LOOKING FOR AN EVOLUTION OF
GRID SCHEDULING: META-BROKERING"

I. Rodero, F. Guim, and J. Corbalan
Barcelona Supercomputing Center (BSC) and Technical University of Catalonia (UPC)

{iivan.rodero, francesc.guim, julita.corbalan} @bsc.es

L.L. Fong and Y.G. Liu
IBM T.J. Watson Research Center

{lifong, ygliu}@us.ibm.com

S.M. Sadjadi

Florida International University
sadjadi@cs.fiu.edu

Abstract A Grid Resource Broker for a Grid domain, or also known as meta-scheduler,
is a middleware component used for matching works to available Grid resources
from one or more IT organizations. A Grid meta-scheduler usually has its own
interfaces for the functionalities it provides and its own job scheduling objectives.
This situation causes two main problems: the user uniform access to the Grid is
lost, and the scheduling decisions are taken separately while they should be done
in coordination. These problems have been observed in different efforts such
as the HPC-Europa project but they are still open problems. In this paper we
discuss the requirements to achieve a more uniform access to the Grids through
a new approach to global brokering. As the results of these discussions on
brokering requirements, we propose a meta-brokering design, so called meta-
meta-scheduler design, and discuss how it can be realized as a centralized model
for the HPC-Europa project, and as a distributed model for the LA Grid project.

Keywords: Grid resource management, meta-brokering/scheduling, interoperability

*This research has been supported in part by the Spanish Ministry of Science and Technology under contract
TIN2004-07739-C02-01, the EU project HPC-Europa under contract 506079, the CoreGRID FP6 European
Network of Excellence (Contract IST-2002-004265), NSF under grant OCI-0636031, and IBM.

106 GRID MIDDLEWARE AND SERVICES: CHALLENGES AND SOLUTIONS

1. Introduction

In a Grid environment, a resource broker, also called meta-scheduler', is
usually used to manage user submitted jobs and the scheduling of jobs for exe-
cution to the available Grid resources from one or more IT organizations under
a Grid domain. A Grid meta-scheduler has its own interfaces for the function-
alities it provides and its own job scheduling objectives. However, there is not
yet a standard on the interfaces of Grid meta-scheduler to support the interop-
erability of different meta-scheduling systems that bring us to the original idea
of “The Grid”, which promised an infrastructure to provide a uniform access
to resources across different centers and institutions. This is an important issue
because typically, a large Grid environment can be composed with different
institutions or centers and each center would like to use its own scheduling
system. The current Grid is managed by different meta-schedulers that man-
age a particular institution or virtual organization, and then the Grid becomes
divided into several independent Grids without any interaction between them.
In this context, the different Grid meta-schedulers are working independently,
with different capabilities and using different languages for describing jobs, for
submission, monitoring and so on. Different meta-scheduling projects can be
found in literature, as detailed in Section 2. A meta-scheduling architecture can
be based on different models, from a centralized to a distributed model as it is
discussed in [26]. We also can find various approaches in scheduling policies
such as economics [4], load balancing [25], or based on multi-criteria [16].

To solve the interoperability problem between different meta-scheduling sys-
tems, some initiatives have been developed. The HPC-Europa project is pro-
viding a solution to this problem through the development of a web portal to be
used as a single point of access for different HPC centers in Europe [13]. In this
approach, each center implements a plug-in with its own set of supported capa-
bilities. Next, the user chooses manually the meta-scheduling system to submit
their jobs. Finally, the job scheduling policies are evaluated inside the context of
each center. Using the experience gained from this project, we have concluded
that the portal approach is not enough to provide a transparent single point of
access to Grid environments as the users are still involved with undesirable
complexity and the scheduling results may less optimal. Therefore, we need
to extend the model of HPC-Europa and support the mechanisms and policies
on top of the meta-schedulers; basically, brokering the Grid meta-schedulers.
In addition, the idea of the interoperability between different middleware and
systems was studied in other projects such as in Grid Interoperability Project

!n this paper, we will use resource broker, broker, and meta-scheduler inter-changeably to refer to a grid
resource broker. We will later define meta-broker as a broker on top of brokers, or a meta-meta-scheduler.

Looking for an Evolution of Grid Scheduling: Meta-Brokering 107

[3]. More specifically, this interoperability project tried to work on mechanisms
to create Grids with a uniform access to both Globus and Unicore systems.

The idea of brokering on top of Grid meta-scheduler has been taken into
account in other works such as in [15]. As a meta-broker, the scheduler on top
of meta-scheduler should be called meta-meta-scheduler. Therefore, a meta-
broker can be defined as the middleware component that selects the most ap-
propriate meta-scheduler to submit a job following a particular policy. This
point of view has influenced the way we are extending the approach in HPC-
Europa as we propose in Section 5. Furthermore, the Open Grid Forum (OGF)
is working on some recommendations regarding interoperability, but the work
is still in working process. Therefore, we will consider the OGF approach only
as a reference for our research activities.

In this paper, we will study the requirements for a meta-brokering system
and we will define a set of requirements for common interfaces that allows
accessing and managing different Grid meta-schedulers in a uniform way and
provides users with single point of access. To achieve these goals we propose
two approaches: (1) designing and implementing a centralized meta-brokering
system on top of the different brokers; and (2) designing and implementing
a distributed meta-brokering system by communicating the different brokers
with a set of protocols and a certain agreement. For the first approach, we
present a design in which we are working on the eNANOS [25] framework as
an extension of HPC-Europa JRA2 activity, and for the second approach, we
present a design based on the LA Grid meta-brokering project [17].

The rest of this paper is organized as follows. In Section 2, we present some
of the current approaches in meta-brokering. In Section 3, we summarize the
work done in the HPC-Europa and the lessons learned in the requirements of
meta-brokering. In Section 4, we discuss the requirements and architectural
elements of ideal meta-brokers for Grid environments. In Section 5, to provide
the meta-brokering functions as described in Section 4, we first describe a design
extension for the HPC-Europa as a centralized model; then we described the
distributed design approach of LA Grid meta-brokering project; and finally we
summarize the models in a table. In Section 6, we present some conclusions
and some roadmap for our future works.

2. Related Work

Several projects regarding Grid meta-scheduling can be found in literature.
Both specific and general-purpose initiatives have been developed during last
years, and some of them are presented as follows. Condor-G [12] is based
on the Condor approach for Grids that combines the inter-domain resource
management protocols of the Globus Toolkit and the intra-domain resource
and job management methods of Condor. AppLes [2] is a project targeted to

108 GRID MIDDLEWARE AND SERVICES: CHALLENGES AND SOLUTIONS

Job Description

USER
META-BROKER
DATA

d— S
BROKER 1 BROKER 2 BROKER N

A/\A

DOMAIN 1 DOMAIN 2 DOMAIN N

Figure 1. General meta-broker architecture [17]

the application level scheduling. GridBus [18] is an economy-capable Data
Grid service broker for scheduling distributed data oriented applications across
Grid resources. GRMS [10] is an open source meta-scheduling system, which
allows developers to build and deploy resource management systems to large
scale distributed computing infrastructures. The GridWay framework [11] is a
component for meta-scheduling in the Grid Ecosystem intended for end users
and Grid applications developers. The eNANOS project [25] is based on the
idea of having a good low-level support for performing a good high-level HPC
scheduling.

There are some initiatives regarding the interoperability of different meta-
schedulers [3]. The Grid Interoperability Project (GRIP) aim was to realize the
interoperability of Globus and Unicore combining the unique strength of each
system and to work towards standards for interoperability of meta-scheduling in
the OGEF. This goal has been achieved in a real testbed and they have extended
for different meta-scheduling systems, as in the HPC-Europa project that is
described in Section 3.

In terms of meta-brokering, an abstract architecture has been proposed in [15]
and the objectives are similar to those discussed in HPC-Europa [13] or in the
interoperability project [3]. The architecture of these proposals is similar. They
are based on a meta-broker model that receives the job submission, and manages
the resource brokers with some data information, as it is shown in Figure 1. In
this paper, we present new designs of meta-brokering that extends the work
done in the Grid community and leverages our experiences from HPC-Europa.

As the Grid standardization organization, the OGF is working on scheduling
architecture in the Grid Scheduling Architecture Research Group (GSA-RG)
[20]. This group has worked on a scheduling hierarchy and the communica-
tion between scheduling instances. Recently the group has started working
on interoperability and on a proposal regarding the interaction between Grid

Looking for an Evolution of Grid Scheduling: Meta-Brokering 109

schedulers. The OGSA Resource Selection Services Working Group (OGSA-
RSS-WG) [19] will provide protocols and interface definitions for the resource
selection services portion of the Execution Management Services (EMS) part of
the Open Grid Services Architecture. The Resource Selection Services (RSS)
consist of the Candidate Set Generator (CSG) and the Execution Planning Sys-
tem (EPS). The CSG can be used to generate a set of computational resources
that are able to run a job in general, while the EPS uses this list to decide exactly
what resources to run the job.

We take into account the OGF recommendations as a reference. In our
approach, we promote a more practical point of view as we develop a meta-
brokering system in real environments with particular solutions.

3. Lessons learned from the HPC-Europa project

One major activity of HPC-Europa project is to build a portal that provides a
uniform and intuitive user interface to access and use resources from different
centers. As most of the HPC centers have already deployed their own site-
specific HPC and Grid infrastructure; therefore, an important requirement is
to keep the autonomy of HPC centers by allowing them to use their favorite
middleware, local policies, and so on. For instance, there are currently five
different systems that provide a job submission and basic monitoring function-
ality in the HPC-Europa infrastructure: eNANOS [25], GRIA middleware [9],
Grid Resource Management System (GRMS) [10], Job Scheduling Hierarchi-
cally JOSH) [14], and UNICORE [28]. Additionally, eNANOS, GRMS and
JOSH use the Globus Toolkit to access underlying resources provided for the
HPC-Europa infrastructure.

The Single Point of Access (SPA) effort of HPC-Europa provides two sets
of interfaces to application users. Firstly, a generic interface set that can be
used by all users for most of their batch applications. To this end, this uni-
form interfaces are provided for the most relevant Grid functionality identified
from a requirements analysis of the centers. The key set of functionalities has
been determined to be required for the realization of the SPA: job submission,
job monitoring, resource information, accounting, authorization, and data man-
agement. Secondly, an application-specific set of portlets are being developed
to allow users to manage more complex (e.g., interactive or requiring many
specific input parameters) applications in a straightforward manner.

In order to provide end-users with transparent access to resources, we de-
veloped a mechanism responsible for the management of uniform interfaces
to diverse Grid middleware. Using this mechanism the Single Point of Access
enables dynamic loading of components that provide access to the functionality
of specific Grid middleware through a single uniform interface. These compo-
nents are called plug-ins in this context (see Figure 2). These uniform interfaces

110 GRID MIDDLEWARE AND SERVICES: CHALLENGES AND SOLUTIONS

r |
| 1
| I
—> } : Web Browser
| %]
| 1
| |

Scheduling Engine @NANOS Plugin Unicore Plugin
b

Service
Plugins

DATA

[ey
|

| SPA Portlets Job S Monitoring =

: Submission Management Manager
]

i Global ldentifior GridSphere Server

| Manager

| Multi-Grid Service Provider

]

1

1

1

|

|

|

I

|

I
1
I
|
|
]
|
I
I
Meta-brokering I
I
I
1
]
|
I
|
I
|

,,,,,,,,,,,,,,,,,,,,,,,

|| o

Figure 2. HPC-Europa architecture with the proposed extensions

are based on standards where possible (e.g., JSDL for job submission [21]) and
functionalities provided by Grid middleware deployed in HPC centers.

From the end-user perspective, a uniform GUI is provided that is common
for all systems deployed in the HPC-Europa infrastructure. This GUI can be
dynamically adapted to particular systems and still keep the same look and feel.
Only slight modifications such as disabling fields and limiting lists of values
are allowed. When a user wants to submit a job, the user is required to choose
the center to which the job has to be submitted and to specify its requirements.
There is no global scheduling and the brokering is done manually by the user.

To this end, we have implemented the ability to check the functionality of
every resource broker system by retrieving the capabilities of site-specific plug-
ins. These descriptions of the implemented capabilities are returned in the form
of the appropriately constrained general XML schema. A plug-in returns two
descriptions: a description of the methods it supports and a description of data
structures (e.g., job description). In [21], this mechanism is described in more
detail using the Job Submission Portlet as an example.

4. Design of Meta-brokering
4.1 Requirements for Meta-brokering

From the experiences in HPC-Europa project we have observed some re-
quirements that should be taken into account when developing a meta-brokering
system:

Looking for an Evolution of Grid Scheduling: Meta-Brokering 111

1

Global Addressing Mechanism: We need a mechanism to address the
different involved resources. In this case, the main resources of a meta-
brokering system are brokers or their services, not the resources to execute
the job.

Common Capability Description Language: Since each broker provides
its own set of functionalities, it is required to have a Capability De-
scription Language (CDL) to describe all the services capabilities (e.g.,
submission, monitoring, accounting, and control).

Common Job Description Language: To eliminate the complexity of each
broker having its own job description language, it is required to have a
common language for describing jobs, requirements and so on.

Global Job Identifiers: It is very important to have unique mapping of
Grid jobs to different brokers and to the local resources. An implemen-
tation can be done using a single jobID provider for the meta-brokering
system or just using each broker system to argument the job identifica-
tions. In any case jobIDs must be unique.

Unified Notifications Mechanism: It is required a common mechanism
or protocol to notify events. The system can receive notifications from
any broker and the notifications should be handled in the same way.

Unified Monitoring Mechanism: Since each broker has its own way to
return the monitoring data, including mechanism, data type and schema,
itis necessary to have a common mechanism and schema for monitoring.

Unified Accounting Mechanism: Usually the selection of resources is
done using the accounting information especially when economic policies
are applied. For meta-brokering the selection of brokers can be done in
a similar way.

Unified Agreement Mechanism: A meta-brokering system needs a mech-
anism to make agreements between brokers. The agreement mechanism
and an API are also required to establish protocols to communicate bro-
kers.

Common Scheduling Description Language: We need a Scheduling De-
scription Language (SDL) to describe the scheduling capabilities that a
broker provides (e.g., depending on the user or the users center, a broker
can offer a policy with more or less priority), and global meta-brokering
policies.

In the Grid environments, this is especially important because there are in-
teractions between several components and the different approaches can be

112 GRID MIDDLEWARE AND SERVICES: CHALLENGES AND SOLUTIONS

originated from different contexts. In HPC-Europa, we adopted the standards
proposed by the OGF wherever it was possible. For the requirements listed
above, we propose to use at least the following set of standards: JSDL 1.0 with
some extensions for job description, WS-Agreement for the agreement protocol
between brokers, and WS-Addressing for addressing resources in general.

Other APIs and schemas are yet to be defined to address the remainder
requirements listed above. As an example, some schema such as the one used
in HPC-Europa project and presented in [13] can be used for monitoring.

4.2 The Architecture

To meet the requirements listed in section 4.1, in this paper we propose
two meta-brokering models. On one hand, we consider the centralized model
which is suitable for a limited number of centers and institutions. This is
the model considered in the HPC-Europa extension. On the other hand, we
consider the distributed model for the LA Grid meta-scheduling project, which
is more suitable for more dynamic environments with a higher number of centers
and institutions (i.e., centers can be added to the infrastructure dynamically).
Moreover, the distributed model is more appropriate for more heterogeneous
environments [19] such as the case of the LA Grid, which can be composed of
different kind of resources, from a collection of desktop PCs to supercomputing
centers. These two different models are discussed later sections.

4.3 The Scheduling

In addition to the architecture model and the required interfaces, there is an
important functionality such as the scheduling at the meta-broker level. We
can implement different kind of scheduling policies depending on the kind of
information we have at the meta-brokering level. On one hand, if the meta-
broker has information about the details of the resources, it can implement the
typical scheduling policies studied in the literature, such as in [1] or [4], but
extending them to a larger amount of resources with the lower level brokers
acting as job dispatchers and execution entities. On the other hand, if the meta-
broker does not have any information about the resources and only has certain
information about the brokers, we can implement other kind of policies. One
of the possible meta-brokering policies can be based on the capabilities of the
brokers. In this case, the selection of the appropriate brokering system can
be done using a multi-criteria algorithm that can take into account the brokers
capabilities or even dynamic information, prediction and so on. Another kind
of policies can use accounting information to select the appropriate broker for
a given job in a particular situation. This kind of policies maps directly to the
economic paradigm.

Looking for an Evolution of Grid Scheduling: Meta-Brokering 113

Furthermore, a meta-brokering scheduling algorithm can be implemented
many approaches. For example, in BSC we are currently working on policies
that use the historical job/resource information to take its scheduling decisions.
We are designing data mining techniques that uses the historical information of
Grid resources usage, Grid workloads, and a minimum set of job requirements
(e.g., executable, number of processors and input files) to estimate variables
about: (1) the job requirements, which estimate how much processor, disk and
memory a job will use; and (2) the future state of the different resources evolved
in the Grid, which estimate, for instance, how much free space will be available
in a given host, or what load it will have in a given future time.

We derive this information by correlating the past executions of similar jobs
using similar resources, or with similar future load using similar prediction
techniques that have been proposed in other works in terms of job performance
prediction [5] [8] [12] [27] and resource usage [7] but using Grid workloads.
In terms of meta-brokering scheduling, we are designing techniques that use
this information for matching jobs to the resources that will better satisfy their
requirements.

In this paper we discuss the importance of the scheduling for a meta-broker
approach. However, we do not present any particular result because we do not
dispose of a testbed or simulation environment for a meta-brokering system yet.

5. Meta-broker designs

In this section, we will provide the detailed designs of the centralized and
distributed models of meta-brokers.

5.1 HPC-Europa Extension Proposal

In this proposal, we extend the solution in the HPC-Europa project by adding
a meta-broker on top of the individual brokers in such a way that the scheduling
decisions are taken depending on the capabilities of the individual brokers.
Thereby, we add a functionality to make the selection of each broker or center
in the meta-broker.

This extension should include new services to perform meta-brokering. As
we have identified in the list of requirements, the HPC-Europa infrastructure
should incorporate a new module for the broker scheduling, a scheduling plugin
for each center, a language to describe the scheduling capability of brokers and
global identifiers management. Moreover, the meta-broker can include some
other services such as a predictor service or a historic data catalog to improve
the scheduling techniques.

The idea is to design a system following the OGF standards such as the JSDL
as a language for describing jobs. In Figure 2, we show the architecture of the

114 GRID MIDDLEWARE AND SERVICES: CHALLENGES AND SOLUTIONS

extended version of the HPC-Europa approach. The extension is distinguishable
by the dark shading.

This meta-broker approach allows the incorporation of more scheduling func-
tionality at the meta-broker level (“SPA” in Figure 2). For example, the meta-
broker can store some useful information to improve the scheduling strategy
(“DATA” in Figure 2). Some of this information can be the previous decisions
regarding the selection of brokers as a historical data such as the achieved qual-
ity of service by the different brokers, the average waiting time, the reputation
of brokers, or the level of availability and reliability of the resources under the
broker domains.

In the new architecture, the meta-brokering scheduling engine is responsible
for the broker selection and where to submit a job. At the portal level, it is
evaluated one of the meta-brokering policies available in the framework and,
associated to this component, a new portlet should be provided to configure
policies and its main issues.

To map the scheduling performed in the meta-broker scheduling engine fol-
lowing the scheduling capabilities of the different brokers, we need a new plugin.
This plugin implements the scheduling API and provides the functionality sup-
ported by each brokering system. Therefore, to define the scheduling capability
of the different center (brokers), we need a scheduling description language.
This language should include the scheduling policy capabilities, such as the
quality of service, priorities, the support for co-allocations and for advanced
reservations, economic issues, or the scheduling policy family. For example, in
eNANOS we can offer as a scheduling capability the load-balancing of parallel
applications in run-time or the support for MPI+OpenMP applications [25].

Finally, to allow the portal managing jobs coming from all the centers, we
need global identifiers mechanisms. To obtain global identifiers, we need a
new service (global identifier manager) that should be accessible from all the
services and through the centers plugins. The global identifier service should
not modify the rest of services; the different brokers should support this new
functionality via the plugins. The Universally Unique Identifier (UUID) [29]
seems to be a good candidate as identifier standard. It is used in software
construction, standardized by the Open Software Foundation (OSF) as part of
the Distributed Computing Environment (DCE). A UUID is essentially a 16-
byte (128-bit) number.

5.2 Meta-brokering design in LA Grid

Latin American Grid initiative (LA Grid, pronounced “lah grid”, [17]) is a
multifaceted international academic and industry partnership designed to pro-
mote research, education and workforce development collaborations with ma-
jor institutions in United States, Mexico, Argentina, Spain, and other locations

Looking for an Evolution of Grid Scheduling: Meta-Brokering 115

around the world. LA Grid has developed a global living laboratory where in-
ternational researchers are empowered to build new research partnerships and
explore the synergies of their research strengths in areas including transparent
Grid enablement, autonomic resource management, meta-brokering, and job
flow Management. The meta-scheduling project in LA Grid aims to support
Grid applications with resources located and managed in different domains
spanned over a Grid computing cyber infrastructure. This project addresses the
architecture, design, implementation and deployment issues related to meta-
brokering.

The meta-broker design in LA Grid is a distributed model with multiple
meta-broker instances cooperate with each other to provide Grid functions. As
illustrated in Figure 4, one instance of a meta-broker consists of three functional
modules: resource module, scheduling module and job module. Resource mod-
ule is responsible for resource discovery, monitoring and storage. Scheduling
module is responsible for locate suitable resources or brokers for a job re-
quest. Job module is responsible for management of job lifecycle: submission,
dispatching and execution monitoring. A meta-broker instance interacts with
existent brokers within the resource domain.

“on” i web Ul
META-BROKER INSTANCE ‘ - 1? Submit Job
% o
e e e A
| RGSOU"CB '(,'—_—"N Resource Schedullng | | Job I
|\ Reposulory : Module Module ! | Module :
______ —— ————— — e —
- Collect resources Dispatch Job
W information from fo target
resources or resources or
brokers brokers
BT T
@ | Broker | Broker

=iy

Resuurt;e Sub Domain 1 Sub Domain N
Resource Domain 1

Figure 3. Meta-broker in LA Grid

116 GRID MIDDLEWARE AND SERVICES: CHALLENGES AND SOLUTIONS

A A

Resource Domain 1 Resource Domain 2 Resource Domain N

Figure 4. Meta-broker communication model in LA Grid

In LA Grid, resources of different institutions belong to their respective
resource domains and each resource domain has a meta-broker instance (see
Figure 5). Inside a domain, a meta-broker instance controls resources directly
and/or indirectly through other brokers in the domain. In the former case, each
resource reports its information directly to the meta-broker instance using re-
source modules web services. In the latter case, an existent broker is responsible
for reporting the information of the resources under its control. How the broker
collects the resource information is within its own implementation details. In
this way, once an existent broker is able to use web services to report resource
information to a meta-broker instance, different existent brokers can participate
in the LA Grid cyber infrastructure.

Each meta-broker instance collects resource information from its neighbors
and save the information in its resource repository or in-core memory. The
resource information is distributed in the Grid and each meta-broker instance
will have a view of all resources. The resources information is in aggregated
forms to save storage space and communication bandwidth. Example of ag-
gregated resource information on a set of servers in a domain is: type=CPU;
speed={1G,2G}; OS=Win; quantity=3.

As shown in Figure 5, a job request is described in JSDL and can be submitted
to any known meta-broker instance using web services. In general, a job request
is submitted to the meta-broker instance in the same resource domain whose
address is well-known in the domain. When a job request arrives, a meta-broker
instance matches the job to a domain with the appropriate set of resources. The
matching algorithm is influenced by multiple factors. One of the factors is the
location of resources such that the preference will be given to the local domain
at which the job is submitted.

Looking for an Evolution of Grid Scheduling: Meta-Brokering 117

If the matched resources are outside of the domain, the job is dispatched to
the meta-broker instance in another domain. The existent broker or meta-broker
instance that the job is dispatched to has the resources required by the job and
will be responsible to dispatch the job again if necessary. The resource, existent
broker or meta-broker instance that the job is dispatched to will report the job
status back to the original meta-broker instance.

In summary, we define a set of web services provided by meta-broker and
make the incorporation of meta-brokers easy. We store a view of global re-
sources in each meta-broker instance to provide speedy resource matching.
Thus, users can experience short response time. Though storing a view of
global resource locally costs storage space and communication bandwidth, we
apply multiply technologies to reduce the overhead and to keep a similar perfor-
mance with a incomplete view of global resources. Due to the space limitation,
we shall report our efforts in these perspectives in a separate paper.

5.3 Summary of meta-brokering designs

In Figure 5, we summarize the main functionalities and some details for the
discussed approaches: the original HPC-Europa approach, the HPC-Europa
extension, and the LA Grid project.

HPC-Europa Extended HPC-Europa LA Grid
Architecture Centralized Centralized Distributed + P2P
Addressing mechanism Plugins Plugins WS-addressing
Capabilities mechanism Plugins + MultiGrid | Plugins + MultiGrid Service Provider
Service Provider Service Provider
Capability description lang. API + XML API + XML API + XML
Job Submission | JSDL schema + ext. | JSDL schema +ext. | JSDL schema + ext.
Monitoring XML schema XML schema XML schema
Accounting NO XML schema To be defined
Scheduling NO XML schema XML schema
(future JSDL) (as a resource type)
Agreement NO WS-Agreement WS-Agreement ext.
extension
Job Description Language JSDL 1.0 + ext. JSDL 1.0 + ext. JSDL 1.0 + ext.
Global identifiers NO YES YES
Notification mechanism NO Callbacks Callbacks
Agreement mechanism NO Centralized P2P
Security X.509 Certificates X.509 Certificates To be defined

Figure 5. Summary of the main functionalities of the discussed approaches

6. Conclusions and Future Work

In this paper we have discussed the convenience of the meta-brokering ap-
proach to achieve a single point of access to the Grid and to access to more

118 GRID MIDDLEWARE AND SERVICES: CHALLENGES AND SOLUTIONS

resources. We also have seen how some initiatives have been carried out as
the HPC-Europa project. However, they need to be extended to achieve a real
global scheduling on top of different brokering systems.

One important issue to take into account is the additional overhead added
to the infrastructure with another layer. We can argue that in each layer of the
infrastructure the scheduling and management system is oriented to a particular
target. Moreover, incorporating another layer is acceptable because of the Grid
environment characteristics (e.g., timeouts are longer).

Furthermore, from the experience obtained from the HPC-Europa project,
we have presented the main issues to be taken into account to develop a meta-
broker. We also have proposed to use some standards to implement such an
extension. We have observed a lack of a consensus in the definition of the terms
used in this area (meta-scheduler, broker, meta-broker, and so on). We miss a
formal definition to avoid confusions.

As for the future work we have presented two ways to achieve the meta-
brokering approach. On one hand we have presented a proposal for extending
the solution developed in the HPC-Europa project providing more autonomy
and performance. On the other hand we have presented an overview of the
distributed meta-brokering system being done in LA Grid project. Finally,
we think the main line of future work regarding the meta-brokering research
is toward further investigation for scheduling policies that will allow the new
Grids to become transparent, autonomous and efficient.

References

[1] S. Banen, A.LD. Bucur, and D.H.J. Epema, “A Measurement-Based Simulation Study
of Processor Co-Allocation in Multicluster Systems”, 9th Workshop on Job Scheduling
Strategies for Parallel Processing, LNCS 2862, Seattle, 2003, pp. 105-128.

[2] F. Berman, R. Wolski, S. Figueira, J. Schopf, G. Shao, “Application-Level Scheduling on
Distributed Heterogeneous Networks”, Supercomputing’96, Pittsburgh, PA, November
17-22, 1996.

[3] J. Brooke, D. Fellows, K. Garwood, C. Goble, “Semantic Matching of Grid Resource
Descriptions”, LNCS 3165, January 2004, pp. 240-249.

[4] R. Buyya, “Economic-based Distributed Resource Management and Scheduling for Grid
Computing”, Ph.D. Thesis, Monash University, Melbourne, Australia, April 12, 2002.

[5] A.B.Downey, “Using queue time predictions for processor allocation”, 3rd Workshop on
Job Scheduling Strategies for Parallel Processing, LNCS 1291, 1997, pp.35-57.

[6] P.A.Dinda, “The statistical properties of host load”, Scientific Programming, 1999.

[7] R. Gibbons, “A historical application profiler for use by parallel schedulers”, Workshop
on Job Scheduling Strategies for Parallel Processing, 1997.

[8] GRIA project Web Site. http://www.gria.org
[9] Grid Resource Management System (GRMS) Web Site. http://www.gridlab.org/grms
[10] GridWay Web Site. http://www.gridway.org

Looking for an Evolution of Grid Scheduling: Meta-Brokering 119

(1]

[12]

(13]

[14]
[15]
[16]

[17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

[25]

[26]

(27]

(28]
[29]

F. Guim, J. Corbalan, J. Labarta, “Analyzing loadleveler historical information for perfor-
mance prediction”, Jornadas de Paralelismo, Granada, Spain, September 13-16, 2005.

F. Guim, I. Rodero, J. Corbalan, J. Labarta, A. Oleksiak, J. Nabrzyski, “Uniform job mon-
itoring using the HPC-Europa single point of access”, Intl. Workshop on Grid Testbeds,
in conjunction with CCGrid2006, Singapore, May 16-19, 2006.

J. Frey, T. Tannenbaum, M. Livny, 1. Foster, S. Tuecke, “Condor-G: A Computation Man-
agement Agent for Multi-Institutional Grids”, 10th IEEE International Symposium on
High Performance Distributed Computing, San Francisco, August, 2001.

HPC-Europa Web Site. http://www.hpc-europa.org
JOSH. http://gridengine.sunsource.net/josh.html

A. Kertész, P. Kacsuk, “Grid Meta-Broker Architecture: Towards an Interoperable Grid
Resource Brokering Service”, CoreGRID Workshop on Grid Middleware, August, 2006.

K. Kurowski, J. Nabrzyski, A. Oleksiak, J. Weglarz, “Multicriteria Aspects of Grid Re-
source Management”, Grid Resource Management, J. Nabrzyski, J. Schopf, J. Weglarz
(Eds), Kluwer Academic Publishers, Boston/Dordrecht/London, 2003.

LA Grid Web Site. http://www.lagrid.fiu.edu
C. Mastroianni, D. Talia, O. Verta, “A Super-Peer Model for Building Resource Discovery

Services in Grids: Design and Simulation Analysis”, European Grid Conference 2005,
LNCS 3470, Amsterdam, The Netherlands, 14-16 February, 2005, pp. 132-143.

K. Nadiminti, S. Venugopal, H. Gibbins, R. Buyya, “The Gridbus Broker Manual (v.2.0)”,
http://www.gridbus.org/broker

OGF OGSA Resource Selection Services WG Web Site.
https://forge.gridforum.org/sf/projects/ogsa-rss-wg

OGF Grid Scheduling Architecture RG Web Site.
https://forge.gridforum.org/sf/projects/gsa-rg

A. Oleksiak, A. Tullo, P. Graham, T. Kuczynski, J. Nabrzyski, D. Szejnfeld, T.

Sloan, “HPC-Europa: Towards Uniform Access to European HPC Infrastructures”, 6th
IEEE/ACM International Workshop on Grid Computing, Seattle, USA, 2005.

I. Rodero, J. Corbalan, R. M. Badia, J. Labarta, “eNANOS Grid Resource Broker”, EGC
2005, LNCS 3470, Amsterdam, The Netherlands, 14-16 February, 2005, pp. 111-121.

I. Rodero, F. Guim, J. Corbalan, J. Labarta, “eNANOS: Coordinated Scheduling in Grid
Environments”, Parallel Computing, Malaga, Spain, 12-16 September, 2005, pp. 81-88.

V. Subramani, R. Kettimuthu, S. Srinivasan, P. Sadayappan, “Distributed Job Scheduling
on Computational Grids Using Multiple Simultaneous Requests”, 11th Symposium on
High Performance Distributed Computing, Edinburg, Scotland, 24-26 July, 2002, p. 369.
D. Talby, D. Tsafrir, Z. Goldberg, D.G. Feitelson, “Session-based and estimation-less
runtime prediction algorithms for parallel and grid scheduling”, Technical Report, School
of Computer Science and Engineering and the Hebrew University of Jerusalem, 2006.
UNICORE Web Site. http://www.unicore.org

Universally Unique Identifier. RFC 4122. http://www.ietf.org/rfc/rfc4122.txt

