.

1652 Y. Deng et al. / The Journal of Systems and Software 81 (2008) 1640–1662
Controller – accepts the data request from the user interface
and coordinates the packaging of the data to be returned to
the CVM; (2) the Domain Application Interface – formu-
lates the query to be sent to the domain application, e.g.,
in the healthcare applications; (3) the Presentation Handler

– processes the data returned from the Domain Applica-
tion Interface and applies any security/privacy policies on
the data content, the formatting of the data using the
appropriate template, and generating the retrieval mapping
data; and (4) the Local Repository – stores the templates,
tags and mapping information used in the CVM data medi-
ator. The data from the mediator is passed to the CVM
using the X-CML data format. The mediator invokes the
send function provided by the UCI.

5. Communication modeling language

In this section, we introduce our approach to communi-
cation modeling through an overview on the requirements
for communication modeling and description of our com-
munication modeling language.

5.1. Requirements

We have identified the following requirements for the
communication modeling language: (1) Simplicity – be sim-
ple and intuitive; (2) Network-independence – be indepen-
dent of network and device characteristics; and (3)
Expressiveness – model the large majority of communica-
tion scenarios.3 In order to refine the expressiveness
requirement, we identify the following primitive communi-
cation operations:

(1) Establish a connection.
(2) Transfer a piece of data or a data stream.
(3) Add/Remove participants to a communication

(which corresponds to the conferencing capability
of current systems).

(4) Specify requested properties for a connection or a
particular data transfer. These properties include
quality of service, security, access rights, suggested
handling of transferred data.

(5) Group the transferred data such that the receiving
sides become aware of their association.

(6) Close connection.

Notice that the above operations are by no means an
exhaustive list. We considered a much longer list but chose
the above in order to build a minimal, intuitive and ade-
quately expressive first version of CML. Other operators
which we have considered but have postponed for later ver-
sions include communication constraints (e.g., if band-
width is low then do not send video streams) and timing
commands (e.g., transfer the sensor output every 5 s).
The goal of CML as the first language in this area is to trig-
3 Similar to SQL, which can express the large majority of data queries.
ger the research community to start developing communi-
cation languages in order to eventually reach a well-
accepted standard.4
5.2. CML

We present an intuitive communication modeling lan-
guage (CML) (Clarke et al., 2006) for modeling user com-
munication requirements. We developed two equivalent
variants of CML: the XML-based (X-CML) and the
graphical (G-CML). The former is the version that CVM
understands and processes, while the latter is the user-
friendly graphical form. G-XML is analogous to the E–R
diagram (Chen, 1976) in the database domain. In Clarke
et al. (2006), we show how these two variants can be auto-
matically converted to each other.
5.2.1. X-CML

For presentation purposes we have converted (and sim-
plified) parts of this XML Schema to EBNF form (stripping
out reference constraints that cannot be represented in
EBNF), shown in Fig. 9, in order to explain the basic com-
ponents of CML. Notice that Fig. 9 depicts an attribute
grammar, where attributes are denoted by an ‘‘A” sub-
script, terminals by boldface and non-terminal by italics.
Fig. 10 shows the hierarchy of built-in types (builtinTy-
peA) currently supported in the CML implementation in
CVM. An example of the EBNF productions shown in
Fig. 9 is as follows. Production 6 states that the deviceNT

non-terminal is composed of an actual device (device ter-
minal) e.g., PC, that has one or more capabilities (device-
Capability terminal) i.e., the types the device can
process. In production 9 the actual device currently has
one attribute a unique device identifier deviceIDA.
5.2.2. G-CML

Table 3 shows the graphical grammar for G-CML. Col-
umns 2 and 3 of Table 3 show the non-terminal definitions
4 In the same way as XQuery emerged by combining multiple earlier
XML language proposals.

Fig. 10. Pre-defined (built-in) types for CML.

Y. Deng et al. / The Journal of Systems and Software 81 (2008) 1640–1662 1653
of G-CML, while Columns 4 and 5 show the terminal def-
initions. The number in the first column of Table 3 corre-
sponds to the equivalent production in the EBNF
representation of X-CML, shown in Fig. 9. For instance,
the first row of Table 3 shows the structure of the userSche-

ma non-terminal, which consists of the local non-terminal
connected to one or more connection non-terminals (con-

nection). To indicate that a symbol may be repeated we
use the character ‘‘�” for zero or more repetitions and
‘‘+” for one or more repetitions. The right side of the first
row in Table 3 shows the terminal for connection, which
consists of a diamond shaped box with the label ‘‘connec-
tion”. The remaining non-terminals and terminals in Table
3 can be described in a similar manner. G-CML uses a
notation similar to E-R diagrams, however the semantics
are different. The symbols used in G-CML can be classified
into three categories, these include: (1) entities – person,

device, medium and form; (2) relationships – connec-
tion and isAttached; (3) attributes – properties of the
entities (e.g., suggestedApplicationA

5). We have
built a tool to support the construction of G-CML models
using the Eclipse Modeling Framework (Wang et al.,
2007). The tool guides the user when building G-CML dia-
grams in an intuitive drag-n-drop manner and automati-
cally validates the model as it is being built.
5.2.3. CML for scenarios

Figs. 11 and 12 show the (instantiated) G-CML and
X-CML representations for the scenario of Section 2,
respectively. Since the frequency of exchanging data during
communication is much higher than updating the commu-
nication’s configuration (e.g., list of participants, device
capabilities), we partition a CML instance into control part
5 There are attributes associated with entities that are not shown as
special symbols in the diagram but are captured as textual notation in the
associated symbols, e.g., personRole of Person. We chose this design
option to avoid having diagrams that are cluttered with symbols.
(configuration) and data part (exchanged media), as shown
in Fig. 12. Sending the control part, only when a change
occurs, leads to reduced processing and parsing delays.
Note that in practice the user only needs to create the G-
XML or X-CML schema once. Then for each instantiation
of the schema, the user only needs to assign values to the
entities of the schema, e.g., assign names to participants
(persons) and media. A connection in CML is a user ses-
sion, and is defined as a communication among a group
of participants, where exchanged data is by default broad-
casted to all participants. In addition to the local side, a
connection contains a set of media (mediaAttached)
currently transferred in the connections (user-communica-
tion session) and a set of remote participants (remote).
Both local and remote participants are associated with a
communication device (e.g., PC, cell phone), which is asso-
ciated by a set of capabilities (deviceCapability).

Notice that the specific characteristics of a device, such
as its type (e.g., PC or cell phone) or its connection type
to the network (e.g., IP or cellular), are not defined nor
required. The reason is that CML operates on an abstrac-
tion of the underlying network and devices. We assume
there is a single virtual device per person, which has the
union of the capabilities of all physical devices attached
to the user.

A medium is a data piece or data stream, like a Word
document or a live video feed respectively. A medium has
a type which is one of the pre-defined types supported by
the system, a mediumURL that contains the location of
the medium (a file location for a data piece or a port for
a data stream), and a suggestedApplication which
defines the application that can be used to view or process
a medium (e.g., Powerpoint for ppt files).

Finally, composite data are represented using forms in
CML, which are nested structures that contain media as
well as user-defined attributes (e.g., media with common
suggestedApplication can be grouped together in a
form). For example, it is common in medical scenarios to

Table 3
Grammar for G-CML

connection
person
Dr. Burke
023
Surgeon

Device(PC)isAttached

medium
heart_scan_video.mpg
VideoFile
send

isAttached

generic form

medium
Heartscan2.gif
NonStreamFile
send

LiveAV Non-
StreamFile

VideoFile TextFile

isAttachedDevice(Virtual)

LiveAV Non-
StreamFile

VideoFile TextFile

person
Dr. Monteiro
048
Attending
Physician

person
Dr. Sanchez
041
Referring
Physician

Device(Virtual)

LiveAV Non-
StreamFile

VideoFile TextFile

form
Vital Signs

medium
LiveAV

Fig. 11. G-CML example for our scenario.

1654 Y. Deng et al. / The Journal of Systems and Software 81 (2008) 1640–1662

Fig. 12. X-CML example for our scenario.

Y. Deng et al. / The Journal of Systems and Software 81 (2008) 1640–1662 1655
require transferring complex medical data consisting of
multiple simple media (e.g., a page in a patient medical
record). Form has an action attribute which defines a
default action that is performed on this medium during
form transfer. The actions ‘‘send” and ‘‘doNotSend”

translate into transfer automatically the medium in the
form or wait for the user to request the medium, respec-
tively. The ‘‘startApplication” orders the system to
open the suggested application of the medium once
transferred.
6 http://www.voicexml.org/specs/multimodal/x+v/12/.
7 http://java.sun.com/developer/technicalArticles/J2EE/AJAX/.
6. Prototype implementation

A CVM prototype has been implemented using the fol-
lowing technologies. A Web-based user interface has been
deployed with the Opera 8.5, a voice-enabled browser. This
prototype enables creation, modification, and use of com-
munication schema instance using voice commands. The
technologies used at the browser side are HTML, Java-
script for dynamic effects and the program logic, and
XHTML+Voice6 for voice conversation. Part of the Java-
script code uses AJAX7 technology (Asynchronous Java-
Script and XML) to make web requests and responses in
the background, without having to refresh the web pages.
The rest of the CVM layers, including another user inter-
face (currently being the most updated version of our
UI), are implemented in Java, deployed on each node.
JAIN SIP and Java Media Framework (JMF) are used
for control and data communications, respectively. Finally,
we used SER (SIP Express Router) server for registration
and presence and Asterisk for connection to PSTN and
audio mixing.

Figs. 13 and 14 show two screenshots form the current
prototype with the Java-based user interface (for Web-
based UI, please refer to Deng et al., 2006). These screen

http://www.voicexml.org/specs/multimodal/x+v/12/
http://java.sun.com/developer/technicalArticles/J2EE/AJAX/

Fig. 14. Screenshot of CVM prototype showing integration of CVM with the iRounds system.

Fig. 13. Screenshot of CVM prototype showing an overview of active communications.

1656 Y. Deng et al. / The Journal of Systems and Software 81 (2008) 1640–1662

Y. Deng et al. / The Journal of Systems and Software 81 (2008) 1640–1662 1657
shots are taken from Dr. Burke’s perspective, who initiated
the communication application in the scenario presented in
Section 2. The user interface of CVM can be divided into
two parts:

(1) The right side is the CVM dashboard which consists
of: Contacts – user’s contact list; Services – all avail-
able communication services; My Forms – list of pre-
viously created forms; My Documents – refer to
recently used files; and Profile – the user’s personal
information.

(2) The left side panel is the communication application
space and it is divided into six composites. It includes:
Controls – the communication service information;
Chat – the space of exchanging instant message;
Forms – refer to shared forms; Files – refer to shared
files; Participants – remote persons involved in the
current communication; and Video – consisting of
live video stream windows for all remote persons in
the current communication.

An additional window will pop up for the construction
of forms. It can be a Generic Form window or a Specific

Form window. Fig. 13 shows the screenshot of the CVM
during the construction of a generic form. The three doc-
tors in the scenario are having a three-way video confer-
ence. Live video streams from Dr. Sanchez and Dr.
Monteiro are shown in the bottom left corner of the com-
munication application space. The video streams are dis-
played in two windows in the Video composite. Dr.
Burke is constructing a generic form ‘‘baby jane” in
the Generic Form window. The Generic Form window
contains two media entries a video file ‘‘heart_-
scan_video.mpg” and an image ‘‘heartscan2.gif”.

Fig. 14 shows the screenshot of sharing a specific form
generated from the iRounds8 system. There are two items
in the Form composite on top of the CVM side panel.
One is the generic form ‘‘baby jane.xcml” shown in
Fig. 13; the other is a specific form ‘‘PatientHospital-
ization866803.xhtm” shown in Fig. 14. The content of
the specific form is shown in the ‘‘Vital Signs” window
in the foreground of Fig. 14. The CVM Mediator retrieves
the information from the iRounds system for ‘‘Jane
Smith” and combines it with a pre-defined layout tem-
plate to generate the specific form.

The UCI modifies the schema instance to reflect the
above changes and invokes the synthesis engine. The syn-
thesis engine generates the following script after a process
of negotiation is completed:

createConnections(‘‘connection1’’);

addParticipants(‘‘connection1’’, ‘‘Dr. San-

chez, Dr. Monteiro’’);
8 i-Rounds is an integrated clinical information system developed by
Teges and currently being used in Miami Children’s Hospital.
sendSchema(‘‘connection1’’, ‘‘Dr. Burke’’, con-

trol-xcml, data-xcml);

addMedia(‘‘connection1’’, ‘‘LiveAV’’);

sendForm(‘‘connection1’’, ‘‘baby jane’’,

‘‘http://www.cis.fiu.edu/heart_scan_video. mpg;

http://www.cis.fiu.edu/heartscan2.gif”);

sendForm(‘‘connection1’’, ‘‘PatientHospital-

ization866803’’, ’’’’);

The above script is delivered to the UCM using the exe-
cuteScript() of UCM provides interface (as presented
in Table 2). The UCM then invokes appropriate NCB func-
tions to accomplish the actual operations requested by the
user. Following is an outline of the logic generated and exe-
cuted by UCM interpreter for the control script shown
above:

/* createConnections(‘‘connection1’’); */

sid = ‘‘s1’’/*createaUCMsessionIDsharedwith

NCB*/

map(‘‘connection1’’, sid) /*maps connectionID

to sessionID*/

if(!ncb.createSession(sid)) /*calls NCB to

create session*/

throw noSessionException

/*addParticipants(‘‘connection1’’, ‘‘Dr. San-

chez, Dr. Monteiro’’); */

sid = getSessionID(‘‘connection1’’)

store participantList/*list contains ‘‘Dr.

Sanchez, Dr. Monteiro’’*/

if (sid==null)

throw noSessionException

for all p 2 participantList
begin

if(!(ncb.addParty(sid, p)))

throw partyNotAddedException(p)

end

/*sendSchema(‘‘connection1’’, ‘‘Dr. Burke’’,

control-xcml, data-xcml)*/

sid = getSessionID(‘‘connection1’’)

participantList = getParticipantList (‘‘sid’’)

if (sid==null)

throw noSessionException

if !(control_xcm==null)

if(!(ncb.sendSchema(sid, ‘‘Dr. Burke’’, par-

ticipantList, control_xcml)))

throw controlSchemaNotSentException

if(!(datel_xcm==null))

if(!(ncb.sendSchema(sid, ‘‘Dr. Burke’’, par-

ticipantList, data_xcml)))

throw dataSchemaNotSentException

/*addMedia(‘‘connection1’’, ‘‘LiveAV’’)*/

sid = getSession(‘‘connection1’’)

if (sid==null)

throw noSessionException

if !(ncb.sendMdia(sid, ‘‘LiveAV’’, null))

notify SE.unavailableMeida()

http://www.cis.fiu.edu/heart_scan_video.mpg
http://www.cis.fiu.edu/heartscan2.gif

Table 4
Reduced development time compared to traditional design and
development

Application type Application loc Estimated
development
time

Spec/
Synthesis
time (min)

Multi-user text
chat

Jabber-
1.4.2

5528 2 months <5

Person-to-person
voice call

Custom 9478 4 months <5

Person-to-person
video
communication

Custom 16,784 7 months <5

1658 Y. Deng et al. / The Journal of Systems and Software 81 (2008) 1640–1662
/*sendForm(‘‘connection1’’, ‘‘baby jane’’, http://

www.cis.fiu.edu/heart_scan_video.mpg,”

‘‘http://www.cis.fiu.edu/heartscan2.gif”);*/

sid = getSession(‘‘connection1’’)

if (sid==null)

throw noSessionException

formURL = getFormURL(‘‘baby jane’’)

if (formURL==null)

throw formNotFoundException

/*Check if the form is a specific form*/

if (formURL.type==specific){

if (!ncb.sendMedia(sid, FileTransfer,

formURL))

throw mediaNotSentException

}

else{

/* Form is generic. URLString contains ‘‘http://

www.cis.fiu.edu/heart_scan_video.mpg,

http://www.cis.fiu.edu/heartscan2.gif”*/

mediumURLList = URLString.Tokenize()

/*Extracts each mediumURL from the list*/

while (mediumURLList.hasNext())

if(!ncb.sendMedia(sid, FileTransfer,

mediumURLList.next()))

throw mediaNotSentException

}

/*The sendForm code is repeated for the specific

form:

sendForm(‘‘connection1’’, ‘‘PatientHospi-

talization866803’’, ’’’’); */

We have tested our prototype implementation with sev-
eral other case studies both in general purpose applications
such as multimedia conferencing and in domain specific
applications such as Telemedicine. Our Telemedicine sce-
narios have been provided by our partners at Miami Chil-
dren Hospital.

Limitations. The current version of the CVM prototype
supports the design presented in Section 4. However, the
following functionality have not yet been implemented:
policies to support QoS, adaptive management, reliability,
security, and access control.

7. Prototype evaluation

To show the effectiveness of synthesis engine, we obtain
an estimate of the reduction in development time (and con-
sequently, development cost) for applications with compa-
rable functionality using two development approaches. The
two approaches that were compared included the tradi-
tional stovepipe approach and the automatic synthesis
approach provide by the CVM. The applications included
(1) a chat application, (2) a person-to-person voice call,
and (3) a person-to-person video communication service.
Applications (2) and (3) used JMF (Java Media Frame-
work API, 2005) and JAIN-SIP (JAIN-SIP, 2006) technol-
ogies and were developed by our team. Table 4 summarizes
these applications, their code sizes in lines of code (loc),
their estimated development time using the traditional
approach, and also shows the approximate specification
and synthesis time for generating these applications using
the CVM prototype. Row 1 of Table 4 contains the data
for a multi-user test chat application, the application using
the traditional approach is Jabber-1.4.2 (jabber07, 2007),
lines of code is 5528, estimated time of development is 2
months, time to develop the application using CVM is less
than 5 min. Rows 2 and 3 represent the data on the appli-
cation that were developed by our team for the person-to-
person voice call, and person-to-person video conference
respectively. To estimate the development time by a trained
programmer, we used the study of Ferguson et al. (1997),
whose findings reveal approximately 2500 lines of code
per month per programmer.

The numbers in Table 4 demonstrate the significance of
our approach. Service creation time is reduced by several
orders of magnitude. Even if we assume that only 25% of
the code contributes to the functional aspects of the soft-
ware, improvements in development time are still over
two orders of magnitude. Further, the automated process
introduces fewer bugs into the code-base, improving soft-
ware reliability. This underlines the importance of using
automated processes for synthesizing communication
applications rather than follow traditional design and
development.

To evaluate the time required for the actual synthesis
process, we deployed CVM to seven machines (desktops
and laptops) in a combination of wired and wireless local
area network. Ten demo users were created and used to
represent seven users communicating with each other. To
verify the correctness of the synchronization protocol
within the negotiation process, we initiated simultaneous
modifications to the schema instance at different sites and
verified the absence of any inconsistencies in the schema
instances at the various end-points automatically over
numerous iterations. In addition, we instrumented the syn-
thesis engine to obtain the time required to perform schema
synthesis. The plot in Fig. 15 shows the average time in
seconds required for synthesis including the negotiation/
re-negotiation stages when there are 2–7 participants
present in a communication session. The results of these

http://www.cis.fiu.edu/heart_scan_video.mpg
http://www.cis.fiu.edu/heart_scan_video.mpg
http://www.cis.fiu.edu/heartscan2.gif
http://www.cis.fiu.edu/heart_scan_video.mpg
http://www.cis.fiu.edu/heart_scan_video.mpg
http://www.cis.fiu.edu/heartscan2.gif

0

1

2

3

4

5

6

0 2 6 10 11

Number of Participants

S
yn

th
es

is
 T

im
e

(i
n

 s
ec

o
n

d
s)

1 3 4 5 7 8 9

Fig. 15. Average time required for negotiation.

Y. Deng et al. / The Journal of Systems and Software 81 (2008) 1640–1662 1659
experiments show that the synthesis process scales linearly
with the number of participants, and the process itself is
dominated by the schema negotiation time. Higher num-
bers are not depicted due to lack of experimental infra-
structure; however, we do not envision any issues limiting
the linear scaling for larger participant-sets. The experi-
ment demonstrates the practicality of schema synthesis
process with a distributed negotiation algorithm; the nego-
tiation time, which dominates the overall synthesis time
incurs an acceptable delay.
8. Related work

There is a plethora of related research that addresses the
individual processes and artifacts used in the various com-
ponents of the CVM. However, not much has been pub-
lished on how such components can be combined to
provide flexible, user-centric and on-demand communica-
tion solutions. There are a number of off-the-shelf commu-
nication applications such as Yahoo! Messenger and MSN
Messenger. We are also aware of several companies’ efforts
to integrate various tools into comprehensive communica-
tion solutions. The development approach that these prod-
ucts are based on dictates that none of them possesses the
flexibility, on-demand, and user-centric communication
solutions addressed in this paper. For example, it would
be a tall order to adapt any of these tools to a comprehen-
sive telemedicine application.

In the rest of this section, we have divided the related
work into three major categories and discussed how
CVM relates to them.
8.1. Model-driven engineering

The CVM approach shares some common traits with
the concept of model-driven engineering (Bettin, 2004; Bal-
asubramanian et al., 2006, 2004). In contrast to general-
purpose model-driven development, automatic generation
of communication services is feasible in CVM for two rea-
sons: First, CVM is restricted to the scope of communica-
tion services and does not bear the complexity of
generating general-purpose applications. The complexity
of communication logic can be carefully regulated through
the design of the schema modeling language. Second, CVM
utilizes communication middleware components (e.g.,
those of ACE Schmidt and Huston (2002)) and server-side
architectures (e.g., Bond et al., 2004) as building blocks to
generate communication applications. Such existing com-
ponents encapsulate procedures, patterns, and algorithms
governing basic communication services (e.g., session
establishment of person-to-person voice call, transmission
of an image file, and real-time video streaming), which
are well understood. The role of CVM is limited to the
identification and composition of such components
(McKinley et al., 2004).

More specifically, Heckel and Voigt (2004) describe how
models in UML are transformed into BPEL4WS using the
concept of pair grammars. We use a similar approach in
the UCI but our modeling language G-CML is far more
restrictive than UML and hence far more manageable
and its synthesis can be automated. The implementation
of the visual model in the UCI is based on the work by
Costagliola et al. (2004). Costagliola et al. provide a frame-
work that allows the user to define a visual language, create
graphical models, validate these models and convert the
models into strings of another language. The work in Bal-
asubramanian et al. (2006) generates code from models
using tool suites for specific application domains that were
developed using a generic modeling environment. In our
work, a generic SE generates control scripts from a CML
description of communication logic, with restricted utility
to the communication domain.

8.2. Communication middleware

There has been extensive work on communication mid-
dleware. Our work used many of the principles presented
by Schmidt (1997), including using patterns and frame-
works to alleviate complexity associated with a growing
range of multimedia data types, traffic patterns, and end-
to-end QoS requirements. Schmidt explored common pit-
falls of developing communication software, including lim-
itations of low-level native OSs and APIs and the
limitations of higher-level middleware. The UCM and
NCB components of CVM are designed exactly to avoid
these pitfalls.

The existing protocol stacks may not be always suitable
to take advantage of advanced transmission technologies
and high-speed networks. Geppert and Rößler (1996) dis-
cussed how communication architectures could be made
more flexible by automatically configuring communication
subsystems based on a specification of desired target ser-
vice. In the NCB we use a similar approach.

Stiller et al. (1999) described the Da CaPo++ system
as an end-system middleware for multimedia applications

1660 Y. Deng et al. / The Journal of Systems and Software 81 (2008) 1640–1662
adaptable to the application needs. The authors claimed
that Da CaPo++ automatically configures suitable com-
munication protocols, provides an efficient runtime sup-
port, and offers an easy to use object-oriented API,
which shares some common traits with the low layers
of UCM components. UCM design also leverages the
concept of adaptive and reflective middleware, such as
ACE and Ensemble, to provide self-management using
only a high-level guideline. ACE (Schmidt and Huston,
2002) is a real-time C++ framework that wraps OS ser-
vices and provides a variety of communication-related
patterns. Ensemble van Renesse et al. (1998) is a group-
ware communication toolkit, which enables insertion of
detectors in protocol graph. These detectors can trigger
dynamic adaptation by distributing a new protocol-graph
specification to all involved participants using a reconfig-
uration protocol.

JAIN-SIP (2006) is a standardized Java interface to SIP.
Java Media Framework API (2005) is a library for audio
and video communication. The low-level APIs of these
communication libraries are still significantly complex to
use, and far less usable than the user-centric session of
UCM. The Java Telephony API is a high-level API for tra-
ditional telephony applications. They do not support next-
generation multimedia communication applications with
sophisticated business logic. Zave et al. (2004) discusses
open software architectures for IP-based voice communica-
tion. Parlay (The Parlay Group, 2007) is an API for rapid
creation of telecommunication services. These frameworks
mostly address the server-side architecture and service cre-
ations. The server-side architecture has different concerns
than the client-side middleware, which is the focus of
UCM. In contrast to traditional telephone networks, in
IP networks, end-hosts are capable of sophisticated com-
munication logic. We note that the CVM principle of sep-
arating policy from mechanism has been popular in the
operating systems community for several decades (Levin
et al., 1975).

8.3. Computing middleware

Common computing middleware like CORBA (Vinoski,
1998; Vinoski, 1997), Java RMI (Satoshi, 1997), and
DCOM (Chung et al., 1997) define higher-level distributed
programming models as a set of reusable APIs and mech-
anisms, allowing developers to request services provided
by target objects transparent of their location, program-
ming language, OS platforms or communication protocols
(Raj, 1998; Chung et al., 1997; Emmerich, 2000; Emmerich
and Kaveh, 2002). Java/RMI allows Java developers to
invoke object methods and execute them on Java Virtual
Machines. Using JavaRMI, entire objects can be passed
and returned as parameters. CORBA is a distributed sys-
tems technology that provides a higher-level, object-ori-
ented interface on top of the basic distributed computing
services. DCOM is a distributed extension to the Compo-
nent Object Model (COM). Similar to CORBA, DCOM
supports heterogeneous programming languages, but
unlike CORBA and Java RMI, DCOM supports only
Windows-based platforms.

Such computing middleware provides only a general
model as a basis for developing distributed application,
which serves to achieve application requirements in a dis-
tributed environment. The purpose is to eliminate the dif-
ference of using remote objects and local objects.
However, the focus of their work is not on the communi-
cation process itself (Object Management Group, 1994).
The high-level work flow and basic primitives of commu-
nication are not addressed in these paradigms. Even the
simplest communication scenario, such as making a
phone call, might go beyond the capability of CORBA,
which does not inherently support APIs for real-time,
interactive voice communications (Schmidt and Kuhns,
2000). Many issues such as, communication quality con-
straints, exchanged data types, and security definition dur-
ing communication may arise to be implemented in the
real communication services. Since these distributed
object paradigms always ignore the location of target
objects, it is hard to capture these requirements in an
intuitive way. CVM is constructed to support basic com-
munication activities and enable users to define variant
communication models to capture the process of user
communication. CORBA, JavaRMI, DCOM, and the like
are not designed to solve these problems.

In CVM, an entire communication application is
expressed using a high-level communication model, which
can be rapidly realized. A communication schema pro-
vides higher-level of abstraction for capturing real world
communication scenarios than the comparatively lower-
level object-oriented model used in CORBA, JavaRMI,
and DCOM. In this way, developers can create commu-
nication application models without the need to deal
with the details of logical sequence of object method
invocations.

9. Conclusion

We have presented CVM for on demand declaring,
synthesizing and delivering communications services. We
have discussed its architecture, supporting modeling lan-
guage, components, algorithms, interfaces, and prototypi-
cal implementation. We discussed how CVM allows users
to rapidly build and execute communication schemas to
provide communication solutions across different applica-
tion domains. It would be a misconception, however, to
assume that an end-user needs to know modeling before
they can use the CVM. For most end-users (e.g., a doc-
tor), the modeling aspect will be hidden, because the sche-
mas they use will be packaged as pre-defined services by
their service providers or their organizations (e.g., a
hospital).

Several classes of issues including security and perfor-
mance at different layers of CVM are not addressed in this
paper. A number of useful features can also be added.

Y. Deng et al. / The Journal of Systems and Software 81 (2008) 1640–1662 1661
Robust and effective solutions to these issues require fur-
ther study, which represent exciting and interesting
research topics. We argue, however, CVM represents a
new paradigm for structuring and delivering communica-
tion solutions and services, which are far more effective
than the current ways of development. In fact, the unique
architectural traits of CVM allow new components and
features to be seamlessly added as they become available.
As such, CVM can serve as a communication service
framework, which can be built upon and incrementally
improved by the collective wisdom of the research
community.

Acknowledgements

This work was supported in part by the National Sci-
ence Foundation under grant HRD-0317692. We thank
Eric Johnson, Andrew Allen, Yali Wu, Mario Lorenzo
and Marylurdys Hernandez and for their participation in
CVM prototype implementation.
References

Balasubramanian, K., Gokhale, A., Karsai, G., Sztipanovits, J., Neema,
S., 2006. Developing applications using model-driven design environ-
ments. Computer 39 (2), 33–40.

Bettin, J., June 2004. Model-driven software development: an emerging
paradigm for industrialised software asset development. Technical
Report, SoftMetaWare. <http://www.softmetaware.com/whitepapers.
html>.

Bond, G.W., Cheung, E., Purdy, K.H., Zave, P., Ramming, J.C., 2004. An
open architecture for next-generation telecommunication services.
ACM Trans. Inter. Tech. 4 (1), 83–123.

Burke, R.P., White, J.A., 2004. Internet rounds: a congenital heart
surgeon’s web log. Sem. Thoracic Cardiovasc. Surg. 16 (3), 283–292.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M., 1998.
Pattern-Oriented Software Architecture: A System of Patterns. Wiley,
New York.

Chawathe, S., Garcia-Molina, H., Hammer, J., Ireland, K., Papakon-
stantinou, Y., Ullman, J.D., Widom, J., October 1994. The TSIMMIS
project: integration of heterogeneous information sources. In: Pro-
ceedings of IPSJ Conference. IEEE, New York, pp. 7–18.

Chen, P.P., 1976. The entity-relationship model: toward a unified view of
data. ACM Trans. Database Syst. 1 (1), 9–36.

Chung, E., Huang, Y., Yajnik, S., Liang, D., Shih, J.C., Wang, C., Wang,
Y., 1997. DCOM and CORBA side by side. Technical Report,
Microsoft DCOM Technical White Paper. <citeseer.nj.nec.com/
chung97dcom.html>.

Clarke, P.J., Hristidis, V., Wang, Y., Prabakar, N., Deng, Y., May 2006.
A declarative approach for specifying user-centric communication. In:
Proceeding of the International Symposium on Collaborative Tech-
nologies and Systems – CTS 2006. IEEE, New York, pp. 89–98.

Costagliola, G., Deufemia, V., Polese, G., 2004. A framework for
modeling and implementing visual notations with applications to
software engineering. ACM TOSEM 13 (4), 431–487.

Day, J.D., Zimmermann, H., 1995. The osi reference model. In: Confor-
mance Testing Methodologies and Architectures for OSI Protocols.
IEEE Computer Society Press, Los Alamitos, CA, USA, pp. 38–44.

Deng, Y., Sadjadi, S.M., Clarke, P.J., Zhang, C., Hristidis, V., Rangasw-
ami, R., Prabakar, N., 2006. A communication virtual machine. In:
COMPSAC’06: Proceedings of the 30th Annual International Com-
puter Software and Applications Conference – COMPSAC’06. IEEE
Computer Society, Washington, DC, USA, pp. 521–531.
Eclipse, March 2007. Eclipse communication framework. <http://www.e-
clipse.org/ecf/>.

Emmerich, W., 2000. Software engineering and middleware: a roadmap.
In: Proceedings of the Conference on the Future of Software
Engineering. pp. 117–129.

Emmerich, W., Kaveh, N., 2002. Component technologies: Java beans,
Com, Corba, Rmi, Ejb and the Corba component model. In:
Proceedings of the 24th International Conference on Software Engi-
neering. ACM Press, New York, pp. 691–692.

Ferguson, P., Humphrey, W.S., Khajenoori, S., Macke, S., Matvya, A.,
1997. Results of applying the personal software process. Computer 30
(5), 24–31.

Geppert, B., Rößler, F., June 1996. Automatic configuration of commu-
nication subsystems – a survey. Technical Report SFB 501, Report 17/
96, University of Kaiserslautern, Germany. <http://www.softmet-
aware.com/whitepapers.html>.

Google, March 2007. Google Talk. <http://www.google.com/talk/>.
Heckel, R., Voigt, H., 2004. Model-based development of executable

business processes for web services. LNCS 3098, 559–584.
Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K., 2000.

System architecture directions for networked sensors. SIGPLAN Not.
35 (11), 93–104.

Hristidis, V., Clarke, P.J., Prabakar, N., Deng, Y., White, J.A., Burke,
R.P., 2006. A flexible approach for electronic medical records
exchange. In: HIKM’06: Proceedings of the International Workshop
on Healthcare Information and Knowledge Management. ACM Press,
New York, USA, pp. 33–40.

Jabber, September 2007. <http://www.jabber.org/>.
JAIN-SIP, March 2006. <https://jain-sip.dev.java.net/>.
Java Media Framework API, June 2005. Internet2 working groups, and

special interest groups. <http://java.sun.com/products/java-media/
jmf/> (May 2005).

Krebs, D., April 2005. The mobile software stack for voice, data, and
converged handheld devices. Mobile and Wireless Practice Venture
Development Corporation.

Levin, R., Cohen, E., Corwin, W., Pollack, F., Wulf, W., 1975. Policy/
mechanism separation in hydra. In: SOSP’75: Proceedings of the Fifth
ACM Symposium on Operating Systems Principles. ACM Press, New
York, USA, pp. 132–140.

McKinley, P.K., Sadjadi, S.M., Kasten, E.P., Cheng, B.H.C., 2004.
Composing adaptive software. Computer 37 (7), 56–64.

Object Management Group, 1994. Common Object Services Specification.
John Wiley & Sons, New York. For the latest specification: <http://
www.omg.org/>.

Raj, G.S., September 1998. A detailed comparison of CORBA, DCOM,
and Java/RMI (with detailed code examples). Object Management
Group (OMG) whitepaper.

Rangaswami, R., Sadjadi, S.M., Prabakar, N., Deng, Y., April 2007.
Automatic generation of user-centric multimedia communication
services. In: Proceedings of the IEEE International Performance
Computing and Communications Conference – IPCCC.

Satoshi, H., 1997. HORB: Distributed execution of java programs. In:
WWCA., pp. 29–42. <citeseer.ist.psu.edu/satoshi97horb.html>.

Schmidt, D.C., 1997. Applying patterns and frameworks to develop
object-oriented communication software. In: Salus, P. (Ed.), Hand-
book of Programming Languages, vol. 1.

Schmidt, D.C., 2002. Middleware for real-time and embedded systems.
Commun. ACM 45 (6), 43–48 <http://portal.acm.org/cita-
tion.cfm?id=508472&dl=portal&dl=ACM#> .

Schmidt, D.C., 2006. Model-driven engineering. Computer 39 (2), 25–31.
Schmidt, D.C., Huston, S.D., 2002. C++ Network Programming:

Mastering Complexity using ACE and Patterns. Addison-Wesley/
Longman, New York.

Schmidt, D.C., Kuhns, F., 2000. An overview of the real-time CORBA
specification. Computer 33 (6), 56–63. <citeseer.nj.nec.com/
schmidt00overview.html>.

Skype Limited, February 2007. Skype developer zone. <https://devel-
oper.skype.com/>.

http://www.softmetaware.com/whitepapers.html
http://www.softmetaware.com/whitepapers.html
http://citeseer.nj.nec.com/chung97dcom.html
http://citeseer.nj.nec.com/chung97dcom.html
http://www.eclipse.org/ecf/
http://www.eclipse.org/ecf/
http://www.softmetaware.com/whitepapers.html
http://www.softmetaware.com/whitepapers.html
http://www.google.com/talk/
http://www.jabber.org/
http://https://jain-sip.dev.java.net/
http://java.sun.com/products/java-media/jmf/
http://java.sun.com/products/java-media/jmf/
http://www.omg.org/
http://www.omg.org/
http://citeseer.ist.psu.edu/satoshi97horb.html
http://portal.acm.org/citation.cfm?id=508472&dl=portal&dl=ACM#
http://portal.acm.org/citation.cfm?id=508472&dl=portal&dl=ACM#
http://citeseer.nj.nec.com/schmidt00overview.html
http://citeseer.nj.nec.com/schmidt00overview.html
http://https://developer.skype.com/
http://https://developer.skype.com/

1662 Y. Deng et al. / The Journal of Systems and Software 81 (2008) 1640–1662
Stiller, B., Class, C., Waldvogel, M., Caronni, G., Bauer, D., 1999. A flexible
middleware for multimedia communication: design, implementation,
and experience. IEEE J. Select. Areas Commun. 17 (9), 1614–1631.

TegesTM Corporation, December 2005. i-Rounds. <http://www.teges.-
com/index.asp>.

The Parlay Group, June 2007. Parlay/osa specifications. <http://www.par-
lay.org/en/specifications/>.

van Renesse, R., Birman, K., Hayden, M., Vaysburd, A., Karr, D., 1998.
Building adaptive systems using ensemble. Softw. Pract. Exper. 28 (9),
963–979.

Vinoski, S., 1997. CORBA: integrating diverse applications within
distributed heterogeneous environments. IEEE Commun. Mag. 14
(2). <citeseer.nj.nec.com/vinoski97corba.html>.

Vinoski, S., 1998. New features for CORBA 3.0. Commun. ACM 41 (10),
44–52.

Wang, Y., Clarke, P.J., Wu, Y., Allen, A., Deng, Y., 2007. Realizing
communication services using model-driven development. In: Proceed-
ings of 11th IASTED International Conference on Software Engi-
neering and Applications (SEA 2007). ACTA Press, November 19–21,
pp. 473–479.

Zave, P., Goguen, H.H., Smith, T.M., 2004. Component coordination: a
telecommunication case study. Comput. Networks 45 (5), 645–664.

Zhang, C., Sadjadi, S.M., Sun, W., Rangaswami, R., Deng, Y., November
2006. A user-centric network communication broker for multimedia
collaborative computing. In: Proceedings of the Second International
Conference on Collaborative Computing – CollaborateCom 2006.

Yi Deng received his Ph.D. in Computer Science from the University of
Pittsburgh in 1992. He has been the Dean and Professor of School of
Computing and Information Sciences at the Florida International Uni-
versity (FIU) – the State University of Florida in Miami and one of the
largest urban research universities in the US. Under his leadership, the
School has grown into one of the largest computer science and informa-
tion technology education programs and one of the best externally funded
research programs in State of Florida University System, a national leader
in diversity, and an active partner to industry. He is an accomplished
leader in computing and information technology research, innovation and
application. He has authored or co-authored over ninety research papers
in peer-reviewed journals and proceedings, and awarded eighteen research
grants as the principal or co-principal investigator totaling over $15 mil-
lion, most of which from premier US federal funding agencies. He has
initiated and led many large scale multidisciplinary R&D and education
projects and initiatives, founded and directed three research centers,
including the Center for Advanced Distributed System Engineering, the
NSF Center of Emerging Technologies for Advanced Information Pro-
cessing and High Confidence Systems, and the IBM Center for Autonomic
and Grid Computing at FIU. He has been an active contributor to the
professional and research community in various leadership capacities. He
co-founded and co-chairs the Board of Governors for the Latin American
Grid (LA Grid) Consortium, with members include IBM, Barcelona
Supercomputing Center and twelve universities in US, Puerto Rico,
Mexico, Spain and Argentina, dedicated for collaborative research,
innovation and workforce development in computing.
S. Masoud Sadjadi received the BS degree in Hardware Engineering from
University of Tehran in 1995, the MS degree in Software Engineering from
Azad University of Tehran in 1999, and the PhD degree in Computer
Science from Michigan State University in 2004. He is currently an
assistant professor in the School of Computing and Information Sciences
at Florida International University. He has extensive experience in soft-
ware development and leading large scale software projects. Currently, he
is leading several international research projects in the Latin American
Grid and is co-chair of the program committee for IEEE ICNSC 2008. His
current research interests include Software Engineering, Distributed Sys-
tems, and High-Performance Computing with the focus on Autonomic,
Pervasive, and Grid Computing. He is PI or Co-PI of 8 grants from NSF
and IBM for total of over $3.5 million. He is a member of the IEEE.

Peter J. Clarke received his BS degree in Computer Science and Mathe-
matics from the University of the West Indies in 1987, MS degree from
SUNY Binghamton University in 1996 and PhD in Computer Science
from Clemson University in 2003. His research interests are in the areas of
software testing, software metrics, software maintenance, and model-dri-
ven software development. He is currently an Assistant Professor in the
School of Computing and Information Sciences at FIU, where he started
the Software Research Testing Group (STRG) in 2005. Dr. Clarke is a
member of the ACM (SIGSOFT), IEEE Computer Society and a
founding member of The Association of Software Testing.

Vagelis Hristidis received his BS in Electrical and Computer Engineering
at the National Technical University of Athens in 1999. He received his
M.Sc. and Ph.D. degrees in Computer Science in 2000 and 2004 respec-
tively, at the Computer Science and Engineering Department of the
University of California, San Diego (UCSD). Since 2004 he has been an
Assistant Professor at the School of Computing and Information Sciences
at Florida International University. His areas of expertise are Databases
and Information Retrieval.

Raju Rangaswami received a B.Tech. degree in Computer Science from the
Indian Institute of Technology, Kharagpur, India. He obtained M.S. and
Ph.D. degrees in Computer Science from the University of California at
Santa Barbara where he was the recipient of the Dean’s Fellowship and
the Dissertation Fellowship. Raju is currently an Assistant Professor of
Computer Science at the Florida International University in Miami. His
research interests include operating systems, storage systems, virtualiza-
tion, security, and real-time systems. He is a recipient of the NSF
CAREER award and the Department of Energy Early CAREER Prin-
cipal Investigator (ECPI) award.

Yingbo Wang is currently enrolled in the PhD Program in School of
Computing and Information Sciences at Florida International University
(FIU). She received her Masters and Bachelors degree from Institute of
Software, Chinese Academy of Sciences and University of Science and
Technology of China (USTC) in 2003 and 2000. She is currently a grad-
uate assistant under Dr. Yi Deng and Dr. Peter J. Clarke in the area of
software modeling and model-driven development.

http://www.teges.com/index.asp
http://www.teges.com/index.asp
http://www.parlay.org/en/specifications/
http://www.parlay.org/en/specifications/
http://citeseer.nj.nec.com/vinoski97corba.html

	CVM - A communication virtual machine
	Introduction
	Motivating example
	CVM overview
	Design of CVM
	User-communication interface
	Synthesis engine
	Schema population
	Schema negotiation
	Schema synthesis
	Event handler

	User-centric communication middleware
	Network communication broker
	CVM data mediator

	Communication modeling language
	Requirements
	CML
	X-CML
	G-CML
	CML for scenarios

	Prototype implementation
	Prototype evaluation
	Related work
	Model-driven engineering
	Communication middleware
	Computing middleware

	Conclusion
	Acknowledgements
	References

