
jcis@epacis.org

A Case Study on Porting Scientific Applications to GPU/CUDA

Javier Delgadoa1, João Gazollab, Esteban Cluab,
and S. Masoud Sadjadia

aCollege of Engineering and Computing, Florida International University, Miami,
FL, USA

bInstituto de Computacão, Universidade Federal Fluminense, Niterói, RJ, Brazil
Received on ***** / accepted on *****

Abstract

This paper proposes and describes a methodology developed to
port complex scientific applications originally written in FORTRAN
to nVidia CUDA. The significance of this lies in the fact that, despite
the performance improvement and programmer-friendliness provided
by CUDA, it presently lacks support for FORTRAN. The methodology
described in this paper addresses this problem using a multiple step
process that includes identification of software modules that benefit
from being ported, familiarization with the code, porting, optimiz-
ing, and verifying the ported code. It was developed and carried out
by porting an existing module of a weather forecasting application
written in FORTRAN. Using this approach, we obtained a functional
prototype of the ported module in approximately 3 months, despite
our lack of knowledge of the theory of the weather code. Considering
the relevance of this application to other scientific applications also
written in FORTRAN, we believe that the proposed porting method-
ology described can be successfully utilized in several other existing
scientific applications.

Keywords: gpu, programming, cuda, weather modeling

1. INTRODUCTION

Recent work has shown that it is no longer necessary to rely solely on
the CPU of computers to perform all of a programs computations. Graphics
Processing Units (GPUs), particularly, with their large number of processors,

1E-mail Corresponding Author: javier.delgado@fiu.edu

1

provide a cost-effective solution for high-performance computing (HPC). As
an added benefit, modern programming frameworks, such as nVidia’s Com-
pute Unified Device Architecture (CUDA) have made programming on the
GPU more straightforward and friendly for programmers of high-level lan-
guages with basic parallel programming knowledge. However, exploiting the
benefits of the GPU architecture complicates programming. Due to the dif-
ferent programming paradigm of GPUs, it is not trivial for many scientific
applications to be ported. Since current solutions provide limitations in
terms of programming languages, large codebases need to be entirely rewrit-
ten in many cases. Specifically, the current implementation of CUDA only
supports the C language. In this work, we describe a methodology for eas-
ing the process of porting complex scientific software with a large amount
of FORTRAN code to CUDA. The software that we used for our case study
is Weather Research and Forecasting (WRF), version 3.0 [6]. WRF requires
a large amount of computational resources in order to generate useful sim-
ulations. Aside from that, some of the main WRF developers themselves
have mentioned the need for fine-grained parallelism in numerical weather
modeling applications, which prompted them to take the first steps towards
GPU enabling WRF [7]. We continue this work by porting more WRF code
and formalizing the porting process.

We organize the rest of this paper as follows: In Section II, we provide
a summary of the status of GPU-enabling WRF, in Section III, we describe
our proposed porting methodology, applied to the WRF problem. In Section
IV, we provide results using the GPU-enabled WRF and in Section V, we
conclude this paper.

2. BACKGROUND AND DOMAIN DESCRIPTION

2.1 GPUs and CUDA

CUDA is a parallel computing architecture developed by nVidia Corpo-
ration. CUDA is the computing engine in nVidia graphics processing units
(GPUs) that is accessible to software developers. It is currently possible to
write CUDA applications using an extension of the C programming language.

CUDA allows supported GPUs to be programmable similar to CPUs.
Unlike current CPUs, GPUs consist of a parallel many-core architecture,

2

consisting of dozens of cores. Each core can run thousands of threads simul-
taneously.

2.2 Application Domain Description

Many approaches have been investigated in order to parallelize scientific
problems written in FORTRAN or C to utilize compute clusters and/or grids.
FORTRAN is often preferred for highly mathematical code. Many compu-
tationally intensive applications are written at least partially in FORTRAN,
e.g. Quantum Espresso, WRF [6], MM5 [2], and Elmer. While each appli-
cation has a particular purpose, many of them share certain characteristics.
For example, their inputs and outputs usually consist of multi-dimensional
arrays consisting of floating point values. By observing these characteristics,
a generally-applicable paradigm can be devised in order to save software en-
gineering effort in future work. We validate the efficacy of this methodology
on a well known weather forecasting application.

One of the scientific applications mentioned above, Quantum Espresso,
has its most computationally demanding parts written in FORTRAN. After
profiling an example, we noted that the function that consumed the most
execution time consisted of 4 input variables and 7 output variables, mostly
2-dimensional arrays of floating point values. This characteristic, i.e. pro-
cessing on several multidimensional arrays, is shared by WRF, which is the
application we focus on for this work. We expect similar characteristics in
other scientific applications.

The Weather Research and Forecasting (WRF) application, version 3, is
the latest version of the next-generation weather model used by the Na-
tional Oceanic and Atmospheric Administration (NOAA). Contemporary
high-performance compute resources have made accurate and detailed weather
simulations possible. However, even though there are a large number of tera-
and peta-scale systems available today, gaining access to these systems is still
either difficult or expensive to obtain.

2.3 Porting WRF: Benefits and Implications

The fact that large computational resources based on CPUs are still ex-
pensive, along with the need for the fine-grained parallelism, makes WRF an
ideal candidate to test this methodology. The module we port as a proof-of-
concept of our paradigm is a continuation of the work described in [7]. Quick

3

turn-around time for results is particularly important for weather simula-
tions, since adequate time is needed to prepare for such disastrous situations.
Therefore, by working on the WRF port, we can validate our methodology
while addressing an important scientific problem.

WRF consists of nearly 200,000 lines of code, of which approximately
20% is generated automatically using a Registry, which is based on a com-
puter aided software engineering (CASE) mechanism [9]. Like most high-
performance scientific applications, WRF is flexible in terms of parallelism.
It supports MPI and OpenMP in order to allow coarse and fine grain par-
allelism, respectively. WRF uses a separate, high-level parallelism library
called Comm-API [5], which supports different parallel communication APIs.
CUDA enhances WRFs parallel programming support and performance for
significantly faster execution on commodity hardware.

The largest barrier to porting is the fact that the only language supported
by CUDA is C. The fact that there exist many applications like WRF has
motivated the development of the proposed methodology introduced in the
next section. In addition, the fact that CUDA allows incremental porting
of an application from CPU to GPU has reinforced our methodology. The
WRF codebase is large but modular, which allows the incremental porting
model allowed by CUDA to be utilized for piece-wise porting.

The swrad module of WRF, which is what we ultimately decided to port,
consists of two loops around the i and j dimensions of the Cartesian plane.
The calculations inside these loops consist of several short loops through the
k dimension. Inside the short loops are several arithmetic calculations and
conditional statements. Most of the processing is done on multi-dimensional
arrays of floating point values. Since we are not domain experts, understand-
ing the code is challenging. However, porting the calculations and conditional
statements is trivial, albeit error prone. Our approach to porting is not ham-
pered by our lack of domain knowledge since we simply test by probing the
values of certain variables during our incremental porting process.

1 2.4 The need for a formal Methodology

We would like to emphasize the point that the the purpose of this paper is to
describe a formal methodology for porting scientific programs to CUDA. The
specific project of porting WRF to CUDA is not new, but we considered WRF

4

an ideal candidate and thus continued on the work discussed in [7], which
introduces many of the ideas of the porting paradigm and problems. As a
result, in this work we generalize and formalize their approach. We intend
to work on other software applications in the future to further demonstrate
the viability of this approach. We note that after the above work was pub-
lished, two additional modules have also been ported, for a total of three
CUDA-enabled modules. Profiling a standard WRF run with various do-
mains revealed that the modules with the longest running time have been
ported. The authors mention an additional two modules that would benefit
from using GPUs. The five modules listed on their project page are the fol-
lowing: WSM-5 (wsm5), Tracer Advection, Chemistry, Shortwave radiation
(swrad), and Long-wave radiation (lwrad). Cloud microphysics is responsi-
ble for accurately modeling the effect of rain, ice, and snow as described in
[4]. Tracer advection models the transport of atmospheric constituent scalars
under the force of wind as described in [9]. The swrad and lwrad modules
model radiative transfer as described in [5]. In the case study described in
Section 5, we describe the decision to port the swrad module.

3. PROPOSED METHODOLOGY

Our proposed approach involves incrementally porting parts of the code
and testing by generating output files containing the values of the variables
being modified. Basically, our methodology divides the process of porting
into 4 different stages: profiling, development, testing, and optimization.
Since porting is performed on a per-module basis, this approach follows an
incremental software engineering process.

The overall procedure is depicted in Fig. 1. The two versions of the code
are separately executed. The output and/or state variables data is written
to a file. This data may be in a raw/binary format. In the case of WRF,
their values are a binary dump of the FORTRAN variables. These files are
passed into a generator that creates text-based output in a uniform format.

3.1 Profiling

Most large programs spend the majority of their time in small sections of
code. This is also true of scientific programs. Thus, using a code profiler that
tells the user where the program is spending most of its time should be the

5

first step in the porting process. After performing this step, the developer
will know what code segment(s) should be ported first.

3.2 Porting the Code

Our methodology focuses on porting code that presumably has been
tested and is production-ready. Such is the case for the WRF modules we an-
alyzed: since many of these applications have been developed for a long time,
the code is presumably robust. As a result, our model needs to effectively
test the output of the ported code. However, the limited I/O operations
supported by CUDA complicates this process. A partial workaround for this
is to first port the code to (CPU-only) ANSI C, test it, and then port to
CUDA. This way, much of the testing could be done in the middle stage of
the implementation (in which all the code is in C). However, the process of
porting the code to CUDA requires significant effort and is prone to error,
so additional testing is still required to port to CUDA from ANSI C.

Porting code directly from FORTRAN to CUDA is a time-consuming,
error-prone affair. Even porting existing C code to CUDA is difficult. For
example, the programmer is not able to access the GPU memory directly;
the data must be copied to a temporary variable on the host (i.e. main
memory) before their value is read and/or modified. Another problem is
that there is no dynamic allocation of memory in GPUs the programmer
must know the amount of data needed for each variable and pre-allocate it at
the GPU. Another factor to consider is the highly-parallel execution model.
In CUDA, each kernel (i.e. program running on the GPU) is responsible for
many blocks, each consisting of thousands of threads. The launch of a kernel
is an asynchronous process in which there is no guarantee about the order of
the threads’ execution, making it almost impossible to debug on-the-fly.

If porting from FORTRAN to CUDA, the added burden of allocating
memory, copying data, updating memory, and retrieving data makes the
likelihood of introducing bugs greater. CUDA provides an emulation mode,
which causes threads to be serialized. However, the emulation mode will
not reveal all bugs, since kernel calls are asynchronous when executed on the
GPU. Since there is no support for dynamic memory allocation, the program-
mer has to focus on porting and memory management simultaneously. If the
program being ported is written in serial, the parallelization complexity com-
pounds the porting. In the specific case of porting from FORTRAN to C,
there are general complexities to be addressed. For example, array indexing

6

is different between the two languages, which makes porting bug-prone, and
off-by-one errors do not necessarily reveal themselves in all executions.

Taking the above factors into account, it seems that porting large sets
of code directly to CUDA will result in more problems and thus a longer
development time than porting the code in two steps. However, many of
these problems are faced when porting to CUDA from C as well. Memory
allocation, for one, is equally difficult. Also, the difference in array indexing
is still a problem; in fact, the indexing of data is being addressed by a differ-
ent virtual processor within a virtual processor block, so array indexes are
determined as a function of the (thread) index within the block correspond-
ing to the active processor. The relation between the thread index and the
global index (in main memory) needs to be computed using a complex for-
mula, so indexing is quite complicated in CUDA even for programs written
in C. Another major difficulty is that bugs in CUDA programs do not reveal
themselves as well as in CPU-run programs. Data in variables may become
corrupted without any error or warning being reported. In C, segmentation
faults often expose these coding errors.

Our assumption is that development time is reduced if the porting is
done directly to CUDA, while mitigating some of the general porting related
issues.

3.3 Testing the Ported Code

To port individual modules that are normally not standalone applica-
tions, it is best to implement a standalone version of the module rather than
performing an entire simulation to test the single module. To obtain input
data for testing, the module can be modified to print the values of its input
variables while performing a full simulation. This output can be directed
to a file that can later be used as input data. A test driver may then be
developed that executes both versions of the code, with the same input, and
compares their output.

The applications we target with this approach typically have large output
data sets. Round-off error usually occurs when working with floating point
numbers due to the different orders of operations on highly-parallel systems
as well as non-standardized floating point rounding specifications. This is-
sue has been particularly common in GPU programming, since GPUs have
the added problem of not supporting the IEEE Floating point standard [3].
Therefore, a mechanism for testing the output of the CPU and GPU versions

7

of the code needs to be developed, and simple (bit-wise) comparisons will not
work due to round-off error.

Some research and/or application domains have standard metrics of as-
sessing correctness and/or quality. For example, in image processing, Peak
Signal to Noise Ratio (PSNR) is typically used. Weather forecasting output
has no such metric. WRF includes a tool, diffwrf, that is able to compare
the final output of two domains, but it does not work on any intermediate
output, so it is not useful for testing individual modules. Running an entire
simulation to test a single module is not a good solution since it is time-
consuming, which increases development time. A more general solution that
can be applied to other applications would be beneficial. This makes testing
the output of the program itself the optimal solution. Writing the values of
output/state variables to a file and using external tools to compare them is
an efficient solution for this.

To measure the similarity between the CPU and GPU outputs, text-
based and graphical tools can be used. The text-based tools provide a quick
quantitative similarity score. However, with large arrays, the statistics calcu-
lated and displayed by a text-based tool may be inadequate. In these cases,
graphical output is the most revealing. We have found difference plots to be
particularly well suited for this. Difference plots show the relation between
the difference of values and their means. This is ideal for these kinds of sci-
entific applications since many parameters, with a wide range of values, need
to be plotted.

The output generated by the output generator consists of data that can
be read by a 2-dimensional array viewer. This format is useful for text-based
processing. It can also be used by some graphical tools with little or no
modification. For example, the files can be readily used by gnuplot.

3.4 Optimization

After ensuring correctness of the code, it is necessary to optimize it.
Optimization in GPU architectures is still a relatively new field of study.
The complexity and size of the GPU architecture, particularly the memory
hierarchy and distribution of processors makes optimization difficult. Two
underlying issues need to be addressed. The first is that the algorithm is
efficient. The other is that the runtime configuration (e.g. number of blocks
and threads per block) is efficient and matches the target hardware. CUDA
has eased the burden by providing profiling tools with their toolkit. Some

8

general optimization schemes have been described in the literature [8].
While every application requires specific tweaks to achieve optimal per-

formance, a general first set of steps can be taken to start the optimization
process. We devised a set of code design guidelines and ensured they were
met. The approach in [8] provides a general methodology of minimizing
the optimization space for CUDA programs, which saves optimization time.
Their techniques are applicable to different programs, although they only
test on four different ones.

3.4.1 Profiling and other computer-aided analysis

Profiling at the kernel level provides valuable feedback about the resource
utilization of the kernel. It is essential for determining bottlenecks and ineffi-
ciencies. With multiple-function kernels, profiling quickly reveals the greatest
resource consumers. CUDA provides a basic profiler for recording global and
local memory usage, number of instructions, number of branches, thread in-
formation, and the ratio of CPU-time to GPU-time. Manual analysis with
the CUDA debugger can reveal more in-depth information.

Another computer-assisted analysis tool is provided by CUDA by means
of intermediate files that are generated when compiling CUDA kernels. There
are two particular files of interest. The first is a PTX file, which shows the
actual amount of machine instructions and can indicate which memory is
being used for some of the variables. The other is the cubin file, which gives
a rough indication of register usage, as well as shared, and local memory
usage.

After compiling the kernel and retaining all of the intermediate data gen-
erated by the CUDA compiler, the cubin output revealed that the amount
of data used is quite small. Just 2,356 bytes of local memory and 224 bytes
of shared memory were used per thread block and 60 registers per thread.
The Tesla nodes contain 16384 bytes of shared memory and 16,384 registers.
Some of this information is used in the Manual Analysis section that follows.

3.4.2 Manual Analysis

In order to determine the optimal number of multiprocessors and blocks
per thread, an exhaustive test with multiple configurations was performed.
This was possible since the kernel executes quickly (less than 30 minutes were
required for the search).

9

Once the optional runtime configuration was determined, a checklist of
optimizations that can be carried out by inspecting source code and analyzing
execution time with different inputs was devised.

• Take advantage of the shared memory. The CUDA architecture
has different kind of memories, including global and shared memory.
Access to shared memory is many times faster than global memory.
For certain kinds of access it is similar in performance to registers.
Due to its relatively small size (e.g. 16 kB per multiprocessor in the
GT200 architecture), it must be utilized carefully. Threads on the
same multiprocessor (block) can cooperate and access this memory,
which allows inter-thread data reuse.

• Take advantage of the registers. Registers are the fastest kind of
memory on the multi-processor. Registers are only accessible by their
corresponding threads. Registers provide a total of 64 kB of memory.
If the amount of the shared memory is not enough for an application, it
is possible to use register memory instead. However, register memory
has the caveat that the data in it cannot be indexed (i.e. arrays cannot
be used).

• Load balancing. As with any parallel program, it is important that
the load is equally balanced amongst the executers.

• Optimize global memory access.Global and local memories provide
a much larger storage space. Even though they are slower, there are
things the programmer can do to minimize the performance impact of
using these slower memories. The main technique is to ensure that
memory is accessed in a coherent/coalesced manner. When this is
done, contiguous memory can be transferred in parallel by different
threads. This saves several compute cycles, depending on the type of
variable(s). To ensure coalesced access, local memory can be used,
which is coalesced by default. All constant-sized arrays are stored in
local memory.

• Minimize message transfers. Communication between the system
memory and the PCI Express slot can easily become a bottleneck. For
example, a PCI Express Bus has a speed of 8 GB/s (i.e. it can allocate 2
Giga-words of 4 bytes per second). During one operation, data must be

10

sent from the CPU to the GPU, one operation performed and data must
be copied back from the GPU to the CPU. So the 2 Giga-words limit
drops to 1 Giga-word. Because thousands of threads may be running,
bandwidth is further limited. Basically, it is necessary to ensure as high
a ratio as possible of arithmetic operations to memory operations.

• Maximize Occupancy for bandwidth-limited codes. The CUDA
profiler revealed that the occupancy was only 0.25. This leaves a lot
of room for improvement. Again, the fact that the amount of data
that needs to be transferred is so large seems to be a culprit here.
There are two possible solutions to this: one is to delay the transfer
of parts of the variables in the kernel. The other, with large codes
like WRF, is to perform the transfer while other modules are executing
and/or blocking. Both techniques add complexity to the algorithm of
the code.

• Mask latency. Latency is masked by ensuring multiple threads are
available to compute while others are performing I/O.

4. CASE STUDY: APPLYING THE PORTING METHODOL-
OGY TO WRF

4.1 Profiling

Several instrumented executions of WRF were run to determine what
module to port/optimize. To evaluate the performance of the different mod-
ules under different execution platforms, three different systems were used.
Furthermore, three different WRF inputs domains were used. The systems
are shown in Table 1. Table 2 describes temporal and geographical properties
of the WRF input domains used. Figure 2 shows the percentage of execution
time used by the most time-consuming functions. The results show that the
ones that presumably benefit most from the added power of GPUs are the
cloud microphysics (wsm52d) and scalar advection modules, corresponding
to over 25% of the total execution time. There was already ongoing work
for porting these two modules, so we port the swrad module, although the
wsm5 module was used for certain optimization steps.

Generally, porting the module that takes the most time results in the most
speedup. However, this is not always the case. For example, in [7] the authors

11

found that the overall speedup after porting the WSM5 module of WRF was
larger than the individual speedup of the isolated module. Their assessment
as to why this happened is because it was the most load-imbalanced module of
the application. When executing with 16 nodes of the NCSA Abe cluster, we
observed that the percentage of time for the WSM5 module varied between
7.9% and 16.2%. This was considerably more than the next highest varying
function, which had a range of 6.5% 11.3%. Note that these values were
obtained using the jan00 domain.

The results shown in Tables 1 and 2, and the diagram shown in Fig. 2, as-
sume all other WRF input parameters are constant. WRF allows for a large
number of runtime configuration differences corresponding to different mete-
orological theories. The application profile information in Fig. 2 corresponds
to executions with the most basic form of short-wave radiation physics and a
radiation time step of 30 seconds (which is the recommended value for the in-
put domain used). Since short-wave radiation is listed as one of the modules
to port, we did further profiling with different short-wave radiation schemes
as well as different radiation periods. We found that this had a significant
effect on the execution time. As a result, in the future it would be beneficial
to port the more computationally-intensive radiation schemes.

4.2 Porting the Code

The authors of [7] addressed some of the problems of porting by using
a framework called “spt” consisting of a preprocessor that processes certain
macros in the (ported) code that abstract some of the porting effort. The
macros encapsulate the overhead of memory allocation and transfer to and
from the GPU. They also encapsulate the array index addressing issue of the
CUDA model. The macros and preprocessor are described in more detail in
[7]. Among other things, the preprocessor automates the addressing of array
indices (of two and three dimensional arrays) at the GPU for variables with
a specified compiler directive specified in their declaration. The programmer
only needs to use basic array indexing as if a loop existed. This framework
eases the porting process and applying it in general to other applications
should be feasible.

4.3 Testing the Ported Code

To Test the ported code, we use difference plots that compare the original
and CUDA versions of the output variables of swrad.

12

4.4 Optimization

Since our profiled runs showed that the wsm5 module takes a more sig-
nificant percentage of execution time than swrad, we chose it as the test bed
for our optimization approach. We combine computer-assisted and manual
analysis to perform the optimization.

For the manual analysis, we used the “checklist” in Section 3.4.2. The first
step was ensuring that an optimal memory placement scheme was being used.
The large amount of input data used by wsm5 limits the amount of memory
that can be put into shared memory. The SPT preprocessor described in
***** makes placement convenient. The current port, for example, benefits
from putting often-used variables in registers. Ensuring coalesced memory
access is difficult because array indices in WSM-5 are set based on the size
of the physical domain being modeled, which is determined at run time.
The workaround to this is to ensure that access to the global variables is
coalesced. Output from the CUDA profiler revealed that all global memory
was being loaded and stored in a coalesced manner. Possibly the biggest
deterrent to performance for wsm5 is message transfer overhead. The ratio
of arithmetic operations to memory operations is approximately 1:350, which
is undesirable. This is caused by the large amount of input data. Optimizing
this is necessary, but it is beyond the scope of this paper.

5. RESULTS AND DISCUSSION

The project, whose goal was to port a module of WRF to CUDA, was
performed in 3 months. This includes trial and error, learning about the
software itself, and actually converting the code to CUDA. A significant
percentage of this time was spent learning about the code itself as part of a
different project. Neither of the developers involved were meteorologists nor
domain experts in any way. Reading documents such as [4] gave us a slightly
better understanding of the code, but not enough to fully comprehend what
it was doing. For this reason, the porting approach relies on using the values
of output variables to verify the code. A simple binary compatibility test
was not enough due to the floating point issues mentioned earlier, but the
difference plot provided an efficient method of ensuring that the output was
correct. The resulting paradigm discussed in this paper describes the final
methodology that was agreed on.

The fastest overall execution time of the ported swrad module on Min-
erva was 9.6ms, compared to 20ms for the CPU version. The performance

13

improvement is good, considering the coding effort put in. However, there
is still a large room for improvement. As with the wsm5 module, the vast
majority of the execution time is spent on data transfer - only 0.069ms are
spent in the actual kernel computation in the optimal case. Since the vari-
ables used for wsm5 and swrad are not the same, the decrease in overall
execution time for an entire simulation is just the sum of the time saved
from each module. The fact that the performance on the commodity 9400m
GPU achieved faster times than the Tesla node makes it clear that there is
big room for improvement.

Since a rigorous optimization process is beyond the scope of this paper, we
did not perform any further into the optimization aspects. Discovering tech-
niques to optimize applications like WRF that require a lot of data transfer
would be an interesting future topic to research.

6. FINAL COMMENTS

We have described an approach to porting complex scientific applications
to CUDA. The methodology we propose attempts to save development effort
by specifying a simple iterative approach to porting that does not require
intimate knowledge of the application being ported. By employing it on
a module of a well-known weather forecasting application, we were able to
speed up the module by more than a factor of two, in a relatively small
amount of time. The performance improvement was experienced by virtue
of the GPUs relatively large computing power, but there still exists a large
amount of potential that is not being exploited due to the chosen applications
particular problem of having a large data size to computation ratio. Future
work will emphasize the performance optimization aspects of the porting
process.

ACKNOWLEDGMENTS: This work was supported in part by
the NSF for the support on the PIRE, GCB, and CREST projects
(NSF grants OISE-0730065, OCI-0636031, and HRD-0833093), and
using Teragrid [1] resources provided by NCSA and in part by IBM.
Also, the authors from UFF would like to thank for the support of
CAPES, CNPq and FAPERJ, from Brazil.

14

Figure 1 - Overview of the porting methodology used. (a) shows

the overall methodology. (b) shows the details of the “Evaluate
the Ported Module” block.

Figure 2 - Breakdown of execution per function in a WRF

simulation, using the systems tabulated in Table 1 and the
domains tabulated in Table 2.

15

Table 1: Description of Systems Used

Name CPU RAM GPU num cores Clock
Vaia C2D 2.26 GHz 2 GB 9300M 16 1.1 GHz

Minerva C2D 2.26 GHz 2 GB 9400M 16 1.1 GHz
Lincoln Xeon 2.33 GHz 16 GB Tesla S1070 240 1.5 GHz

Table 2: Description of WRF Domains

Domain Name Length (km) Width (km) Resolution (km) Simulation Time (h)
Jan00 1830 2220 30 12

1500x15 1500 1500 15 24
2000x15 2000 2000 15 24

References

[1] CATLETT, ET. AL., 2007. TeraGrid: Analysis of Organi-
zation, System Architecture, and Middleware Enabling New
Types of Applications, HPC and Grids in Action, Ed. Lucio
Grandinetti, IOS Press ’Advances in Parallel Computing’ se-
ries.

[2] GRELL, GA, DUDHIA, J, SAUFFER, DR, 1994. Description
of the fifth generation Penn State/NCAR Mesoscale Model
(MM5), NCAR Tech. Rep., TN-3981STR: 121.

[3] HILLESLAND, KE, LASTRA, A, 2004. GPU floating-point
paranoia, GP2 ACM Workshop on General Purpose Comput-
ing on Graphics Processors: 8.

[4] HONG, SY, DUDHIA, J, CHEN, SH, 2004. A revised ap-
proach to ice microphysical processes for the bulk parameter-
ization of cloud and precipitation, Mon. Weather Rev. 132:
103120.

[5] IACONO, MJ, MLAWER, EJ, CLOUGH, SA, MOR-
CRETTE, JJ, 2000. Impact of an improved longwave radia-
tion model, RRTM, on the energy budget and thermodynamic
properties of the NCAR Community Climate Model, J. Geo-
phys. Res. 105: 14,87314,890.

16

[6] MICHALAKES, J, DUDHIA, J, GILL, D, HENDERSON,
T, KLEMP, J, SKAMAROCK, WC, WANG, W 2004. The
Weather Reseach and Forecast Model: Software Architecture
and Performance, In Proc. 11th ECMWF Workshop on the
Use of High Performance Computing In Meteorology: 25-29.

[7] MICHALAKES, J, VACHHARAJANI, M, 2008. GPU Accel-
eration of Numerical Weather Prediction, Parallel Processing
Letters 18,4: 531-548.

[8] RYOO, S, RODRIGUES, C, STONE, S, BAGHSORKHI, S,
UENG, S, STRATTON, J, HWU, W, 2008. Optimization
space pruning for a multithreaded GPU, International Sym-
posium on Code Generation and Optimization.

[9] SKAMAROCK, WC, KLEMP, JB, DUDHIA , J, GILL ,DO,
BARKER, DM, WANG,W, POWERS , JG, 2005. A Descrip-
tion of the Advanced Research WRF Version 2, NCAR/TN-
468+STR.

17

