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Abstract.  The Latin American Grid (LA Grid) joint research program fosters 

collaborative research across eleven universities and IBM Research with the 

objective of developing innovative grid technologies and applying them to solve 
challenging problems in the application areas of bioinformatics and hurricane 

mitigation. This paper describes some of these innovative technologies, such as the 
support for transparent to the application expert grid enablement, meta-scheduling, 

job flows, data integration, and custom visualization, and shows how these 

technologies will be leveraged in the LA Grid infrastructure to provide solutions to 
pharmagenomics problems and hurricane prediction ensemble simulations.  

Keywords.  Meta-scheduling, job flows, data integration, transparent grid 

enablement, custom visualization, bioinformatics, hurricane mitigation. 

Introduction 

Since December 2005, IBM has been engaged with academic partners in Florida, 

Puerto Rico, Mexico, Argentina, and Spain in the Latin American (LA) Grid initiative 

to dramatically increase the quantity and quality of Hispanic Technical Professionals 

entering the Information Technology fields.  

At the core of this initiative is the development of a computer grid across multiple 

universities and businesses that serves as the platform for education and collaborative 

research in the critical and emerging fields of grid computing, distributed systems and 

supercomputing.  The LA Grid constitutes a living laboratory for advanced research by 

the universities and IBM Research in application areas such as bioinformatics, 

hurricane mitigation, and healthcare.  



In our ongoing research efforts, we aim to address application area problems with 

current state-of-the-art grid solutions by employing a top-down approach that provides 

the right level of abstraction for the domain experts while factoring out the common 

services that can be reused across domains. Among these common services, our focus 

has been on providing support for transparent grid enablement, meta-scheduling, job 

flows, data integration, and custom visualization. In this paper, we first describe the 

innovative technologies we developed in order to provide such support, and then we 

illustrate how these technologies can be leveraged towards the resolution of 

challenging problems in the area of bioinformatics and hurricane mitigation.   

The paper is structured as follows. In Section one, we introduce the concepts of 

grid superscaling and transparent adaptation and show how these concepts can be 

combined to provide transparent grid enablement. In Section two, we detail our design 

for meta-scheduling and our on-going prototyping activities in that space. In Section 

three, we outline our approach to job flows, leveraging WS-BPEL and providing 

support for fault-tolerant job flows through a wrapping layer. In Section four, we 

describe the set of services we have been developing and the architecture we designed 

to provide data integration capabilities in grid environments. In Sections five and six, 

we show how our innovative technologies are being applied to address challenging 

scenarios in bioinformatics and hurricane mitigation. Section seven concludes this 

paper with our future plans towards the creation of a transparent grid environment, 

which will allow domain experts to express application logic using an appropriate 

visual interface while making transparent, to the greatest extent possible, the details of 

the grid hardware and middleware stack. 

1. Transparent Grid Enablement 

The advent of cluster and grid computing has created a remarkable interest in high 

performance computing (HPC) both in academia and industry, especially as a solution 

to complex scientific problems (e.g. bioinformatics and hurricane mitigation 

applications). To efficiently utilize the underlying HPC facilities using the current 

programming models and tools, however, scientists are expected to develop complex 

parallel programs; a skill that they might not necessarily have and is better done by 

HPC experts. 

Current standards for cluster and grid programming such as MPI [1], OGSA [2], 

and WSRF [3] (and their implementations in offerings like MPICH2 [4], the Globus 

Toolkit [5], Unicore [6], and Condor [7]; to name just a few) have provided scientists 

with higher levels of abstraction. Noteworthy, these approaches have been successful in 

hiding the heterogeneity of the underlying hardware devices, networking protocols, and 

middleware layers from the scientist developer. However, the scientist is still expected 

to develop complex parallel algorithms and programs. Moreover, as the code for 

parallel algorithms typically crosscuts the code for business logic of the application, the 

resulting code is entangled and is difficult to maintain and evolve.  

In this part of our research, we address these problems by enabling a separation of 

concerns in the development and maintenance of the non-functional aspects (e.g. the 

performance optimization) and the functional aspects (i.e. the business logic) of 

scientific applications. We achieve this goal by integrating two existing programming 

tools, namely, a Grid framework, called GRID superscalar [8], and an adaptation-

enabling tool, called TRAP/J [9]. On one hand, GRID superscalar enables the 



development of applications for a computational grid by hiding details of job 

deployment, scheduling, and dependencies and enables the exploitation of the 

concurrency of these applications at runtime. On the other hand, TRAP/J supports 

automatic weaving of alternative parallel code (including the corresponding calls to 

GRID superscalar runtime) into the sequential code developed by the scientist to 

support static and dynamic adaptation to heterogeneous grid computing environments.   

1.1. Overview 

Inspired by the superscalar processors, GRID superscalar provides an easy 

programming paradigm for developing parallel programs [8]. Similar to superscalar 

processors that provide out-of-order and parallel execution of machine instructions by 

bookkeeping their dependencies, GRID superscalar provides parallelism to the 

functions of a program written in a high-level programming language such as Java. 

Using GRID superscalar, a sequential scientific application developed by a scientist is 

dynamically parallelized in a computational Grid. GRID superscalar hides the details 

such as resource mapping, staging input data files, cleaning temporary data files, 

deploying and scheduling tasks, exploiting instruction-level parallelism, and exploiting 

data locality. We note that for many of its responsibilities, GRID superscalar depends 

on other grid computing toolkits such as GT4, Condor, and others. 

TRAP/J is a tool that enables static and dynamic adaptation in Java programs at 

startup and runtime, respectively [9]. It consists of two GUI-based interactive tools as 

follows: (1) the Generator, which generates an adapt-ready version of an existing 

application by inserting generic hooks into a pre-selected subset of classes in the 

application, called adaptable classes; and (2) the Composer, which allows insertion of 

new code at the generic hooks both at startup or runtime. Adaptable behavior is 

provided through alternative implementations of adaptable classes. To replace 

alternative parallel algorithms developed using the GRID superscalar codes, we use the 

Generator to make the classes with sequential code adaptable, and then we use the 

Composer to weave in the parallel code. 

Each tool provides us with the necessary features for transparent software 

adaptation from a sequential code to a grid-enabled one. Figure 1 illustrates the 

operation of our transparent grid enablement framework in the context of a simple case 

study, during which a sequential matrix multiplication program (developed in Java) is 

transparently adapted to run in a grid computing environment. First, we use GRID 

superscalar to develop alternative hyper-matrix multiplication algorithms by splitting 

the original matrices into a number of sub-matrices or blocks (Figure 1 (a), 

development time). Therefore, instead of just one task as in the original approach, 

using hyper-matrix multiplication and GRID superscalar, up to 4 tasks can be active at 

the same time. Of course, if we split the matrix into 9 blocks, then up to 9 tasks can be 

executed at the same time and so on and so forth. Next, using TRAP/J and GRID 

superscalar code generators, an adapt-ready version of the application is generated 

(Figure 1 (a), compile time). Next, a system administrator (or an intelligent software 

agent) configures the application to use the appropriate parallel algorithm based on the 

availability of resources, for example, the number of available nodes (Figure 1 (b), 

startup time). Finally, the GRID superscalar code—woven into the application using 

TRAP/J—will exploit the task-level parallelism by resolving the dependencies of the 

tasks, each performing multiplication of sub-matrices accumulatively (Figure 1 (b), 

runtime). 
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Figure 1. Grid enablement approach for the matrix multiplication case study 

1.2. Experimental Results 

To show the validity of our approach, we conducted a set of experiments that measure 

the speedup gained as a result of the grid enablement of the matrix multiplication 

application. The results are illustrated in Figure 2. 

 



0

100000

200000

300000

400000

500000

600000

700000

800000

Sequential 5576 14934 44755 193184 798368

Parallelism (4) - 2 workers 79221 86259 108107 176464 643925

Parallelism (4) - 4 workers 57656 62013 78096 133058 441891

Parallelism (9) - 6 workers 145331 146744 148240 176464 474215

144 288 576 1152 2304

 
(a) Execution time 

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

Sequential 1 1 1 1 1

Parallelism (4) - 2 workers 0,07 0,17 0,41 1,09 1,24

Parallelism (4) - 4 workers 0,10 0,24 0,57 1,45 1,81

Parallelism (9) - 6 workers 0,04 0,10 0,30 1,09 1,68

144 288 576 1152 2304

 
(b) Speedup 

 

Figure 2. Execution time and speedup of grid-enabled versions of the matrix multiplication application 

 

In Figure 2, we see that as the matrix size increases, the speedup improves and 

when the size of the matrix reaches 1152 (number of rows = number of columns = 

1152), all the algorithms for the grid-enabled application perform better than the 

original sequential application. We notice that the algorithm, which uses 4 blocks on 4 

worker nodes, exhibits the best performance. For a matrix of size 2304, it performs 



almost twice as fast as the sequential application. This is because of the even 

distribution of the load and a one-to-one mapping of the blocks onto the worker nodes, 

which result in more parallelism and less communication overhead related to the file 

transfer between the nodes required both at the initialization and finalization stages.  

We emphasize that these experiments are part of our ongoing research activities 

and they are not meant to be representative nor conclusive with respect to providing a 

quantitative metric for speedup gained because of the grid enablement. The main 

purpose of these experiments is to show that we were able to use our current 

transparent grid enablement prototype to transparently adapt an application to run in a 

grid computing environment. 

1.3. Related Work 

Satin [10] is a Java based programming model for the Grid which allows for the 

explicit expression of divide-and-conquer parallelism. HOCS [11] is a component 

oriented approach based on a master-worker schema. ASSIST [12] is a programming 

environment that aims at providing parallel programmers with user-friendly, efficient, 

portable, fast ways of implementing parallel applications. ProActive [13] is a Java grid 

middleware library for parallel, distributed and multi-threaded computing. Unlike our 

transparent grid enablement framework, none of the above mentioned approaches 

provide an explicit separation of concerns identifying separate tasks for scientist 

developers and HPC expert developers. Our framework can be extended to use these 

methods instead of or in complement to GRID superscalar and could be used as an 

enabler for supporting interoperation among the above mentioned approaches. 

1.4. Future Work 

As we mentioned before, we have been able to achieve static adaptation.  Our next task 

will be to extend our framework in support of more autonomic behavior and include 

adaptation at runtime (dynamic) in response to high level system policies such as the 

addition of more nodes to the grid, a change in process scheduling or application level 

policies such as different blocking algorithms or faster algorithms. At present, dynamic 

adaptation of Java programs with TRAP/J is under progress and is being tested. 

Furthermore, moving towards building a more autonomic self adapting and self 

configuring system, we can expand our framework to provide context-aware adaptation, 

by keeping track of the state of the runtime environment and retrieve information about 

resource allocation, scheduling, etc.  

2. Meta-scheduling 

Over the past two decades, computing power has become increasingly available. 

However, the demand for computing power, driven by many new applications in 

bioinformatics, healthcare, physical science simulation, supply chain modeling, and 

business intelligent decision, still surpasses the supply.  Grid computing allows 

harnessing of available computing resources from cooperating organizations or 

institutes, in the form of virtual organizations (VOs), in order to satisfy user demands 

and share the cost of ownership of the resources.   



The first generation of grid technologies and infrastructures focused on harnessing 

the computational power of machines.  With the evolution and availability of grid 

infrastructures, today’s grid technologies further enhance the collaboration of users by 

providing easy access to greater varieties of resources, such as data and software 

services. For examples, the collection of astronomy data at one observatory can be 

easily made available to scientists around the world, the BioMOBY web services in 

Taverna [14] are used to support publishing and extracting of biological data. 

At the core of grid technology is a resource brokering component, commonly 

known as meta-scheduler or meta-broker. The meta-scheduler matches user work 

requests to appropriate resources in the VO to execute the requests.  In addition to the 

challenges of managing VO resources that have dynamic availability attributes, meta-

schedulers need to take into account the resource usage policies and security 

restrictions enforced by the local schedulers, which they interact with. 

Currently, there are many studies and systems related to meta-scheduling in the 

grid community.  As discussed by Subramani et al. [15], most meta-schedulers can be 

classified into three different models:   

o Centralized model: one meta-scheduling component has direct information of 

all resources available at the various institutes of the virtual organization and 

is responsible for scheduling job execution on all resources; local schedulers 

at individual institutes will act as job dispatchers. An exemplary system of this 

model is eNANOS [16]. 

o Hierarchical model: one meta-scheduling component has no direct access to 

resources in the virtual organization, but assigns jobs to the local schedulers of 

the various institutes; local schedulers will match jobs to resources. An 

exemplary system of this model is the Community Scheduling Framework 

(CSF) [17]. 

o Distributed model: multiple local schedulers exist in a VO; each local 

scheduler has a companion meta-scheduling functional entity; local schedulers 

can submit jobs to each others through their respective meta-scheduling 

functional entities.  Exemplary systems of this model include IBM Tivoli 

Workload Scheduler Loadleveler [18] and Gridway [19]. 

All three models have their respective advantages and disadvantages and are 

suitable in different deployment environments. The centralized model is relatively 

simpler than other models. However, the meta-scheduler can become a bottleneck for a 

VO that has a very large number of resources.  The meta-scheduler can also be a 

potential single point of failure.   The hierarchical model is a more scalable scheme 

than the central model, but the meta-scheduler has less control of the scheduling 

decisions and can still be a single point of failure. The distributed model is the most 

complex of the three models and does not present bottleneck and single point of failure 

exposures. 

For LA Grid, our meta-scheduling design is a mix of the hierarchical and 

distributed models, as shown in Figure 3.  
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Figure 3.  LA Grid meta-scheduling architecture 

Our grid model consists of multiple domains. Each domain has its domain meta-

scheduler and consists of a collection of local dispatchers, local schedulers or even 

other meta-schedulers. A domain can be viewed as the meta-scheduling functional 

entity of an institution.  This aspect of our model intends to reflect the reality of many 

organizations having multiple local schedulers for different lines of business or for 

various levels of services. The domain meta-scheduler supports the encapsulation of 

resources and scheduling details within each organization and only its aggregate 

scheduling capability and capacity would be exposed to the partner organizations of the 

grid.   Then, the grid can be viewed as a sphere with collaborative partners.  The peer to 

peer relationship between domain meta-schedulers is dynamically established upon the 

agreement between peers.  Users of a domain would interact with that specific domain 

meta-scheduler to access resources of collaborative partners. 

       The following example illustrates the use of our meta-scheduling model.   A 

bioinformatics data service provider differentiates its services to paying and trial 

customers.  Paying customers are users of a consumer organization that pays for the 

bioinformatics services.  They typically get an expected quality of service as well as 

access to the full set of databases.  Multiple sites are set up to support paying customers 

with guaranteed service quality and availability. In contrast, trial customers are users 

without any organization association or users from a non-paying organization. They 

typically get service on a best effort basis on a single site with access to only sample 

databases. Using our meta-scheduling model, this bioinformatics provider would set up 

a meta-scheduling domain with a single local scheduler for trial customers. For the 

paying customers, the provider would either set up a sub-domain meta-scheduler with 

multiple local schedulers for each site, or include all the local schedulers in the same 

domain with a single meta-scheduler as for trial customers. For a consumer 



organization, the bioinformatics data service is made available to its users (e.g. by 

including the data service in the service registry). Depending on the demands of its 

users and budgetary constraints, the organization would establish either a paying or a 

non-paying peer-to-peer relationship with the bioinformatics provider. For the users in 

the consumer organization, their application logic would not be affected by the paying 

status of the organization. 

The Open Grid Forum [20] is leading the effort of defining a standard description 

language for job submission, called Job Submission Description Language (JSDL) [21]. 

This language allows specification of job characteristics as well as resources required 

for the job execution in a grid infrastructure.  The adoption of JSDL is a good first step 

towards achieving collaboration across virtual organizations from a job execution 

standpoint. However, there is a strong need for a standard interface for expressing 

meta-scheduler to meta-scheduler interactions and meta-scheduler to local scheduler 

interactions to realize collaborative job execution.  One of our project objectives is to 

experiment with the necessary interfaces to support interactions between domain meta-

schedulers and their associated local schedulers. We categorize these interfaces into 

three sets: 

o Meta-scheduler connection API: used to establish and terminate the 

connection between domain meta-schedulers, either through a peer-to-peer 

relationship or an up-stream relationship in a hierarchy. Once the connection 

is established, heart beats are exchanged to guarantee the healthy state of the 

connection.  

o Resource exchange API: used to exchange the scheduling capability and 

capacity of the domain controlled by the meta-scheduler; the exchanged 

information can be a complete or incremental set of data.  

o Job management API: used to submit, re-route and monitor job executions 

across the network of (meta-)schedulers.  

A domain meta-scheduler supports these three APIs and implements the necessary 

functions, as illustrated in Figure 4.  It is composed of three functional modules: the 

resource management module, the scheduling module, and the job management module. 

The resource management module is responsible for resource discovery, resource 

monitoring and resource information storage.  The resource information storage can be 

either a persistent storage device or a cache device. The scheduling module is 

responsible for locating suitable resources or a suitable scheduler for each job request. 

The job management module manages the lifecycle of the job, including the reception 

of the job request, its routing or dispatching to the matched resources or scheduler, and 

the monitoring of the job status.  

Our current implementation of the meta-scheduling APIs is using grid web 

services in order to more easily accommodate existing meta-schedulers and integrate 

them as collaborative job execution partners using the Globus Toolkit. We will verify 

the possibility for the same set of APIs to be recursively useful regardless of the 

relationship between meta-schedulers.  Our experimentation platform consists of three 

collaborative meta-scheduling partners: the first one is based on IBM’s Tivoli Dynamic 

Workload Broker [22]; the second one is based on the Barcelona Supercomputing 

Center’s eNANOS broker, and the third one is based on Gridway or CSF.    
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Figure 4.  LA Grid domain meta-scheduling 

 

We use the bioinformatics and hurricane mitigation scenarios depicted in Sections 

five and six as application test cases, as they both exhibit data and compute intensive 

workloads. 

3. Job Flows 

For many years, workflow
1
 technology has been used in orchestrating multiple tasks in 

business processes. Only recently, scientific communities became very active in 

exploring workflow technology for orchestrating the execution of composite jobs that 

consist of multiple steps. The use of job flow would potentially provide richer 

expressiveness and flexibility for users to instruct the job management system on how 

to schedule and execute their jobs. In this part of our research, we explore issues related 

to job flow in grid environments, including job flow modeling, transparent workflow 

adaptation, and data dependencies in job flows.  

3.1. Background 

Job flow management can be achieved through service orchestration or choreography 

[23]. In service orchestration, job flow management is achieved through a central 

application. This application (usually an executable workflow) models the interaction 

between the partner services, so that they collectively accomplish a coarse grain task. 

The application is aware of the interfaces of the partner services and controls their 

execution order and message exchanges. In service choreography, job flow 

management is achieved through a distributed approach, where partner services are 

                                                           
1
 In this document, we use the terms job flow and workflow interchangeably. 



aware of each other and each service knows of its participation in the message 

exchanges of the interaction. Figure 5 illustrates the difference between orchestration 

and choreography. 
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Figure 5.  Orchestration and choreography 

3.2. Overview 

We have adopted a two-level approach to job flow management in grid environments 

that employs service orchestration at the upper level to control coarse-grain job 

submissions and service choreography at the lower level to control the interactions 

among executing jobs. To create high-level service orchestration for job submissions, 

we use the Business Process Execution Language (BPEL) [24], which has become the 

leading standard for web service orchestration. Web services can be integrated, using 

some XML-grammar, to create a higher-level application (business process). The 

XML-grammar that defines a BPEL process is interpreted and executed by an 

orchestration engine which exposes the process itself as a web service. BPEL provides 

many constructs for the management of process activities, including loops, conditional 

branching, fault handling and event handling (such as timeout). Additionally, it allows 

for activities to execute sequentially or in parallel. For the lower level choreography, 

we use JSDL [20] to describe the requirements of jobs for submission to the grid. 

In addition jobs also need one or more input data items for their execution and can 

produce multiple outputs as well. There may be multiple copies/replicas of these data 

items in the system. For replica management in grids we use the Replica Location 

Service (RLS) available in the Globus Toolkit. RLS maintains and provides access to 

mapping information from logical names of data items to target names. These target 

names may represent the physical locations of the data items or map to other entries in 



the RLS providing a second level of logical naming for the data items.  The use of 

logical to physical name abstraction provides users with the option of specifying 

logical names of data items in their job descriptions, rather than the actual physical 

locations. Also, in distributed grids, it is very often desirable to maintain multiple 

copies of data items so that job executions can be optimized at more than one possible 

location. 

Figure 6 provides an architectural diagram of our job flow management framework 

and shows how it interacts with meta-schedulers. First, the Grid Job Flow Application 

Modeling and Tooling captures the job control flow in an abstract BPEL workflow and 

the data dependencies as embedded JSDL scripts within the BPEL workflow. These 

documents are then interpreted to extract the job to job, job to data, and job to resource 

dependencies to form a directed graph. Next, this graph becomes more concrete by 

mapping the jobs to scheduling domains considering the resources they need, the data 

they require, and the other jobs they are dependent on.  Then, additional steps for data 

transfer and Replica Location Service (RLS) registration are appended to the BPEL 

workflow. At this point the abstract BPEL workflow is concretized by binding the jobs 

to specific resource domains.   

Any good job flow management system must adequately address the issue of fault-

tolerance on behalf of the job flow. BPEL has constructs for detecting (and generating) 

fault messages, as well as constructs for specifying event-driven compensation 

activities. Compensation activities serve to undo some business logic that occurred 

prior to the event. However, grid environments call for more robust fault handling than 

is available in BPEL. To make job flows resilient to failure, in this step, we use a 

previously developed framework, called TRAP/BPEL [25], which adds autonomic 

behavior into existing BPEL processes automatically and transparently.  

Unlike other approaches, TRAP/BPEL does not require any manual modifications 

to the original code of the BPEL process and there is no need to extend the BPEL 

language, nor the BPEL engine. Within the TRAP/BPEL framework, a BPEL 

workflow is made adaptive by first running it through an adaptation generator. The 

generator generates the adapt-ready BPEL process by inserting “hooks” at specified 

points in the workflow. These hooks redirect invocations through a proxy that provides 

adaptive behavior by shielding the workflow from failure and applying recovery 

mechanisms that are specified in a recovery policy [25]. 

During adaptation, specific jobs which require monitoring are identified and for 

each job, an adequate failure handling technique is specified in a recovery policy. The 

recovery policy is modeled in an XML document that is not part of the job flow 

definition. Failure handling techniques may include check-pointing, or finding an 

alternative (substitute) resource or service upon which to submit a job.   Invocations for 

monitored jobs are replaced with invocations to a generic proxy. Messages for those 

jobs are therefore redirected through this proxy. The proxy using some failure detection 

mechanism (e.g. polling, event notification) monitors the individual jobs and enforces 

the recovery policy. The proxy in this case is a job submission and monitoring service 

and forwards jobs to the schedulers. There is only one generic proxy per job flow 

engine, although there may be several instances of this proxy performing recovery on 

behalf of the workflows executing on that engine. 

Finally, the adapted concrete BPEL process with embedded JSDL scripts is 

executed on a BPEL engine to orchestrate the job submission through the use of some 

job submission web services.  As described in Section two, meta-schedulers can engage 

in peer-to-peer choreography in order to decide on the specifics of how the actual job 



execution and data transfers occur (e.g. the exact machine on which the job is to be 

executed, the exact data transfer protocol that is to be used). 
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 Figure 6.  Job flow management framework interaction with meta-scheduling 

3.3. Related Work 

There are many job flow languages used in the scientific communities including 

DAGMan of the University of Wisconsin [26], SCUFL of the e-Science group [14], 

YAWL of Queenland University Technology [27].  In the enterprise domain, the most 

popular language for business processes is WS-BPEL [24]. WS-BPEL has become the 

de-facto standard for workflow technology in enterprise systems. To help foster 

interactions between job flow systems in the grid there is clearly a similar need for 

standardization.  For this reason, in recent times, the scientific community has also 

started exploring the possibility of using the WS-BPEL standard for job flows. We 

selected WS-BPEL as our workflow language for our project. Software offers that 

support WS-BPEL include IBM’s WebSphere Process Server [28] and ActiveBPEL 

[29].  

There are many projects and studies of job flows in grid environments. The 

Pegasus [30] project at the University of Southern California addresses the planning 

and resource allocation of job flow in grid environments. VDS of GriPhyN [31] 

supports the virtual data specification language used in conjunction with the DAGMan 

job flow language.  Unlike other studies, our project explores the combined use of WS-

BPEL and JSDL along with data mapping. 



Our architecture also supports the specification of flexible, user-defined failure 

handling mechanisms while supporting separation of concerns. By adapting the 

concrete BPEL workflow, failure handling mechanisms are defined in a manner that 

does not tangle the code for fault-tolerance with the business logic of the application. 

Some other Grid workflow systems (Karajan [32], Kepler [33] and Grid-WFS [34]) 

allow for user-defined failure handling, however, Karajan and Kepler do not support 

the separation of concerns. Grid-WFS claims to support the separation of concerns but 

fault handling strategies are specified along with the task in the same workflow 

definition. This approach does therefore entangle the code for failure handling with that 

of the business logic. Further, our approach does not require a purpose-built workflow 

engine, as do the other systems, since we utilize standard BPEL constructs. 

For more general information on workflows, the reader is invited to refer to 

http://www.gridbus.org/reports/GridWorkflowTaxonomy.pdf, which is a good survey 

paper on workflow taxonomy and workflow projects. 

4. Data Integration 

Data integration involves combining data residing at different sources and providing 

the user with a unified view of such data. Data integration is a traditional problem that 

exists in numerous applications, for example, integrating the databases for two 

companies that are being merged, or combining research results from different 

bioinformatics repositories. Data integration frequently occurs as the volume of data 

and the need to share it increase. Data integration has been the focus of extensive work 

and numerous open research problems remain to be solved. In this study, we present a 

system architecture which aims to define essential components for developing a 

domain-specific, modular, and decentralized data integration system in a grid 

environment. The proposed architecture incorporates a series of grid-oriented services 

(e.g. coordinator, semantic catalog, repository, synchronization) that address the 

distributed nature and autonomy of the data sources. The architecture also incorporates 

a series of data-oriented services (e.g. schema mapping generation, query generation, 

query rewriting) that facilitate the actual integration of data. Nodes in the grid 

environment can provide data, integration services, or a combination of both. Through 

the proposed system, users can contribute new data, define relationships among 

existing data sources and schemas, relate data to domain-specific concepts, or even 

construct new schemas that can be reused by others. 

4.1. Architecture and Services 

Our architecture supports distributed storage and manipulation of data and adapts to 

dynamic addition and removal of nodes. For every session, an application server 

connects users to nodes and designates a particular node as the “master”. Any node is 

capable of performing the “master” role. The master node distributes the required tasks 

among many other nodes in the grid and is also responsible for coordinating, collecting, 

and merging results from “slave” nodes.  

Figure 7 depicts the LA Grid data integration architecture. Each LA Grid node 

contains seven components/services, namely: the coordinator service, the semantic 

catalog, the repository service, a data repository, the synchronization service, the Data 

Grid Management System (DGMS) [35], and the data services suite. At this time the 



data services suite is completely implemented and other services are at different stages 

of development. Implementation is done in Java and nodes are currently deployed in a 

grid architecture based on the Globus Toolkit [5]. 

 

 

 
 

Figure 7.  Data integration architecture 

 

Coordinator Service: This service is the front-end interaction point for data-driven 

operations. It has access to a locally held semantic data catalog. The local coordinator 

service communicates with remote coordinator services for coordinating operations 

across the system. Query distribution/data materialization decisions are also handled by 

this service based on quality of service, load balancing, and optimization requirements. 

Coordinator services are key elements for automated workflow construction because 

they are responsible for decisions involving forwarding, splitting, or directly handling a 

request. Upon receiving a request, the coordinator needs to access the semantic catalog 

to retrieve information about data needed/involved in the request. Based on metadata 

and information about registered nodes and deployed services, the coordinator makes a 

decision about handling the request, i.e., forwarding, splitting, or directly handling it. 

The coordinator maintains a set of rules to help make such decisions. The efficiency 

and accuracy in defining such rules is crucial for correct and efficient system 

performance. While a system could perform its function using a limited set of rules, its 

performance could be enhanced by adding and tuning rules. For example, a simple rule 

is to forward a request to the first node that has the required services deployed. 

However, a better rule is to incorporate the location of data. From our experience, fine 

tuning rules may result in complex but efficient workflows of services. 

Semantic Catalog: The semantic catalog contains the physical locations of data 

components as well as domain-specific semantic descriptions. For example, the 

semantic catalog of each schema may store its name, the location of its definition, 



semantic mappings from the schema elements to biomedical domain-specific concepts, 

and pointers to known instances of the schema. Additionally, we may store schema 

mappings that directly relate pairs of schemas (created by the schema mapping creation 

service – cf. detailed description below). The semantic mappings between schema 

elements and domain-specific concepts are currently simple correspondences from 

schema elements to terms in a conceptual model, similar to an ontology. Users provide 

ontologies and mappings applicable to their problem domain. This kind of semantic 

mapping is an active research area [36] that can enhance schema mapping/matching 

operations (for example, if two or more schema elements can be mapped to the same 

semantic term in the ontology, a potential match is indicated). In the current 

implementation, UMLSKS [37] is used as the domain-specific mappings knowledge 

source. The latest version of the semantic catalog is built as a dynamically evolving 

OWL (Web Ontology Language) [38] resource. It captures relations between schema 

definitions, instances, mappings and their domain. Those relations are represented as 

RDF (Resource Description Framework) [39] statements that can be manually asserted 

by system users or can be automatically evaluated using a set of utility services. Using 

this design, the semantic catalog is able to answer queries like: Is there a mapping from 

schema A to schema B?; Find all mappings that use schema C as a source; Does a 

mapping have an inverse in the repository?; etc. Pellet [40] - an open source, OWL 

Description Logic reasoner in Java - is used for reasoning and augmenting information 

in the catalog while SPARQL [41] is used as the query language. 

Repository Service & Data Repository: This service is responsible for storing and 

extracting all raw data (via the DGMS or VFS - discussed below). It also notifies the 

synchronization service about new changes in the repository. Currently, this service is 

implemented on top of the Apache Commons Virtual File System [42]. VFS provides 

APIs for accessing different file systems and presents a unified view of files from 

different sources (e.g., local disk, remote ftp, or http servers). In the current system 

implementation, only a pure XML data repository is supported. Other data 

representations can be supported only if the data can be exported to XML. 

Synchronization Service: The synchronization service keeps the semantic catalog 

entries synchronized among nodes. When a node is added to the grid, the node has the 

option of subscribing to various topics. Whenever a change affecting a given topic 

occurs, the nodes subscribed to that topic receive notifications of the update. This 

service is implemented on top of the WSRF notification mechanism provided by the 

Globus Toolkit. 

Data Grid Management System: Through multiple abstractions, the DGMS [43] 

provides a logical namespace that hides the complexity of distributed data and 

heterogeneous resources. The Storage Resource Broker (SRB) [44] is a tool for 

managing distributed storage resources. Files in the SRB are referenced by logical file 

handles that do not require the actual physical locations of the files. A Metadata 

Catalog, MCAT, maintains maps of logical handles to physical file locations. The 

proposed semantic catalog and data services can be seen as augmentations on top of 

DGMS in order to facilitate finer grain semantic integration at the data level.  The 

current system implementation uses the Apache VFS. 



Data Services Suite: This component provides a number of web services that allow the 

creation of schema mappings and operations over those schema mappings. We have 

selected Clio’s [45] schema mapping components, and wrapped them as web services.  

The suite provides the following data services: 

- Schema Mapping Creation: Given a source schema, a target schema, and a set of 

“correspondences” between source and target schema elements, this service creates a 

“mapping” from the source schema to the target schema. This mapping consists of a set 

of declarative constraints that dictate what the target instance should be, given a source 

instance. The mapping creation algorithm takes into account the schema constraints 

(e.g., foreign key constraints, type constraints) as well as correspondences [46]. 

- Query Generation: Given a mapping (produced by the Schema Mapping Creation 

service), this service produces an XQuery, an XSLT, or an SQL/XML query that 

implements the transformation implied by the mapping [45]. The query and the 

association between the query and the mapping used to produce the query are stored in 

the semantic catalog (for future reuse). 

- Query Execution: For convenience, we also have a service that executes the queries 

generated by the previous service. Given a query script and a set of input XML 

documents (e.g. instances of the source XML schema), the service executes the query 

and returns the resulting XML document. 

- XML Transformation: This service allows the direct and scalable execution of the 

mapping, as opposed to simply executing the query that implements it. Based on the 

technology detailed in [47], this service takes as input a mapping and the source XML 

instances and returns the target XML instance that is implied by the mapping. As 

opposed to the query generation/execution services, this service neither produces nor 

executes a query; rather, it uses a Java-based engine to optimally execute the mapping. 

- Query Rewrite: An interesting application of mappings is the ability to rewrite target-

side queries into queries that work on the source-side. This is useful, for example, if the 

target-side schemas are virtual and actual data resides on the source side. We use the 

query rewriting techniques detailed in [48] to implement this service. Given a schema 

mapping and an XQuery over a target schema instance, this service returns a rewritten 

XQuery over the source schemas in the mapping.  

- Schema Integration: Given a number of mappings between several schemas, this 

service attempts to create an “integrated” schema that captures the unified concepts of 

the schemas that are related by the mapping [49]. 

4.2. Related Work 

A number of data integration systems have been proposed to address the problem of 

large-scale data sharing (e.g. [50, 51, 52]; and the survey by Halevy [53]). These 

systems support rich queries over large numbers of autonomous, heterogeneous data 

sources by making use of semantic relationships between the different source schemas 

and a mediated schema, which is designed globally. However, the mediated schema 

becomes a problem since it may be hard to come up with a single mediated schema that 

everyone agrees on. Moreover, all access (querying) is done against the mediated 

schema (a single point). Furthermore, this architecture is not robust with respect to the 

changes in the source schemas. As a result, data integration systems based on mediated 

schemas are limited in supporting large-scale distributed and autonomous data sharing. 

Peer Data Management Systems (PDMS), e.g., Piazza [54], have been proposed to 

address the aforementioned problems and to offer an extensible and decentralized data 



sharing system. The study presented in this section can be viewed as an effort to 

present and discuss the design, components, and services required to realize a PDMS in 

a grid environment. Our system requirements are, in principle, no different from these 

peer data management systems. Compared to Piazza’s approach, our intended 

applications imply smaller numbers of data sources. However, the sources have 

complex schemas and may contain overlapping and potentially conflicting and 

dynamically changing data. The proposed system emphasizes the use of tools and 

services that facilitate mappings among schemas and generate the queries that are 

needed to access and integrate the data. 

5. Application to Bioinformatics 

A problem facing many bioinformatics researchers today is the aggregation and 

analysis of vast amounts of data produced by large scale projects such as the Human 

Genome Project. This is further complicated by the fact that data is distributed among 

heterogeneous sources. As of September 2006, the Gene Expression Omnibus (GEO) 

repository at the National Center for Biotechnology Information (NCBI) holds over 3.2 

billion individual measurements. Moreover the repository is growing at a rapid rate 

[55]. The amount of data, the rate of its growth, and the heterogeneity of data sources 

present real problems, hindering advancements in bioinformatics [56]. 

In this section, the focus is on data integration problems in bioinformatics. 

However, a typical bioinformatics research activity involves both computational and 

data driven aspects. Data driven tasks involve techniques to extract data from multiple 

sources. Computational tasks involve processing data after extraction for pattern 

matching, alignment, and clustering. 

Pharmacogenomics is a branch of bioinformatics dealing with the influence of 

genetic variation on drug response in patients. Approaches investigating such 

influences promise the advent of "personalized medicine", in which drugs and drug 

combinations are optimized for each individual's unique genetic makeup. To make 

“personalized medicine” decisions, information from multiple  heterogeneous data 

sources needs to be incorporated; for example OMIM, dbSNP and dbGaP from NCBI 

[57], Haplotype data from the HapMap project [58], Human Gene Mutation and 

TRANSFAC databases from BioBase [59] in addition to PHARMKGB [60]. Figure 8 

shows a related example that aims to understand rates of gene expressions in different 

tissues and correlate these expression profiles with active transcription factors and their 

binding sites. The data required for this study is distributed among various sources (e.g. 

UCSC Genome Browser [61], GNF SymAtlas [62] and TRANSFAC [63]). The figure 

shows how Clio mapping technology can be used to provide a high-level definition for 

mappings between such sources and a target schema. In particular, a graphical user 

interface allows the identification of correspondences that relate schema elements.  

Our sample scenario involves three collaborating groups of scientists. Assume the 

groups are associated with the three data sources in Figure 8 and located in the USA, 

Spain, and Mexico, respectively. The USA group is conducting experiments related to 

identifying known genes and their chromosomal positions. The team from Spain is 

doing experiments on gene expression levels in different tissues, while the team from 

Mexico is concerned with identifying transcription factors binding sites for different 

genes and the associated transcription factors. Furthermore, assume there is a fourth 

team in the UK that will do the analysis of the collected data. Their role is to collect 



and interpret data from the different teams and to discover new knowledge from the 

experiments conducted in the study. 
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Figure 8.  A high-level mapping definition using Clio 

 

Assume that the teams in the USA, Spain and Mexico have uploaded their data to 

their associated data sources. Now the UK analysis team can start interpretation and 

analysis of the data. However, they are facing the problem of merging and integrating 

these three data sources. To efficiently analyze the data, they would like to organize it 

according to a specific structure. Therefore, the UK team constructs a new schema that 

captures the required data organization (the target schema in Figure 8) and creates the 

required domain-specific mappings. Then, they connect to their node and download 

(via Java Web Start) an application that allows the construction of Clio-based 

mappings. Source and target schemas are loaded into the tool which shows their 

structure as a tree of schema elements (very similar to how they are presented in Figure 

8). Value mappings are entered by drawing lines from source schema elements to target 

schema elements. The output from this process is a value mapping, which is sent to the 

schema mapping service that evaluates the mapping specification and passes it to the 

repository service for storage. The synchronization service updates the local semantic 

catalog and notifies remote nodes about the new mapping. 

Different query processing scenarios could arise based on the location of data 

(local vs. remote), and whether the query is against a materialized version of the data or 

not. If the data is not materialized then either a materialization or a query distribution 

decision could be made by the coordinator service. Criteria for such decisions can be 

based on the frequency of the queries against data sources.  

 

 



For instance, the UK team is trying to answer the following query using the 

federated target schema: 

“Find a list of gene names and their chromosomal locations that have an 

expression level >>>> e in both heart and liver and are regulated by the same set of 

transcription factors.” 

The above query is written against the target schema. However, it is assumed that the 

UK node does not have any data associated with this federated schema; all data resides 

at the other nodes (a global-local-as-view –GLAV– scenario [64]). The query is 

rewritten by the Query Rewrite service into a new query, formulated in terms of the 

source schemas (at the USA, Spain, and Mexico sites). When executed, the rewritten 

query retrieves the three source documents and then locally (on the UK node) joins and 

filters the data, and finally produces an instance of the target schema. Another 

alternative we are exploring is to further decompose the rewritten query into maximal 

sub-queries that are sent to the sources. For example we could send a join query to data 

source 3 (Mexico) and only get the relevant data back. In another scenario, one or more 

source schemas may also be the output of previous schema mapping operations. In 

such cases, a nested query rewrite with further decomposition is needed. 

6. Application to Hurricane Mitigation 

6.1. A Possible Hurricane Mitigation Scenario 

A tropical depression in the Caribbean Sea quickly strengthens in the warm waters as it 

drifts westward into the Gulf of Mexico. It is tracked and modeled by the National 

Hurricane Center as it becomes a tropical storm and then a category one hurricane by 

day three. Once in the central Gulf of Mexico the storm intensifies into a category three 

hurricane by the end of day four. A similar storm is shown in Figure 9.  

Hurricane track models begin to indicate that the storm will continue to intensify 

and re-curve northeast and then east toward the western Florida coast. The NOAA 

National Hurricane Center model forecasts begin to predict landfall along the central 

western Florida coast by day six. 

Synoptic scale numerical weather prediction (NWP) models capture the general 

storm circulation and general movement, but do not predict intensity changes well [65, 

66]. Results of these large scale models, in turn, are used along with other high 

resolution data as input to regional and mesoscale models that run ensembles across a 

computing grid infrastructure of thousands of nodes.  These ensemble models do more 

than determining high resolution hurricane impact; they also provide information about 

the uncertainty of the hurricanes track and intensity forecast.  Between 48 and 72 hours 

prior to landfall these ensembles allow risk management for the event, as they also 

include information about the sensitivity of the forecast to both data and physics 

uncertainty. 

 

 



 

Figure 9.  Hurricane Wilma in the Gulf of Mexico - October 23, 2005 

6.2. Our approach 

The Weather Research and Forecasting (WRF) model is the state-of-the-art mesoscale 

numerical weather prediction system, serving both operational forecasting and 

atmospheric research needs [67]. The WRF model Version 2.1.2 software distribution 

comprises about 360000 lines of source code. This code is highly modular and is 

greatly optimized to run on several heterogeneous cluster computing facilities using 

MPI [1] for inter-node communications and OpenMP [68] for intra-node 

communications among the processors. In this part of our research, we address two 

problems with the current version of WRF.  

First, to mitigate the impact of hurricane landfalls, we need to provide even more 

accurate and timely information to enable effective planning [69, 70, 71, 72]. Pushing 

the limits of WRF today, there is a increasing need for fine-grain simulation in smaller 

regions (e.g. zip-code level hurricane simulation). Considering the limited resources 

available—that each interested organization may have—would leave us with no choice 

than to scale out from single-managed cluster computing to grid computing that can 

span over many organizations with different needs and administrative domains. Such 

grid-enabled WRF code can employ the resources available in several organizations to 

contribute toward solving fine-grain hurricane simulations. As the WRF code does not 

provide any inherent support for grid computing and as we do not want to stray away 

from the mainstream revisions of the WRF code, we are employing our Transparent 

Grid Enablement approach (mentioned in Section one) to enable execution of WRF on 

grid computing environments in a transparent manner to the original WRF code (no 

manual modification to the WRF code). 

Second, to contribute to future WRF model development, meteorologists are 

required to develop new dynamics and physics model packages in languages such as 

FORTRAN and C as well as to understand the architecture of the underlying 



computing platforms to optimize code – very challenging skills. In this part of our 

research, we address this problem by investigating on a high-level modeling platform, a 

web-based interface called the Grid WRF portal. The portal allows meteorologists to 

use WRF and to develop new meteorology model packages adaptable to different grid 

computing environments. Our preliminary work shows that a specialized visual 

modeling interface supported by a workflow language (e.g. BPEL) may be a good 

choice. We continue to address challenging questions such as the expressive power of 

workflow languages [73, 74, 75, 76], and the efficiency of the generated WRF code 

[77]. This high-level graphical user interface is backed up with the results of our other 

research mentioned in Sections two and three, where we have designed and partially 

developed a job flow management system and a meta-scheduler that can adapt to the 

dynamic changes of a grid computing environment. 

Beyond grid enablement of hurricane modeling across multiple geographic and 

temporal scales for implementation of real time ensemble simulations, there is the 

potential for creating a suite of products both distinct and integrated which couple 

multiple types and scales  of model simulations (atmospheric, ocean wave, storm surge, 

hydrological, socio-economic models, etc.). This capability coupled with user- and 

application-centric visualizations gives rise to a new class of data analytics for decision 

support in a proactive sense that has heretofore been unavailable. 

Ocean wave and storm surge models are also run on the grid and are used to better 

predict impacts on coastal infrastructure, shipping and oil drilling interests in the 

eastern Gulf of Mexico and along the shoreline as the hurricane continues its eastward 

track. Mean and ensemble members of the atmospheric, ocean wave, storm surge and 

hydrological models are coupled to create predictions on storm movement, intensity, 

near shore wave heights, storm surge, and flooding forecasts that include both 

optimistic and pessimistic bounds on the likely outcomes. The various model forecasts 

are concurrently produced and visualized with grid resources to create customized 

decision support guidance for emergency management, utility, transportation, debris 

removal and other interests as the storm makes landfall along the western Florida coast.  

National authorities do not currently have the required computational power nor 

the bandwidth to produce such high resolution (cloudscale) ensembles and deliver them 

to emergency management, businesses, and the public. Within the grid environment, 

smaller domain storm surge results and visualization of complex rainfall, wind fields 

and waves can be generated for distinct localities in high detail. Mesoscale and 

cloudscale model ensemble forecasts continue to run in real time utilizing grid 

resources to enable timely generation of decision support products. Information, data 

and analytics are produced in multiple forms, which are then integrated and delivered 

to support planning, response and remediation as the storm moves eastward across 

Florida and exits along the northeastern coast. These analytics allow improved 

estimates of damage to electrical grids and transportation infrastructure while 

supporting efforts to plan and mobilize storm recovery. 

Grid enablement for the generation of new and unique products, guidance and 

analytics in support of mission critical decision making in a transparent manner while 

utilizing a dynamic, heterogeneous and geographically disparate set of computing 

resources is one of the strategic goals of the LA Grid hurricane mitigation project. It is 

a necessary and evolutionary step in the convergence of science and technology for 

societal benefit. 



7. Future Plans 

Our initial work demonstrated in previous sections is part of a novel approach to grid 

application development we call Transparent Grid Environment (TGE), whose goal is 

to allow domain experts to effectively express the logic and software artifacts of 

domain applications while hiding the details of the grid architecture, software, and 

hardware stack. This TGE paradigm will serve as the foundation for the study of 

application development methodologies, platforms, and tools that will significantly 

ease grid-enabled application development (hence broadening grid utilization) and 

make applications more portable and adaptable to future changes of grid technologies. 

We believe that grids utilizing the TGE paradigm will be agile, flexible, and capable of 

serving a broad set of scientific and business communities. 

Our approach is characterized as application-driven (hence “top-down”) by basing 

and focusing our investigation on (1) supporting grid-enablement for a few carefully 

chosen critical application domains, e.g. hurricane mitigation and bioinformatics, and 

(2) developing common methodologies, services and tools for deploying grid-enabled 

applications in these domains. In our approach, we factor out common services that can 

be reused across domains. This will ensure that our tools have broad significance and 

utility to a range of applications, thus avoiding the tendency for tools to be too generic 

to be effective. Our future plans entail investigation of the following key challenges:  

1. High-level Visual Interactive Development Environment (IDE): What is the 

appropriate IDE for domain experts to easily specify the logic of their 

applications? Do IDEs targeted for different domains have many common 

properties? Is it possible to develop a common IDE that supports multiple 

domains? Are the workbenches being developed and used by domain experts today 

the right solution? 

2. Automated Code Generation and Software/Hardware Reuse: How can we 

automate the generation of executable code from a high-level specification 

provided by a domain expert? How can we reuse the existing software and 

hardware components and map abstract specifications to concrete resources in 

order to execute the application?  

3. Hiding the Heterogeneity of Grid Architectures: How do we hide the details of 

heterogeneous grid architectures and resources and provide a virtualized interface 

for application development while addressing efficient resource utilization?  

Under the LA Grid initiative, we have established a globally-integrated research 

and education program to respond to the above challenges and to realize a TGE. We 

have taken a divide-and-conquer approach that allows us to tackle the above challenges 

in parallel. To conduct our investigations we have identified nationally-important 

domains of Grid Applications, as discussed in Sections five and six. We have 

established a number of Grid Integration projects that enable aggregation and 

discovery of data, visualization of data, and weaving of high-level grid enablement 

services into the logic of domain-specific applications, as described in Section four. 

Finally, we have established several Grid Enablement projects that provide a layer of 

abstraction on top of heterogeneous Grid architectures by offering high-level services, 

as presented in Sections one, two, and three. 

As our research progresses, the technologies and their associated tools developed 

in these projects will form grid application enabling platforms at different levels of 

abstraction. First, the projects in the Grid Applications Layer will identify the 



requirements and provide methodologies, frameworks, and modeling tools that enable 

domain experts to model, design, and code their applications with minimal attachment 

to the underlying grid. In designing and developing these “application interfaces,” 

common high-level, application-oriented functions, components, and tools are 

extracted and packaged into the Grid Integration Layer, which provides services that 

can be reused by other applications in the targeted domains. The projects in the Grid 

Enablement Layer will provide system-level services and tools to support efficient and 

transparent management and utilization of heterogeneous grid resources through 

uniform virtualized interfaces. Such services will make applications even more 

adaptable to changes of the underlying infrastructure. 

The LA Grid initiative aims to simplify the manner by which scientific and 

business domain experts develop, use, and maintain software applications over 

distributed computing resources. Using our TGE approach we will create innovative 

tools which promote the reuse of commonalities across domains resulting in flexible 

and cost effective grid implementations which allow experts in diverse domains to 

easily code their application logic using an integrated development process.  
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