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Abstract. This paper proposes and describes a developed methodology to port 

complex scientific applications originally written in FORTRAN to the nVidia 

CUDA. The process was developed and validated by porting an existing 

FORTRAN weather and forecasting algorithm to a GPU parallel paradigm. 

We believe that the proposed porting methodology described can be 

successfully utilized in several other existing scientific applications.  

1. Introduction 

Recent work has shown that it is no longer necessary to rely solely on the CPU of a 

computer to perform all of a program’s computations. Graphics Processing Units 

(GPUs), with their large number of processors, provide a cost-effective solution for 

high-performance computing (HPC). As an added benefit, modern programming 

frameworks, such as nVidia's Compute Unified Device Architecture (CUDA) have 

made programming on the GPU more straightforward and friendly for programmers of 

high-level languages with basic parallel programming knowledge. However, exploiting 

the benefits of the GPU architecture complicates programming. Due to the different 

programming paradigm of GPUs, it is not trivial for many scientific applications to be 

ported to CUDA. Since current solutions provide limitations in terms of programming 

languages, large codebases need to be entirely rewritten in many cases.  

 In this work, we describe a methodology for easing the process of porting 

software with a large amount of code to CUDA. The software that we used for our case 

study is Weather Research and Forecasting (WRF), version 3.0. WRF requires a large 

amount of computational resources in order to generate useful simulations. Aside from 

that, in [Michalakes and Vachharajani 2008] the authors describe the need for the fine-

grained parallelism, which GPUs can provide, for numerical weather modeling. The 

module we port as a proof-of-concept of our paradigm is a continuation of the work 

described in [Michalakes and Vachharajani 2008].  

We organize the rest of this paper as follows: In Section II, we provide a 

summary of the status of GPU-enabling WRF, in Section III, we describe our proposed 

porting methodology, applied to the WRF problem.  In Section IV, we provide results 

using the GPU-enabled WRF and in Section V, we conclude this paper. 

2. Background and Domain Description 

2.1. GPUs and CUDA 

CUDA is a parallel computing architecture developed by nVidia corporation. CUDA is 

the computing engine in nVidia graphics processing units (GPUs) that is accessible to 



  

software developers through widely used programming languages. Currently, 

programming in CUDA is possible using an extension of the C programming language. 

2.1. Domain Description 

Many approaches have been investigated in order to parallelize scientific problems 

written in FORTRAN or C to utilize compute clusters and/or grids. FORTRAN is often 

preferred for highly mathematical code. Many computationally intensive applications 

are written at least partially in FORTRAN, e.g. Quantum Espresso, WRF [Michalakes 

and Dudhia 2004], MM5 [Grell and Dudhia 1994], and Elmer. Most approaches are 

specific to the target application, yet many applications share certain characteristics. For 

example, their inputs and outputs usually consist of multi-dimensional arrays consisting 

of floating point values. By observing these characteristics, and noting the popularity of 

FORTRAN, a generally-applicable paradigm can be devised in order to save software 

engineering effort in future works.  

WRF consists of nearly 200,000 lines of code, of which approximately 20% is 

generated automatically using a Registry, which is based on a computer aided software 

engineering (CASE) mechanism [Skamarock 2005]. Like most high-performance 

scientific applications, WRF is flexible in terms of parallelism. It supports MPI and 

OpenMP in order to allow coarse and fine grain parallelism, respectively. WRF uses a 

separate, high-level parallelism library called Comm-API [Iacono 2000], which 

supports different parallel communication APIs. CUDA enhances WRF’s for WRF 

parallel programming support and performance for significantly faster execution on 

commodity hardware. 

Quantum Espresso is another scientific application with its most computationally 

demanding parts written in FORTRAN. After profiling an example, we noted that the 

function that consumed the most execution time, consisted of 4 input variables and 7 

output variables, mostly 2-dimensional arrays of floating point values. This 

characteristic is shared by most modules of WRF. 

The swrad module of WRF, which is what we ultimately decided to port, 

consists of two loops around the Cartesian plane. The calculations inside these loops 

consist of several short loops through one of the dimensions. Inside the short loops are 

several arithmetic calculations and conditional statements. Most of the processing is 

done on multi-dimensional arrays of floating point values. Without a not domain 

expert’s assistance, understanding the code is challenging. However, porting the 

calculations and conditional statements is trivial. A porting approach must take this into 

account. 

Porting WRF to CUDA is time consuming since the only language supported by 

CUDA is C. The fact that there exist many applications like WRF has motivated the 

development of the proposed methodology introduced in the next section. In addition, 

the fact that CUDA allows incremental porting of an application from CPU to GPU 

(i.e., it is not necessary to port the entire application to execute exclusively on the GPU) 

has reinforced our methodology. The WRF codebase is large but modular, which allows 

the incremental porting model allowed by CUDA to be utilized for piece-wise porting.  

 

 



  

3. Proposed Methodology

Our proposed approach involves incrementally porting parts of the code and testing by 

generating output files containing the values of the variables being modified. Basically, 

our methodology divides the process of porting into 4 different stages: profiling, 

development, testing, and optimization. Since porting is performed on a per

basis, this approach follows an incremental software engineering process.

The overall procedure is depicted in Fig. 1. The two versions of the code are 

separately executed. The ou

may be in a raw/binary format. In the case of WRF, their values are a binary dump of 

the FORTRAN variables. These files are passed into a generator that creates text

output in a uniform format.  

3.1. Profiling 

Several instrumented executions of WRF were run to determine what module to 

port/optimize. Table 1 shows the computing systems that were utilized for the profiled 

executions. Table 2 describes temporal and geographical properties of the WRF input 

domains used, and Fig. 2 shows the percentage of execution time used by the most time

consuming functions, the one presumably benefit most from the added power of GPUs 

are the cloud microphysics (

of the total execution time. 

Fig. 2. Breakdown of execution
different systems. 
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Generally, porting the module that takes the most time results in the most 

speedup. However, this is not always the case. For example, in [Michalakes and 

Vachharajani 2008] the authors found that the overall speedup after porting the WSM5 

module of WRF was larger than the individual speedup of the isolated module. Their 

assessment as to why this happened is because it was the most load-imbalanced module 

of the application. When executing with 16 nodes of the NCSA Abe cluster, we 

observed that the percentage of time for the WSM5 module varied between 7.9% and 

16.2%. This was considerably more than the next highest varying function, which had a 

range of 6.5% – 11.3%. Note that these values were obtained using the jan00 domain. 

 

Table 1. Description of Systems Used 

Name CPU RAM GPU #cores Clock 

Vaia C2D 2.26 GHz 2 GB 9300M 16 1.1 GHz 

Minerva C2D 2.26 GHz 2 GB 9400M 16 1.1 GHz 

Lincoln Xeon 2.33 GHz 16 GB Tesla S1070 240 1.5 GHz 

Table 2. Description of WRF Domains 

Domain Name Length (km) Width (km) Resolution (km) Simulation Time (h) 

Jan00 1830 2220 30 12 

1500x15 1500 1500 15 24 

2000x15 2000 2000 15 24 

 

The results shown in Tables 1 and 2 and in Fig. 2 assume all other WRF input 

parameters are constant. WRF allows for a large number of runtime configuration 

differences corresponding to different meteorological theories. The application profile 

information in Fig. 2 corresponds to executions with the most basic form of short-wave 

radiation physics and a radiation time step of 30 seconds (which is the recommended 

value for the input domain used). Since short-wave radiation is listed as one of the 

modules to port, we did further profiling with different short-wave radiation schemes as 

well as different radiation periods. We found that this had a significant effect on the 

execution time. As a result, in the future it would be beneficial to port the more 

computationally-intensive radiation schemes. 

3.2. Development Approach 

Our methodology focuses on porting code that presumably has been tested and is 

production-ready. Such is the case for the WRF modules we analyzed: since many of 

these applications have been developed for a long time, the code is presumably robust.  

As a result, our model needs to effectively test the output of the ported code. 

However, the limited I/O operations supported by CUDA complicate this process. A 

partial workaround for this is to first port the code to (CPU-only) ANSI C, test it, and 

then port to CUDA. This way, much of the testing could be done in the middle stage of 

the implementation (in which all the code is in C). However, the process of porting the 

code to CUDA requires significant effort and is prone to error, so additional testing is 

still required after porting to CUDA from ANSI C. 



  

Even porting existing C code to CUDA is difficult. One of the difficulties faced 

is the fact that the programmer is not able to access the GPU memory directly; the data 

must be copied to a temporary variable on the host (i.e. main memory) before their 

value is read and/or modified. Another problem is that there is no dynamic allocation of 

memory in GPUs – the programmer must know the amount of data needed for each 

variable and pre-allocate it at the GPU. Another factor to consider is the highly-parallel 

execution model, where there is no guarantee about the order of thread execution.  

If porting from FORTRAN to CUDA, the added burden of allocating memory, 

copying data, updating memory, and retrieving data makes the likelihood of introducing 

bugs greater. CUDA provides an emulation mode, which causes threads to be serialized. 

However, the emulation mode will not reveal all bugs, since kernel calls are 

asynchronous when executed on the GPU. Since there is no support for dynamic 

memory allocation, the programmer has to focus on porting and memory management 

simultaneously. If the program being ported is written in serial, the parallelization 

complexity compounds the porting. In the specific case of porting from FORTRAN to 

C, there are general complexities to be addressed. For example, array indexing is 

different. 

Taking the above factors into account, it seems that porting large sets of code 

directly to CUDA will result in more problems and thus a longer development time than 

porting the code in two steps. However, many of these problems are faced when porting 

to CUDA from C as well. Memory allocation, for one, is equally difficult. Also, the 

difference in array indexing is still a problem and actually the indexing doing in C is not 

used in CUDA; this can result in a lot of wasted effort. 

Our assumption is that development time is reduced if the porting is done 

directly to CUDA, while mitigating some of the general porting related issues. The 

authors of [Michalakes and Vachharajani 2008] addressed some of the problems by 

using a framework called “spt” consisting of a preprocessor that processes certain 

macros in the (ported) code that abstract some of the porting effort. The macros 

encapsulate the overhead of memory allocation and transfer to and from the GPU. They 

also encapsulate the array index addressing issue of the CUDA model. The macros and 

preprocessor are described in more detail in [Michalakes and Vachharajani 2008]. 

Among other things, the preprocessor automates the addressing of array indices (of two 

and three dimensional arrays) at the GPU for variables with a specified compiler 

directive specified in their declaration. The programmer only needs to use basic array 

indexing as if a loop existed. This framework eases the porting process, applying it in 

general to other applications should be feasible. 

3.3. Testing the Ported Code 

To port individual modules that are normally not standalone applications, it is best to 

implement a standalone version of the module rather than performing an entire 

simulation to test the single module. To obtain input data for testing, the module can be 

modified to print the values of its input variables while performing a full simulation. 

This output can be directed to a file that can later be used as input data. A test driver 

may then be developed that executes both versions of the code, with the same input, and 

compares their output.  

The applications we target with this approach typically have large output data 

sets. Round-off error usually occurs when working with floating point numbers due to 

the different orders of operations on highly-parallel systems as well as non-standardized 



  

floating point rounding specifications. This issue has been particularly common in 

GPU programming, since GPUs have the added problem of not supporting the IEEE 

Floating point standard [Hillesland 2004]. Therefore, a mechanism for testing the output 

of the CPU and GPU versions of the code needs to be developed, and simple (bit-wise) 

comparisons will not work due to round-off error. 

To measure the similarity between the CPU and GPU outputs, text-based and 

graphical tools can be used. The text-based tools provide a quick quantitative similarity 

score. However, with large arrays, the statistics calculated and displayed by a text-based 

tool may be inadequate. In these cases, graphical output is the most revealing. We have 

found difference plots to be well suited for this. Difference plots show the relation 

between the difference of values and their means. This is ideal for our application since 

many parameters, with a wide range of values, need to be plotted.  

3.4. Optimization 

After ensuring correctness of the code, it is necessary to optimize it. Two underlying 

issues need to be addressed. The first is that the algorithm is efficient. The other is that 

the runtime configuration (e.g. number of blocks and threads per block) is efficient and 

matches the target hardware. CUDA has eased the burden by providing profiling tools 

with their toolkit. Some general optimization schemes have been described in the 

literature  [Ryoo 2008]. 

While every application requires specific tweaks to achieve optimal 

performance, a general first set of steps can be taken to start the optimization process. 

We devised a set of code design guidelines and ensured they were met. The approach in 

[Ryoo 2008] provides a general methodology of minimizing the optimization space for 

CUDA programs, which saves optimization time.  

Profiling and Other Computer-assisted Analysis 

Profiling at the kernel level provides valuable feedback about the resource utilization of 

the kernel. It is essential for determining bottlenecks and inefficiencies. With multiple-

function kernels, profiling quickly reveals the greatest resource consumers. CUDA 

provides a profiler for recording global and local memory usage, number of instructions, 

number of branches, thread information, and the ratio of CPU-time to GPU-time. 

Manual analysis with the CUDA debugger can reveal more in-depth information.  

Manual Analysis 

In order to determine the optimal number of multiprocessors and blocks per thread, an 

exhaustive test with multiple configurations was performed. This was possible since the 

kernel executes quickly (less than 30 minutes were required for the search). Once the 

optional runtime configuration was determined, a “checklist” of optimizations that can 

be carried out by inspecting source code and analyzing execution time with different 

inputs was devised and applied to WSM-5, as follows. 

• Take advantage of the Shared Memory. The CUDA architecture has different kind 

of memories, including global and shared memory. Access to shared memory is many 

times faster than global memory. For certain kinds of access it is similar in 

performance to registers. Due to its relatively small size (e.g. 16 kB per multiprocessor 

in the GT200 architecture), it must be utilized carefully. Threads on the same 

multiprocessor (block) can cooperate and access this memory, which allows inter-

thread data reuse. In the case of WSM-5, the large amount of input data limits the 



  

amount of memory that can be put into shared memory. The SPT preprocessor 

described in Section 3B allows developers to easily decide which variables should go 

in the registers and does this.  

• Optimize global memory access. Programmers can minimize the performance impact 

of using slower memories. The main technique is to ensure that memory is accessed in 

a coherent/coalesced manner. When this is done, contiguous memory can be 

transferred in parallel by different threads. This saves several compute cycles, 

depending on the type of variable(s). To ensure coalesced access, local memory can be 

used, which is coalesced by default. All constant-sized arrays are stored in local 

memory. Array indices in WSM-5 are sized based on the size of the physical domain 

being modeled, which is determined at run time. The workaround to this is to ensure 

that access to the global variables is coalesced. Output from the CUDA profiler 

revealed that all global memory was being loaded and stored in a coalesced manner. 

• Minimize Transfers – Communication between the system memory and the PCI 

Express slot can easily become a bottleneck. A PCI Express Bus has a speed of 8 GB/s 

(i.e. it can allocate 2 Giga-words of 4 bytes per second). During one operation, data 

must be sent from the CPU to the GPU, one operation performed and data must be 

copied back from the GPU to the CPU. So the 2 Giga-words limit drops to 1 Giga-

word. Because thousands of threads may be running, bandwidth is further limited. 

Basically, it is necessary to ensure as high a ratio as possible of arithmetic operations 

to memory operations. In WSM-5, this ratio is approximately 1:350, which is very 

bad. This is caused by the large amount of input data. 

• Maximize Occupancy for bandwidth-limited codes. The CUDA profiler revealed 

that the occupancy was only 0.25. Again, the fact that the amount of data that needs to 

be transferred is so large seems to be a culprit here. There are two possible solutions to 

this. One is to delay the transfer of parts of the variables in the kernel, if possible. The 

other, with large codes like WRF, is to perform the transfer while other modules are 

executing and/or blocking. Both techniques add complexity to the algorithm of the 

code. 

• Mask latency. Latency is masked by ensuring multiple threads are available to 

compute while others are performing I/O. 

4. Results and Discussion 

The fastest overall execution time of the ported SWRAD module on Minerva was 

9.6ms, compared to 20ms for the CPU version. The performance improvement is good, 

considering the coding effort put in. However, there is still a large room for 

improvement. As with the WSM-5 module, the vast majority of the execution time is 

spent on data transfer - only 0.069ms are spent in the actual kernel computation in the 

optimal case.  Since the variables used for WSM-5 and SWRAD are not the same, the 

decrease in overall execution time for an entire simulation is just the sum of the time 

saved from each module. The fact that the performance on the commodity 9400m GPU 

achieved faster times than the Tesla node proves that there is room for improvement.  

 

 

 

 



  

5. Conclusion 

We have described an approach to porting complex scientific applications to CUDA. 

The methodology we propose attempts to save development effort by specifying a 

simple iterative approach to porting that does not require intimate knowledge of the 

application being ported. By employing it on a module of a well-known weather 

forecasting application, we were able to speed up the module by more than a factor of 

two, without having to invest an unreasonable amount of time to do so. The 

performance improvement was experienced by virtue of the GPUs relatively large 

computing power, but there still exists a large amount of potential that is not being 

exploited due to the chosen application’s particular problem of having a large data size 

to computation ratio. Future work will emphasize improving performance. 
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