
Innovative Grid Technologies Applied to

Bioinformatics and Hurricane Mitigation

Rosa BADIA
a
 Gargi DASGUPTA

b
 Onyeka EZENWOYE

c
 Liana FONG

d

Howard HO
e
 Sawsan KHURI

f
 Yanbin LIU

d
 Steve LUIS

c
 Anthony PRAINO

d

Jean-Pierre PROST
g
 Ahmed RADWAN

f
 Seyed Masoud SADJADI

c

Shivkumar SHIVAJI e Balaji VISWANATHAN b

Patrick WELSH
h
 Akmal YOUNIS

f

a
 Barcelona Supercomputing Center, Barcelona, Spain

b
 IBM India Research Laboratory, NewDelhi, India

c
 Florida International University, Miami, FL

d
 IBM T.J. Watson Research Center, Yorktown Heights, NY

e
 IBM Almaden Research Center, San Jose, CA

f
 University of Miami, Miami, FL

g
 IBM Products and Solutions Support Center, Montpellier, France

h
 University of North Florida, Jacksonville, FL

Abstract. The Latin American Grid (LA Grid) joint research program fosters

collaborative research across eleven universities and IBM Research with the

objective of developing innovative grid technologies and applying them to solve
challenging problems in the application areas of bioinformatics and hurricane

mitigation. This paper describes some of these innovative technologies, such as the
support for transparent to the application expert grid enablement, meta-scheduling,

job flows, data integration, and custom visualization, and shows how these

technologies will be leveraged in the LA Grid infrastructure to provide solutions to
pharmagenomics problems and hurricane prediction ensemble simulations.

Keywords. Meta-scheduling, job flows, data integration, transparent grid

enablement, custom visualization, bioinformatics, hurricane mitigation.

Introduction

Since December 2005, IBM has been engaged with academic partners in Florida,

Puerto Rico, Mexico, Argentina, and Spain in the Latin American (LA) Grid initiative

to dramatically increase the quantity and quality of Hispanic Technical Professionals

entering the Information Technology fields.

At the core of this initiative is the development of a computer grid across multiple

universities and businesses that serves as the platform for education and collaborative

research in the critical and emerging fields of grid computing, distributed systems and

supercomputing. The LA Grid constitutes a living laboratory for advanced research by

the universities and IBM Research in application areas such as bioinformatics,

hurricane mitigation, and healthcare.

In our ongoing research efforts, we aim to address application area problems with

current state-of-the-art grid solutions by employing a top-down approach that provides

the right level of abstraction for the domain experts while factoring out the common

services that can be reused across domains. Among these common services, our focus

has been on providing support for transparent grid enablement, meta-scheduling, job

flows, data integration, and custom visualization. In this paper, we first describe the

innovative technologies we developed in order to provide such support, and then we

illustrate how these technologies can be leveraged towards the resolution of

challenging problems in the area of bioinformatics and hurricane mitigation.

The paper is structured as follows. In Section one, we introduce the concepts of

grid superscaling and transparent adaptation and show how these concepts can be

combined to provide transparent grid enablement. In Section two, we detail our design

for meta-scheduling and our on-going prototyping activities in that space. In Section

three, we outline our approach to job flows, leveraging WS-BPEL and providing

support for fault-tolerant job flows through a wrapping layer. In Section four, we

describe the set of services we have been developing and the architecture we designed

to provide data integration capabilities in grid environments. In Sections five and six,

we show how our innovative technologies are being applied to address challenging

scenarios in bioinformatics and hurricane mitigation. Section seven concludes this

paper with our future plans towards the creation of a transparent grid environment,

which will allow domain experts to express application logic using an appropriate

visual interface while making transparent, to the greatest extent possible, the details of

the grid hardware and middleware stack.

1. Transparent Grid Enablement

The advent of cluster and grid computing has created a remarkable interest in high

performance computing (HPC) both in academia and industry, especially as a solution

to complex scientific problems (e.g. bioinformatics and hurricane mitigation

applications). To efficiently utilize the underlying HPC facilities using the current

programming models and tools, however, scientists are expected to develop complex

parallel programs; a skill that they might not necessarily have and is better done by

HPC experts.

Current standards for cluster and grid programming such as MPI [1], OGSA [2],

and WSRF [3] (and their implementations in offerings like MPICH2 [4], the Globus

Toolkit [5], Unicore [6], and Condor [7]; to name just a few) have provided scientists

with higher levels of abstraction. Noteworthy, these approaches have been successful in

hiding the heterogeneity of the underlying hardware devices, networking protocols, and

middleware layers from the scientist developer. However, the scientist is still expected

to develop complex parallel algorithms and programs. Moreover, as the code for

parallel algorithms typically crosscuts the code for business logic of the application, the

resulting code is entangled and is difficult to maintain and evolve.

In this part of our research, we address these problems by enabling a separation of

concerns in the development and maintenance of the non-functional aspects (e.g. the

performance optimization) and the functional aspects (i.e. the business logic) of

scientific applications. We achieve this goal by integrating two existing programming

tools, namely, a Grid framework, called GRID superscalar [8], and an adaptation-

enabling tool, called TRAP/J [9]. On one hand, GRID superscalar enables the

development of applications for a computational grid by hiding details of job

deployment, scheduling, and dependencies and enables the exploitation of the

concurrency of these applications at runtime. On the other hand, TRAP/J supports

automatic weaving of alternative parallel code (including the corresponding calls to

GRID superscalar runtime) into the sequential code developed by the scientist to

support static and dynamic adaptation to heterogeneous grid computing environments.

1.1. Overview

Inspired by the superscalar processors, GRID superscalar provides an easy

programming paradigm for developing parallel programs [8]. Similar to superscalar

processors that provide out-of-order and parallel execution of machine instructions by

bookkeeping their dependencies, GRID superscalar provides parallelism to the

functions of a program written in a high-level programming language such as Java.

Using GRID superscalar, a sequential scientific application developed by a scientist is

dynamically parallelized in a computational Grid. GRID superscalar hides the details

such as resource mapping, staging input data files, cleaning temporary data files,

deploying and scheduling tasks, exploiting instruction-level parallelism, and exploiting

data locality. We note that for many of its responsibilities, GRID superscalar depends

on other grid computing toolkits such as GT4, Condor, and others.

TRAP/J is a tool that enables static and dynamic adaptation in Java programs at

startup and runtime, respectively [9]. It consists of two GUI-based interactive tools as

follows: (1) the Generator, which generates an adapt-ready version of an existing

application by inserting generic hooks into a pre-selected subset of classes in the

application, called adaptable classes; and (2) the Composer, which allows insertion of

new code at the generic hooks both at startup or runtime. Adaptable behavior is

provided through alternative implementations of adaptable classes. To replace

alternative parallel algorithms developed using the GRID superscalar codes, we use the

Generator to make the classes with sequential code adaptable, and then we use the

Composer to weave in the parallel code.

Each tool provides us with the necessary features for transparent software

adaptation from a sequential code to a grid-enabled one. Figure 1 illustrates the

operation of our transparent grid enablement framework in the context of a simple case

study, during which a sequential matrix multiplication program (developed in Java) is

transparently adapted to run in a grid computing environment. First, we use GRID

superscalar to develop alternative hyper-matrix multiplication algorithms by splitting

the original matrices into a number of sub-matrices or blocks (Figure 1 (a),

development time). Therefore, instead of just one task as in the original approach,

using hyper-matrix multiplication and GRID superscalar, up to 4 tasks can be active at

the same time. Of course, if we split the matrix into 9 blocks, then up to 9 tasks can be

executed at the same time and so on and so forth. Next, using TRAP/J and GRID

superscalar code generators, an adapt-ready version of the application is generated

(Figure 1 (a), compile time). Next, a system administrator (or an intelligent software

agent) configures the application to use the appropriate parallel algorithm based on the

availability of resources, for example, the number of available nodes (Figure 1 (b),

startup time). Finally, the GRID superscalar code—woven into the application using

TRAP/J—will exploit the task-level parallelism by resolving the dependencies of the

tasks, each performing multiplication of sub-matrices accumulatively (Figure 1 (b),

runtime).

A B C

X =

Time

Development Time

Original Application

Develops the business logic of the
application using a sequential code

(e.g., a matrix multiplication algorithm)

Compile Time

Adapt-Ready

Application

Merge

GRID
superscalar

TRAP/J

Grid-Enabled

Application

Scientist

Computer

Expert

1

2

A B C

X =

A00 A01

A10 A11

B00 B01

B10 B11

C00 C01

C10 C11

Finer-Grain Parallelism: Adaptive

code for maximum parallelism of 9.

Identifies sections of the code that

can be parallelized

A B C

X =

A00 A01

A10 A11

A20 A21

A02

A12

A22

B00 B01

B10 B11

B20 B21

B02

B12

B22

C00 C01

C10 C11

C20 C21

C02

C12

C22

Develops adaptive code with
different parallelism granularity

Coarser-Grain Parallelism: Adaptive
code for maximum parallelism of 4.

Time

Grid-Enabled

Adapt-Ready
Application

Run Time

Configuration

Startup Time

Configures the application to use

the appropriate parallel algorithm
based on the availability of
resources (e.g., number of

available nodes)

System
Administrator

C10=C10+A10*B00

C10=C10+A11*B10

C10=C10+A12*B20

C11=C11+A10*B01

C11=C11+A11*B11

C11=C11+A12*B21

C12=C12+A10*B02

C12=C12+A11*B12

C12=C12+A12*B22

C20=C20+A20*B00

C20=C20+A21*B10

C20=C20+A22*B20

C21=C21+A20*B01

C21=C21+A21*B11

C21=C21+A22*B21

C22=C22+A20*B02

C22=C22+A21*B12

C22=C22+A22*B22

Maximum
parallelism is

9

C00=C00+A00*B00

C00=C00+A01*B10

C00=C00+A02*B20

C01=C01+A00*B00

C01=C01+A01*B10

C01=C01+A02*B20

C02=C02+A00*B00

C02=C02+A01*B10

C02=C02+A02*B20

C00=C00+A00*B00
C00=C00+A01*B10
C01=C01+A00*B01
C01=C01+A01*B11
C10=C10+A10*B00
C10=C10+A11*B10
C11=C11+A10*B01
C11=C11+A11*B11

Maximum

parallelism is

4

OR

(a) Development and Compile Time

(b) Startup and Run Time

A B C

X =

Time

Development Time

Original Application

Develops the business logic of the
application using a sequential code

(e.g., a matrix multiplication algorithm)

Compile Time

Adapt-Ready

Application

Merge

GRID
superscalar

TRAP/J

Grid-Enabled

Application

Scientist

Computer

Expert

1

2

A B C

X =

A00 A01

A10 A11

B00 B01

B10 B11

C00 C01

C10 C11

Finer-Grain Parallelism: Adaptive

code for maximum parallelism of 9.

Identifies sections of the code that

can be parallelized

A B C

X =

A00 A01

A10 A11

A20 A21

A02

A12

A22

B00 B01

B10 B11

B20 B21

B02

B12

B22

C00 C01

C10 C11

C20 C21

C02

C12

C22

Develops adaptive code with
different parallelism granularity

Coarser-Grain Parallelism: Adaptive
code for maximum parallelism of 4.

Time

Grid-Enabled

Adapt-Ready
Application

Run Time

Configuration

Startup Time

Configures the application to use

the appropriate parallel algorithm
based on the availability of
resources (e.g., number of

available nodes)

System
Administrator

C10=C10+A10*B00

C10=C10+A11*B10

C10=C10+A12*B20

C11=C11+A10*B01

C11=C11+A11*B11

C11=C11+A12*B21

C12=C12+A10*B02

C12=C12+A11*B12

C12=C12+A12*B22

C20=C20+A20*B00

C20=C20+A21*B10

C20=C20+A22*B20

C21=C21+A20*B01

C21=C21+A21*B11

C21=C21+A22*B21

C22=C22+A20*B02

C22=C22+A21*B12

C22=C22+A22*B22

Maximum
parallelism is

9

C00=C00+A00*B00

C00=C00+A01*B10

C00=C00+A02*B20

C01=C01+A00*B00

C01=C01+A01*B10

C01=C01+A02*B20

C02=C02+A00*B00

C02=C02+A01*B10

C02=C02+A02*B20

C00=C00+A00*B00
C00=C00+A01*B10
C01=C01+A00*B01
C01=C01+A01*B11
C10=C10+A10*B00
C10=C10+A11*B10
C11=C11+A10*B01
C11=C11+A11*B11

Maximum

parallelism is

4

OR

(a) Development and Compile Time

(b) Startup and Run Time

Figure 1. Grid enablement approach for the matrix multiplication case study

1.2. Experimental Results

To show the validity of our approach, we conducted a set of experiments that measure

the speedup gained as a result of the grid enablement of the matrix multiplication

application. The results are illustrated in Figure 2.

0

100000

200000

300000

400000

500000

600000

700000

800000

Sequential 5576 14934 44755 193184 798368

Parallelism (4) - 2 workers 79221 86259 108107 176464 643925

Parallelism (4) - 4 workers 57656 62013 78096 133058 441891

Parallelism (9) - 6 workers 145331 146744 148240 176464 474215

144 288 576 1152 2304

(a) Execution time

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

Sequential 1 1 1 1 1

Parallelism (4) - 2 workers 0,07 0,17 0,41 1,09 1,24

Parallelism (4) - 4 workers 0,10 0,24 0,57 1,45 1,81

Parallelism (9) - 6 workers 0,04 0,10 0,30 1,09 1,68

144 288 576 1152 2304

(b) Speedup

Figure 2. Execution time and speedup of grid-enabled versions of the matrix multiplication application

In Figure 2, we see that as the matrix size increases, the speedup improves and

when the size of the matrix reaches 1152 (number of rows = number of columns =

1152), all the algorithms for the grid-enabled application perform better than the

original sequential application. We notice that the algorithm, which uses 4 blocks on 4

worker nodes, exhibits the best performance. For a matrix of size 2304, it performs

almost twice as fast as the sequential application. This is because of the even

distribution of the load and a one-to-one mapping of the blocks onto the worker nodes,

which result in more parallelism and less communication overhead related to the file

transfer between the nodes required both at the initialization and finalization stages.

We emphasize that these experiments are part of our ongoing research activities

and they are not meant to be representative nor conclusive with respect to providing a

quantitative metric for speedup gained because of the grid enablement. The main

purpose of these experiments is to show that we were able to use our current

transparent grid enablement prototype to transparently adapt an application to run in a

grid computing environment.

1.3. Related Work

Satin [10] is a Java based programming model for the Grid which allows for the

explicit expression of divide-and-conquer parallelism. HOCS [11] is a component

oriented approach based on a master-worker schema. ASSIST [12] is a programming

environment that aims at providing parallel programmers with user-friendly, efficient,

portable, fast ways of implementing parallel applications. ProActive [13] is a Java grid

middleware library for parallel, distributed and multi-threaded computing. Unlike our

transparent grid enablement framework, none of the above mentioned approaches

provide an explicit separation of concerns identifying separate tasks for scientist

developers and HPC expert developers. Our framework can be extended to use these

methods instead of or in complement to GRID superscalar and could be used as an

enabler for supporting interoperation among the above mentioned approaches.

1.4. Future Work

As we mentioned before, we have been able to achieve static adaptation. Our next task

will be to extend our framework in support of more autonomic behavior and include

adaptation at runtime (dynamic) in response to high level system policies such as the

addition of more nodes to the grid, a change in process scheduling or application level

policies such as different blocking algorithms or faster algorithms. At present, dynamic

adaptation of Java programs with TRAP/J is under progress and is being tested.

Furthermore, moving towards building a more autonomic self adapting and self

configuring system, we can expand our framework to provide context-aware adaptation,

by keeping track of the state of the runtime environment and retrieve information about

resource allocation, scheduling, etc.

2. Meta-scheduling

Over the past two decades, computing power has become increasingly available.

However, the demand for computing power, driven by many new applications in

bioinformatics, healthcare, physical science simulation, supply chain modeling, and

business intelligent decision, still surpasses the supply. Grid computing allows

harnessing of available computing resources from cooperating organizations or

institutes, in the form of virtual organizations (VOs), in order to satisfy user demands

and share the cost of ownership of the resources.

The first generation of grid technologies and infrastructures focused on harnessing

the computational power of machines. With the evolution and availability of grid

infrastructures, today’s grid technologies further enhance the collaboration of users by

providing easy access to greater varieties of resources, such as data and software

services. For examples, the collection of astronomy data at one observatory can be

easily made available to scientists around the world, the BioMOBY web services in

Taverna [14] are used to support publishing and extracting of biological data.

At the core of grid technology is a resource brokering component, commonly

known as meta-scheduler or meta-broker. The meta-scheduler matches user work

requests to appropriate resources in the VO to execute the requests. In addition to the

challenges of managing VO resources that have dynamic availability attributes, meta-

schedulers need to take into account the resource usage policies and security

restrictions enforced by the local schedulers, which they interact with.

Currently, there are many studies and systems related to meta-scheduling in the

grid community. As discussed by Subramani et al. [15], most meta-schedulers can be

classified into three different models:

o Centralized model: one meta-scheduling component has direct information of

all resources available at the various institutes of the virtual organization and

is responsible for scheduling job execution on all resources; local schedulers

at individual institutes will act as job dispatchers. An exemplary system of this

model is eNANOS [16].

o Hierarchical model: one meta-scheduling component has no direct access to

resources in the virtual organization, but assigns jobs to the local schedulers of

the various institutes; local schedulers will match jobs to resources. An

exemplary system of this model is the Community Scheduling Framework

(CSF) [17].

o Distributed model: multiple local schedulers exist in a VO; each local

scheduler has a companion meta-scheduling functional entity; local schedulers

can submit jobs to each others through their respective meta-scheduling

functional entities. Exemplary systems of this model include IBM Tivoli

Workload Scheduler Loadleveler [18] and Gridway [19].

All three models have their respective advantages and disadvantages and are

suitable in different deployment environments. The centralized model is relatively

simpler than other models. However, the meta-scheduler can become a bottleneck for a

VO that has a very large number of resources. The meta-scheduler can also be a

potential single point of failure. The hierarchical model is a more scalable scheme

than the central model, but the meta-scheduler has less control of the scheduling

decisions and can still be a single point of failure. The distributed model is the most

complex of the three models and does not present bottleneck and single point of failure

exposures.

For LA Grid, our meta-scheduling design is a mix of the hierarchical and

distributed models, as shown in Figure 3.

Local
Scheduler E1

Peer-to-peer

Meta
Scheduler B

Meta
Scheduler D

Meta
Scheduler A

Meta
Scheduler E

Meta
Scheduler C

Local
Scheduler E2

Local

Scheduler A2

Local

Scheduler A1

Local
Dispatcher D1

Domain

Local
Dispatcher C1

Local
Scheduler E1

Peer-to-peer

Meta
Scheduler B

Meta
Scheduler D

Meta
Scheduler A

Meta
Scheduler E

Meta
Scheduler C

Local
Scheduler E2

Local

Scheduler A2

Local

Scheduler A1

Local
Dispatcher D1

Domain

Local
Dispatcher C1
Local
Dispatcher C1

Figure 3. LA Grid meta-scheduling architecture

Our grid model consists of multiple domains. Each domain has its domain meta-

scheduler and consists of a collection of local dispatchers, local schedulers or even

other meta-schedulers. A domain can be viewed as the meta-scheduling functional

entity of an institution. This aspect of our model intends to reflect the reality of many

organizations having multiple local schedulers for different lines of business or for

various levels of services. The domain meta-scheduler supports the encapsulation of

resources and scheduling details within each organization and only its aggregate

scheduling capability and capacity would be exposed to the partner organizations of the

grid. Then, the grid can be viewed as a sphere with collaborative partners. The peer to

peer relationship between domain meta-schedulers is dynamically established upon the

agreement between peers. Users of a domain would interact with that specific domain

meta-scheduler to access resources of collaborative partners.

 The following example illustrates the use of our meta-scheduling model. A

bioinformatics data service provider differentiates its services to paying and trial

customers. Paying customers are users of a consumer organization that pays for the

bioinformatics services. They typically get an expected quality of service as well as

access to the full set of databases. Multiple sites are set up to support paying customers

with guaranteed service quality and availability. In contrast, trial customers are users

without any organization association or users from a non-paying organization. They

typically get service on a best effort basis on a single site with access to only sample

databases. Using our meta-scheduling model, this bioinformatics provider would set up

a meta-scheduling domain with a single local scheduler for trial customers. For the

paying customers, the provider would either set up a sub-domain meta-scheduler with

multiple local schedulers for each site, or include all the local schedulers in the same

domain with a single meta-scheduler as for trial customers. For a consumer

organization, the bioinformatics data service is made available to its users (e.g. by

including the data service in the service registry). Depending on the demands of its

users and budgetary constraints, the organization would establish either a paying or a

non-paying peer-to-peer relationship with the bioinformatics provider. For the users in

the consumer organization, their application logic would not be affected by the paying

status of the organization.

The Open Grid Forum [20] is leading the effort of defining a standard description

language for job submission, called Job Submission Description Language (JSDL) [21].

This language allows specification of job characteristics as well as resources required

for the job execution in a grid infrastructure. The adoption of JSDL is a good first step

towards achieving collaboration across virtual organizations from a job execution

standpoint. However, there is a strong need for a standard interface for expressing

meta-scheduler to meta-scheduler interactions and meta-scheduler to local scheduler

interactions to realize collaborative job execution. One of our project objectives is to

experiment with the necessary interfaces to support interactions between domain meta-

schedulers and their associated local schedulers. We categorize these interfaces into

three sets:

o Meta-scheduler connection API: used to establish and terminate the

connection between domain meta-schedulers, either through a peer-to-peer

relationship or an up-stream relationship in a hierarchy. Once the connection

is established, heart beats are exchanged to guarantee the healthy state of the

connection.

o Resource exchange API: used to exchange the scheduling capability and

capacity of the domain controlled by the meta-scheduler; the exchanged

information can be a complete or incremental set of data.

o Job management API: used to submit, re-route and monitor job executions

across the network of (meta-)schedulers.

A domain meta-scheduler supports these three APIs and implements the necessary

functions, as illustrated in Figure 4. It is composed of three functional modules: the

resource management module, the scheduling module, and the job management module.

The resource management module is responsible for resource discovery, resource

monitoring and resource information storage. The resource information storage can be

either a persistent storage device or a cache device. The scheduling module is

responsible for locating suitable resources or a suitable scheduler for each job request.

The job management module manages the lifecycle of the job, including the reception

of the job request, its routing or dispatching to the matched resources or scheduler, and

the monitoring of the job status.

Our current implementation of the meta-scheduling APIs is using grid web

services in order to more easily accommodate existing meta-schedulers and integrate

them as collaborative job execution partners using the Globus Toolkit. We will verify

the possibility for the same set of APIs to be recursively useful regardless of the

relationship between meta-schedulers. Our experimentation platform consists of three

collaborative meta-scheduling partners: the first one is based on IBM’s Tivoli Dynamic

Workload Broker [22]; the second one is based on the Barcelona Supercomputing

Center’s eNANOS broker, and the third one is based on Gridway or CSF.

Scheduling

Job
Management

Scheduling

User

...

Job Executor

(Local Sched)

Meta Scheduler
Meta Scheduler

User

Job Executor

(Local Sched)

Resource

Management
Resource

Management

Resource Agent

(Local Sched)

...

Job

Management

Domain
Resource
Repository

Resource Agent

(Local Sched)

Domain

Resource
Repository

Connection API

Job API

Resource API

Job API

Resource A
PI

Connectio
n API

JSDL

JSDL

Scheduling

Job
Management
Job
Management

Scheduling

UserUser

...

Job Executor

(Local Sched)

Job Executor

(Local Sched)

Meta Scheduler
Meta Scheduler

UserUser

Job Executor

(Local Sched)

Job Executor

(Local Sched)

Resource

Management
Resource

Management

Resource Agent

(Local Sched)

Resource Agent

(Local Sched)

...

Job

Management

Job

Management

Domain
Resource
Repository

Resource Agent

(Local Sched)

Resource Agent

(Local Sched)

Domain

Resource
Repository

Connection API

Job API

Resource API

Job API

Resource A
PI

Connectio
n API

JSDL

JSDL

Figure 4. LA Grid domain meta-scheduling

We use the bioinformatics and hurricane mitigation scenarios depicted in Sections

five and six as application test cases, as they both exhibit data and compute intensive

workloads.

3. Job Flows

For many years, workflow
1
 technology has been used in orchestrating multiple tasks in

business processes. Only recently, scientific communities became very active in

exploring workflow technology for orchestrating the execution of composite jobs that

consist of multiple steps. The use of job flow would potentially provide richer

expressiveness and flexibility for users to instruct the job management system on how

to schedule and execute their jobs. In this part of our research, we explore issues related

to job flow in grid environments, including job flow modeling, transparent workflow

adaptation, and data dependencies in job flows.

3.1. Background

Job flow management can be achieved through service orchestration or choreography

[23]. In service orchestration, job flow management is achieved through a central

application. This application (usually an executable workflow) models the interaction

between the partner services, so that they collectively accomplish a coarse grain task.

The application is aware of the interfaces of the partner services and controls their

execution order and message exchanges. In service choreography, job flow

management is achieved through a distributed approach, where partner services are

1
 In this document, we use the terms job flow and workflow interchangeably.

aware of each other and each service knows of its participation in the message

exchanges of the interaction. Figure 5 illustrates the difference between orchestration

and choreography.

Service

Service

Service

Service
Orchestration

application

Service interface Message flowLegend:Legend:

(a) Service Orchestration

(b) Service Choreography

Service

Service

Service

Service

Service

Service

Service

Service
Orchestration

application

Service interface Message flowLegend:Legend:

(a) Service Orchestration

(b) Service Choreography

Service

Service

Service

Service

Figure 5. Orchestration and choreography

3.2. Overview

We have adopted a two-level approach to job flow management in grid environments

that employs service orchestration at the upper level to control coarse-grain job

submissions and service choreography at the lower level to control the interactions

among executing jobs. To create high-level service orchestration for job submissions,

we use the Business Process Execution Language (BPEL) [24], which has become the

leading standard for web service orchestration. Web services can be integrated, using

some XML-grammar, to create a higher-level application (business process). The

XML-grammar that defines a BPEL process is interpreted and executed by an

orchestration engine which exposes the process itself as a web service. BPEL provides

many constructs for the management of process activities, including loops, conditional

branching, fault handling and event handling (such as timeout). Additionally, it allows

for activities to execute sequentially or in parallel. For the lower level choreography,

we use JSDL [20] to describe the requirements of jobs for submission to the grid.

In addition jobs also need one or more input data items for their execution and can

produce multiple outputs as well. There may be multiple copies/replicas of these data

items in the system. For replica management in grids we use the Replica Location

Service (RLS) available in the Globus Toolkit. RLS maintains and provides access to

mapping information from logical names of data items to target names. These target

names may represent the physical locations of the data items or map to other entries in

the RLS providing a second level of logical naming for the data items. The use of

logical to physical name abstraction provides users with the option of specifying

logical names of data items in their job descriptions, rather than the actual physical

locations. Also, in distributed grids, it is very often desirable to maintain multiple

copies of data items so that job executions can be optimized at more than one possible

location.

Figure 6 provides an architectural diagram of our job flow management framework

and shows how it interacts with meta-schedulers. First, the Grid Job Flow Application

Modeling and Tooling captures the job control flow in an abstract BPEL workflow and

the data dependencies as embedded JSDL scripts within the BPEL workflow. These

documents are then interpreted to extract the job to job, job to data, and job to resource

dependencies to form a directed graph. Next, this graph becomes more concrete by

mapping the jobs to scheduling domains considering the resources they need, the data

they require, and the other jobs they are dependent on. Then, additional steps for data

transfer and Replica Location Service (RLS) registration are appended to the BPEL

workflow. At this point the abstract BPEL workflow is concretized by binding the jobs

to specific resource domains.

Any good job flow management system must adequately address the issue of fault-

tolerance on behalf of the job flow. BPEL has constructs for detecting (and generating)

fault messages, as well as constructs for specifying event-driven compensation

activities. Compensation activities serve to undo some business logic that occurred

prior to the event. However, grid environments call for more robust fault handling than

is available in BPEL. To make job flows resilient to failure, in this step, we use a

previously developed framework, called TRAP/BPEL [25], which adds autonomic

behavior into existing BPEL processes automatically and transparently.

Unlike other approaches, TRAP/BPEL does not require any manual modifications

to the original code of the BPEL process and there is no need to extend the BPEL

language, nor the BPEL engine. Within the TRAP/BPEL framework, a BPEL

workflow is made adaptive by first running it through an adaptation generator. The

generator generates the adapt-ready BPEL process by inserting “hooks” at specified

points in the workflow. These hooks redirect invocations through a proxy that provides

adaptive behavior by shielding the workflow from failure and applying recovery

mechanisms that are specified in a recovery policy [25].

During adaptation, specific jobs which require monitoring are identified and for

each job, an adequate failure handling technique is specified in a recovery policy. The

recovery policy is modeled in an XML document that is not part of the job flow

definition. Failure handling techniques may include check-pointing, or finding an

alternative (substitute) resource or service upon which to submit a job. Invocations for

monitored jobs are replaced with invocations to a generic proxy. Messages for those

jobs are therefore redirected through this proxy. The proxy using some failure detection

mechanism (e.g. polling, event notification) monitors the individual jobs and enforces

the recovery policy. The proxy in this case is a job submission and monitoring service

and forwards jobs to the schedulers. There is only one generic proxy per job flow

engine, although there may be several instances of this proxy performing recovery on

behalf of the workflows executing on that engine.

Finally, the adapted concrete BPEL process with embedded JSDL scripts is

executed on a BPEL engine to orchestrate the job submission through the use of some

job submission web services. As described in Section two, meta-schedulers can engage

in peer-to-peer choreography in order to decide on the specifics of how the actual job

execution and data transfers occur (e.g. the exact machine on which the job is to be

executed, the exact data transfer protocol that is to be used).

Generic proxy

Job Flow

Management

Abstract
-

File f1 File f2

Local
Scheduler

MS21

Local
Scheduler

MS22 File f1

Local
Dispatcher

LD11

File f2

- -

-

Inter-Domain Data

Transfer

File f1

Domain1

Domain2

Domain3

Resource Information
from local domain

Resource Information

from local domain

Resource Information

from local domain

Grid Job Flow Application Modeling and ToolingJob Flow Management

AdaptAdapt--ready ready

orchestrationorchestration

Abstract

BPEL Document
+ JSDL References

Extracting Dependencies

Job1 Job2

Job3

Input1.Job1 Input2.Job1

Output1.Job1
Input1.Job3

Input1.Job2

Input2.Job3
Output1.Job2

A high-level graphical environment
appropriate to scientists

Extract dependencies:
1. Job-job (from BPEL) 2. Job-data (from JSDL)
3. Job-resource (from JSDL)

Extract Dependencies

Job1@domain1/domain2

Input1.Job1 Input2.Job1

Output1.Job1
Input1.Job3

Input1.Job2

Input2.Job3
Output1.Job2

Job2@domain2/domain3

Job3@domain2/domain3

Mapping Jobs to Domains

Mapping Data to Domains

Job1@domain1/Domain2 Job2@domain2/domain3

Job3@domain2/domain3

Tx.Input1.Job1.To.Domain1 Tx.Input2.Job1.To.Domain1 Tx.Input1.Job2.To.Domain2

Tx.Output1.Job1.To.Domain2

Register.RLS.Output1.Job1 Register.RLS.Output1.Job2

Map data to domains:

1. Additional steps for data transfer, RLS registration
2. In this stage, it has been decided where jobs will be executed

JSDL JSDL

2

3

4

1

6

To local and other meta-schedulers

Job Flow Engine

JE2

Meta-scheduler
MS2

Job Flow Engine

JE1

Meta-scheduler

MS1

Job Flow Engine

JE3

Meta-scheduler
MS3

Peer-to-peer

Choreography

Adapt to add fault tolerant concerns5

7

A BPEL Engine

executes the
concrete BPEL

Adapt to address fault tolerance concerns:
1. Identify activities to monitor for fault tolerance

2. Decide what type of fault tolerance (checkpointing,
retry, replicate, alternative, etc.) per activity

3. Generate adapt-ready BPEL and recovery policy

Generic Proxy:
1. Acts as job submission service

2. Submits jobs to schedulers
3. Monitors job status
4. Applies recovery policy

Map job executions to concrete bindings in domains:
1. All dependencies

2. Data availability
3. Resource availability

8

Generic proxy

Job Flow

Management

Abstract
-

File f1 File f2File f1 File f2

Local
Scheduler

MS21

Local
Scheduler

MS22 File f1

Local
Dispatcher

LD11

File f2File f2

- -

-

Inter-Domain Data

Transfer

File f1File f1

Domain1

Domain2

Domain3

Resource Information
from local domain

Resource Information

from local domain

Resource Information

from local domain

Grid Job Flow Application Modeling and ToolingJob Flow Management

AdaptAdapt--ready ready

orchestrationorchestration

Abstract

BPEL Document
+ JSDL References

Extracting Dependencies

Job1 Job2

Job3

Input1.Job1 Input2.Job1

Output1.Job1
Input1.Job3

Input1.Job2

Input2.Job3
Output1.Job2

A high-level graphical environment
appropriate to scientists

Extract dependencies:
1. Job-job (from BPEL) 2. Job-data (from JSDL)
3. Job-resource (from JSDL)

Extract Dependencies

Job1@domain1/domain2

Input1.Job1 Input2.Job1

Output1.Job1
Input1.Job3

Input1.Job2

Input2.Job3
Output1.Job2

Job2@domain2/domain3

Job3@domain2/domain3

Mapping Jobs to Domains

Mapping Data to Domains

Job1@domain1/Domain2 Job2@domain2/domain3

Job3@domain2/domain3

Tx.Input1.Job1.To.Domain1 Tx.Input2.Job1.To.Domain1 Tx.Input1.Job2.To.Domain2

Tx.Output1.Job1.To.Domain2

Register.RLS.Output1.Job1 Register.RLS.Output1.Job2

Map data to domains:

1. Additional steps for data transfer, RLS registration
2. In this stage, it has been decided where jobs will be executed

JSDL JSDL

2

3

4

1

6

To local and other meta-schedulers

Job Flow Engine

JE2

Meta-scheduler
MS2

Job Flow Engine

JE2

Meta-scheduler
MS2

Job Flow Engine

JE1

Meta-scheduler

MS1

Job Flow Engine

JE1

Meta-scheduler

MS1

Job Flow Engine

JE3

Meta-scheduler
MS3

Job Flow Engine

JE3

Meta-scheduler
MS3

Peer-to-peer

Choreography

Adapt to add fault tolerant concerns5

7

A BPEL Engine

executes the
concrete BPEL

Adapt to address fault tolerance concerns:
1. Identify activities to monitor for fault tolerance

2. Decide what type of fault tolerance (checkpointing,
retry, replicate, alternative, etc.) per activity

3. Generate adapt-ready BPEL and recovery policy

Generic Proxy:
1. Acts as job submission service

2. Submits jobs to schedulers
3. Monitors job status
4. Applies recovery policy

Map job executions to concrete bindings in domains:
1. All dependencies

2. Data availability
3. Resource availability

8

 Figure 6. Job flow management framework interaction with meta-scheduling

3.3. Related Work

There are many job flow languages used in the scientific communities including

DAGMan of the University of Wisconsin [26], SCUFL of the e-Science group [14],

YAWL of Queenland University Technology [27]. In the enterprise domain, the most

popular language for business processes is WS-BPEL [24]. WS-BPEL has become the

de-facto standard for workflow technology in enterprise systems. To help foster

interactions between job flow systems in the grid there is clearly a similar need for

standardization. For this reason, in recent times, the scientific community has also

started exploring the possibility of using the WS-BPEL standard for job flows. We

selected WS-BPEL as our workflow language for our project. Software offers that

support WS-BPEL include IBM’s WebSphere Process Server [28] and ActiveBPEL

[29].

There are many projects and studies of job flows in grid environments. The

Pegasus [30] project at the University of Southern California addresses the planning

and resource allocation of job flow in grid environments. VDS of GriPhyN [31]

supports the virtual data specification language used in conjunction with the DAGMan

job flow language. Unlike other studies, our project explores the combined use of WS-

BPEL and JSDL along with data mapping.

Our architecture also supports the specification of flexible, user-defined failure

handling mechanisms while supporting separation of concerns. By adapting the

concrete BPEL workflow, failure handling mechanisms are defined in a manner that

does not tangle the code for fault-tolerance with the business logic of the application.

Some other Grid workflow systems (Karajan [32], Kepler [33] and Grid-WFS [34])

allow for user-defined failure handling, however, Karajan and Kepler do not support

the separation of concerns. Grid-WFS claims to support the separation of concerns but

fault handling strategies are specified along with the task in the same workflow

definition. This approach does therefore entangle the code for failure handling with that

of the business logic. Further, our approach does not require a purpose-built workflow

engine, as do the other systems, since we utilize standard BPEL constructs.

For more general information on workflows, the reader is invited to refer to

http://www.gridbus.org/reports/GridWorkflowTaxonomy.pdf, which is a good survey

paper on workflow taxonomy and workflow projects.

4. Data Integration

Data integration involves combining data residing at different sources and providing

the user with a unified view of such data. Data integration is a traditional problem that

exists in numerous applications, for example, integrating the databases for two

companies that are being merged, or combining research results from different

bioinformatics repositories. Data integration frequently occurs as the volume of data

and the need to share it increase. Data integration has been the focus of extensive work

and numerous open research problems remain to be solved. In this study, we present a

system architecture which aims to define essential components for developing a

domain-specific, modular, and decentralized data integration system in a grid

environment. The proposed architecture incorporates a series of grid-oriented services

(e.g. coordinator, semantic catalog, repository, synchronization) that address the

distributed nature and autonomy of the data sources. The architecture also incorporates

a series of data-oriented services (e.g. schema mapping generation, query generation,

query rewriting) that facilitate the actual integration of data. Nodes in the grid

environment can provide data, integration services, or a combination of both. Through

the proposed system, users can contribute new data, define relationships among

existing data sources and schemas, relate data to domain-specific concepts, or even

construct new schemas that can be reused by others.

4.1. Architecture and Services

Our architecture supports distributed storage and manipulation of data and adapts to

dynamic addition and removal of nodes. For every session, an application server

connects users to nodes and designates a particular node as the “master”. Any node is

capable of performing the “master” role. The master node distributes the required tasks

among many other nodes in the grid and is also responsible for coordinating, collecting,

and merging results from “slave” nodes.

Figure 7 depicts the LA Grid data integration architecture. Each LA Grid node

contains seven components/services, namely: the coordinator service, the semantic

catalog, the repository service, a data repository, the synchronization service, the Data

Grid Management System (DGMS) [35], and the data services suite. At this time the

data services suite is completely implemented and other services are at different stages

of development. Implementation is done in Java and nodes are currently deployed in a

grid architecture based on the Globus Toolkit [5].

Figure 7. Data integration architecture

Coordinator Service: This service is the front-end interaction point for data-driven

operations. It has access to a locally held semantic data catalog. The local coordinator

service communicates with remote coordinator services for coordinating operations

across the system. Query distribution/data materialization decisions are also handled by

this service based on quality of service, load balancing, and optimization requirements.

Coordinator services are key elements for automated workflow construction because

they are responsible for decisions involving forwarding, splitting, or directly handling a

request. Upon receiving a request, the coordinator needs to access the semantic catalog

to retrieve information about data needed/involved in the request. Based on metadata

and information about registered nodes and deployed services, the coordinator makes a

decision about handling the request, i.e., forwarding, splitting, or directly handling it.

The coordinator maintains a set of rules to help make such decisions. The efficiency

and accuracy in defining such rules is crucial for correct and efficient system

performance. While a system could perform its function using a limited set of rules, its

performance could be enhanced by adding and tuning rules. For example, a simple rule

is to forward a request to the first node that has the required services deployed.

However, a better rule is to incorporate the location of data. From our experience, fine

tuning rules may result in complex but efficient workflows of services.

Semantic Catalog: The semantic catalog contains the physical locations of data

components as well as domain-specific semantic descriptions. For example, the

semantic catalog of each schema may store its name, the location of its definition,

semantic mappings from the schema elements to biomedical domain-specific concepts,

and pointers to known instances of the schema. Additionally, we may store schema

mappings that directly relate pairs of schemas (created by the schema mapping creation

service – cf. detailed description below). The semantic mappings between schema

elements and domain-specific concepts are currently simple correspondences from

schema elements to terms in a conceptual model, similar to an ontology. Users provide

ontologies and mappings applicable to their problem domain. This kind of semantic

mapping is an active research area [36] that can enhance schema mapping/matching

operations (for example, if two or more schema elements can be mapped to the same

semantic term in the ontology, a potential match is indicated). In the current

implementation, UMLSKS [37] is used as the domain-specific mappings knowledge

source. The latest version of the semantic catalog is built as a dynamically evolving

OWL (Web Ontology Language) [38] resource. It captures relations between schema

definitions, instances, mappings and their domain. Those relations are represented as

RDF (Resource Description Framework) [39] statements that can be manually asserted

by system users or can be automatically evaluated using a set of utility services. Using

this design, the semantic catalog is able to answer queries like: Is there a mapping from

schema A to schema B?; Find all mappings that use schema C as a source; Does a

mapping have an inverse in the repository?; etc. Pellet [40] - an open source, OWL

Description Logic reasoner in Java - is used for reasoning and augmenting information

in the catalog while SPARQL [41] is used as the query language.

Repository Service & Data Repository: This service is responsible for storing and

extracting all raw data (via the DGMS or VFS - discussed below). It also notifies the

synchronization service about new changes in the repository. Currently, this service is

implemented on top of the Apache Commons Virtual File System [42]. VFS provides

APIs for accessing different file systems and presents a unified view of files from

different sources (e.g., local disk, remote ftp, or http servers). In the current system

implementation, only a pure XML data repository is supported. Other data

representations can be supported only if the data can be exported to XML.

Synchronization Service: The synchronization service keeps the semantic catalog

entries synchronized among nodes. When a node is added to the grid, the node has the

option of subscribing to various topics. Whenever a change affecting a given topic

occurs, the nodes subscribed to that topic receive notifications of the update. This

service is implemented on top of the WSRF notification mechanism provided by the

Globus Toolkit.

Data Grid Management System: Through multiple abstractions, the DGMS [43]

provides a logical namespace that hides the complexity of distributed data and

heterogeneous resources. The Storage Resource Broker (SRB) [44] is a tool for

managing distributed storage resources. Files in the SRB are referenced by logical file

handles that do not require the actual physical locations of the files. A Metadata

Catalog, MCAT, maintains maps of logical handles to physical file locations. The

proposed semantic catalog and data services can be seen as augmentations on top of

DGMS in order to facilitate finer grain semantic integration at the data level. The

current system implementation uses the Apache VFS.

Data Services Suite: This component provides a number of web services that allow the

creation of schema mappings and operations over those schema mappings. We have

selected Clio’s [45] schema mapping components, and wrapped them as web services.

The suite provides the following data services:

- Schema Mapping Creation: Given a source schema, a target schema, and a set of

“correspondences” between source and target schema elements, this service creates a

“mapping” from the source schema to the target schema. This mapping consists of a set

of declarative constraints that dictate what the target instance should be, given a source

instance. The mapping creation algorithm takes into account the schema constraints

(e.g., foreign key constraints, type constraints) as well as correspondences [46].

- Query Generation: Given a mapping (produced by the Schema Mapping Creation

service), this service produces an XQuery, an XSLT, or an SQL/XML query that

implements the transformation implied by the mapping [45]. The query and the

association between the query and the mapping used to produce the query are stored in

the semantic catalog (for future reuse).

- Query Execution: For convenience, we also have a service that executes the queries

generated by the previous service. Given a query script and a set of input XML

documents (e.g. instances of the source XML schema), the service executes the query

and returns the resulting XML document.

- XML Transformation: This service allows the direct and scalable execution of the

mapping, as opposed to simply executing the query that implements it. Based on the

technology detailed in [47], this service takes as input a mapping and the source XML

instances and returns the target XML instance that is implied by the mapping. As

opposed to the query generation/execution services, this service neither produces nor

executes a query; rather, it uses a Java-based engine to optimally execute the mapping.

- Query Rewrite: An interesting application of mappings is the ability to rewrite target-

side queries into queries that work on the source-side. This is useful, for example, if the

target-side schemas are virtual and actual data resides on the source side. We use the

query rewriting techniques detailed in [48] to implement this service. Given a schema

mapping and an XQuery over a target schema instance, this service returns a rewritten

XQuery over the source schemas in the mapping.

- Schema Integration: Given a number of mappings between several schemas, this

service attempts to create an “integrated” schema that captures the unified concepts of

the schemas that are related by the mapping [49].

4.2. Related Work

A number of data integration systems have been proposed to address the problem of

large-scale data sharing (e.g. [50, 51, 52]; and the survey by Halevy [53]). These

systems support rich queries over large numbers of autonomous, heterogeneous data

sources by making use of semantic relationships between the different source schemas

and a mediated schema, which is designed globally. However, the mediated schema

becomes a problem since it may be hard to come up with a single mediated schema that

everyone agrees on. Moreover, all access (querying) is done against the mediated

schema (a single point). Furthermore, this architecture is not robust with respect to the

changes in the source schemas. As a result, data integration systems based on mediated

schemas are limited in supporting large-scale distributed and autonomous data sharing.

Peer Data Management Systems (PDMS), e.g., Piazza [54], have been proposed to

address the aforementioned problems and to offer an extensible and decentralized data

sharing system. The study presented in this section can be viewed as an effort to

present and discuss the design, components, and services required to realize a PDMS in

a grid environment. Our system requirements are, in principle, no different from these

peer data management systems. Compared to Piazza’s approach, our intended

applications imply smaller numbers of data sources. However, the sources have

complex schemas and may contain overlapping and potentially conflicting and

dynamically changing data. The proposed system emphasizes the use of tools and

services that facilitate mappings among schemas and generate the queries that are

needed to access and integrate the data.

5. Application to Bioinformatics

A problem facing many bioinformatics researchers today is the aggregation and

analysis of vast amounts of data produced by large scale projects such as the Human

Genome Project. This is further complicated by the fact that data is distributed among

heterogeneous sources. As of September 2006, the Gene Expression Omnibus (GEO)

repository at the National Center for Biotechnology Information (NCBI) holds over 3.2

billion individual measurements. Moreover the repository is growing at a rapid rate

[55]. The amount of data, the rate of its growth, and the heterogeneity of data sources

present real problems, hindering advancements in bioinformatics [56].

In this section, the focus is on data integration problems in bioinformatics.

However, a typical bioinformatics research activity involves both computational and

data driven aspects. Data driven tasks involve techniques to extract data from multiple

sources. Computational tasks involve processing data after extraction for pattern

matching, alignment, and clustering.

Pharmacogenomics is a branch of bioinformatics dealing with the influence of

genetic variation on drug response in patients. Approaches investigating such

influences promise the advent of "personalized medicine", in which drugs and drug

combinations are optimized for each individual's unique genetic makeup. To make

“personalized medicine” decisions, information from multiple heterogeneous data

sources needs to be incorporated; for example OMIM, dbSNP and dbGaP from NCBI

[57], Haplotype data from the HapMap project [58], Human Gene Mutation and

TRANSFAC databases from BioBase [59] in addition to PHARMKGB [60]. Figure 8

shows a related example that aims to understand rates of gene expressions in different

tissues and correlate these expression profiles with active transcription factors and their

binding sites. The data required for this study is distributed among various sources (e.g.

UCSC Genome Browser [61], GNF SymAtlas [62] and TRANSFAC [63]). The figure

shows how Clio mapping technology can be used to provide a high-level definition for

mappings between such sources and a target schema. In particular, a graphical user

interface allows the identification of correspondences that relate schema elements.

Our sample scenario involves three collaborating groups of scientists. Assume the

groups are associated with the three data sources in Figure 8 and located in the USA,

Spain, and Mexico, respectively. The USA group is conducting experiments related to

identifying known genes and their chromosomal positions. The team from Spain is

doing experiments on gene expression levels in different tissues, while the team from

Mexico is concerned with identifying transcription factors binding sites for different

genes and the associated transcription factors. Furthermore, assume there is a fourth

team in the UK that will do the analysis of the collected data. Their role is to collect

and interpret data from the different teams and to discover new knowledge from the

experiments conducted in the study.

Data Source 1

Set of Genes

Gene_Record
name

chrom
txStart
txEnd
…

Data Source 2

Set of Genes_Tissues

Gene_Tissue_Record
geneName
tissueName

expressionScore
…

Data Source 3

Set of Genes_TFBSs
Gene_TFBS_Record

geneName
tfbsName
…

Set of TFBSs
TF_Record

name
chromStart
chromEnd
…

Set of TFs
TF_Record

factor

id
tfbsName
…

Set of Genes_Tissues_TFBSs_TFs
Gene_Record

name

chrom
txStart
txEnd
…

Set of Tissues
Tissue_Record

tissueName
expressionScore
…

Set of TFBSs
TFBS_Record

name
chromStart
chromEnd
…
Set of TFs

TF_Record
factor

id
…

Federated Target Schema

Data Source 1

Set of Genes

Gene_Record
name

chrom
txStart
txEnd
…

Data Source 1

Set of Genes

Gene_Record
name

chrom
txStart
txEnd
…

Data Source 1

Set of Genes

Gene_Record
name

chrom
txStart
txEnd
…

Data Source 2

Set of Genes_Tissues

Gene_Tissue_Record
geneName
tissueName

expressionScore
…

Data Source 2

Set of Genes_Tissues

Gene_Tissue_Record
geneName
tissueName

expressionScore
…

Data Source 2

Set of Genes_Tissues

Gene_Tissue_Record
geneName
tissueName

expressionScore
…

Data Source 3

Set of Genes_TFBSs
Gene_TFBS_Record

geneName
tfbsName
…

Set of TFBSs
TF_Record

name
chromStart
chromEnd
…

Set of TFs
TF_Record

factor

id
tfbsName
…

Data Source 3

Set of Genes_TFBSs
Gene_TFBS_Record

geneName
tfbsName
…

Set of TFBSs
TF_Record

name
chromStart
chromEnd
…

Set of TFs
TF_Record

factor

id
tfbsName
…

Data Source 3

Set of Genes_TFBSs
Gene_TFBS_Record

geneName
tfbsName
…

Set of TFBSs
TF_Record

name
chromStart
chromEnd
…

Set of TFs
TF_Record

factor

id
tfbsName
…

Set of Genes_Tissues_TFBSs_TFs
Gene_Record

name

chrom
txStart
txEnd
…

Set of Tissues
Tissue_Record

tissueName
expressionScore
…

Set of TFBSs
TFBS_Record

name
chromStart
chromEnd
…
Set of TFs

TF_Record
factor

id
…

Federated Target Schema

Figure 8. A high-level mapping definition using Clio

Assume that the teams in the USA, Spain and Mexico have uploaded their data to

their associated data sources. Now the UK analysis team can start interpretation and

analysis of the data. However, they are facing the problem of merging and integrating

these three data sources. To efficiently analyze the data, they would like to organize it

according to a specific structure. Therefore, the UK team constructs a new schema that

captures the required data organization (the target schema in Figure 8) and creates the

required domain-specific mappings. Then, they connect to their node and download

(via Java Web Start) an application that allows the construction of Clio-based

mappings. Source and target schemas are loaded into the tool which shows their

structure as a tree of schema elements (very similar to how they are presented in Figure

8). Value mappings are entered by drawing lines from source schema elements to target

schema elements. The output from this process is a value mapping, which is sent to the

schema mapping service that evaluates the mapping specification and passes it to the

repository service for storage. The synchronization service updates the local semantic

catalog and notifies remote nodes about the new mapping.

Different query processing scenarios could arise based on the location of data

(local vs. remote), and whether the query is against a materialized version of the data or

not. If the data is not materialized then either a materialization or a query distribution

decision could be made by the coordinator service. Criteria for such decisions can be

based on the frequency of the queries against data sources.

For instance, the UK team is trying to answer the following query using the

federated target schema:

“Find a list of gene names and their chromosomal locations that have an

expression level >>>> e in both heart and liver and are regulated by the same set of

transcription factors.”

The above query is written against the target schema. However, it is assumed that the

UK node does not have any data associated with this federated schema; all data resides

at the other nodes (a global-local-as-view –GLAV– scenario [64]). The query is

rewritten by the Query Rewrite service into a new query, formulated in terms of the

source schemas (at the USA, Spain, and Mexico sites). When executed, the rewritten

query retrieves the three source documents and then locally (on the UK node) joins and

filters the data, and finally produces an instance of the target schema. Another

alternative we are exploring is to further decompose the rewritten query into maximal

sub-queries that are sent to the sources. For example we could send a join query to data

source 3 (Mexico) and only get the relevant data back. In another scenario, one or more

source schemas may also be the output of previous schema mapping operations. In

such cases, a nested query rewrite with further decomposition is needed.

6. Application to Hurricane Mitigation

6.1. A Possible Hurricane Mitigation Scenario

A tropical depression in the Caribbean Sea quickly strengthens in the warm waters as it

drifts westward into the Gulf of Mexico. It is tracked and modeled by the National

Hurricane Center as it becomes a tropical storm and then a category one hurricane by

day three. Once in the central Gulf of Mexico the storm intensifies into a category three

hurricane by the end of day four. A similar storm is shown in Figure 9.

Hurricane track models begin to indicate that the storm will continue to intensify

and re-curve northeast and then east toward the western Florida coast. The NOAA

National Hurricane Center model forecasts begin to predict landfall along the central

western Florida coast by day six.

Synoptic scale numerical weather prediction (NWP) models capture the general

storm circulation and general movement, but do not predict intensity changes well [65,

66]. Results of these large scale models, in turn, are used along with other high

resolution data as input to regional and mesoscale models that run ensembles across a

computing grid infrastructure of thousands of nodes. These ensemble models do more

than determining high resolution hurricane impact; they also provide information about

the uncertainty of the hurricanes track and intensity forecast. Between 48 and 72 hours

prior to landfall these ensembles allow risk management for the event, as they also

include information about the sensitivity of the forecast to both data and physics

uncertainty.

Figure 9. Hurricane Wilma in the Gulf of Mexico - October 23, 2005

6.2. Our approach

The Weather Research and Forecasting (WRF) model is the state-of-the-art mesoscale

numerical weather prediction system, serving both operational forecasting and

atmospheric research needs [67]. The WRF model Version 2.1.2 software distribution

comprises about 360000 lines of source code. This code is highly modular and is

greatly optimized to run on several heterogeneous cluster computing facilities using

MPI [1] for inter-node communications and OpenMP [68] for intra-node

communications among the processors. In this part of our research, we address two

problems with the current version of WRF.

First, to mitigate the impact of hurricane landfalls, we need to provide even more

accurate and timely information to enable effective planning [69, 70, 71, 72]. Pushing

the limits of WRF today, there is a increasing need for fine-grain simulation in smaller

regions (e.g. zip-code level hurricane simulation). Considering the limited resources

available—that each interested organization may have—would leave us with no choice

than to scale out from single-managed cluster computing to grid computing that can

span over many organizations with different needs and administrative domains. Such

grid-enabled WRF code can employ the resources available in several organizations to

contribute toward solving fine-grain hurricane simulations. As the WRF code does not

provide any inherent support for grid computing and as we do not want to stray away

from the mainstream revisions of the WRF code, we are employing our Transparent

Grid Enablement approach (mentioned in Section one) to enable execution of WRF on

grid computing environments in a transparent manner to the original WRF code (no

manual modification to the WRF code).

Second, to contribute to future WRF model development, meteorologists are

required to develop new dynamics and physics model packages in languages such as

FORTRAN and C as well as to understand the architecture of the underlying

computing platforms to optimize code – very challenging skills. In this part of our

research, we address this problem by investigating on a high-level modeling platform, a

web-based interface called the Grid WRF portal. The portal allows meteorologists to

use WRF and to develop new meteorology model packages adaptable to different grid

computing environments. Our preliminary work shows that a specialized visual

modeling interface supported by a workflow language (e.g. BPEL) may be a good

choice. We continue to address challenging questions such as the expressive power of

workflow languages [73, 74, 75, 76], and the efficiency of the generated WRF code

[77]. This high-level graphical user interface is backed up with the results of our other

research mentioned in Sections two and three, where we have designed and partially

developed a job flow management system and a meta-scheduler that can adapt to the

dynamic changes of a grid computing environment.

Beyond grid enablement of hurricane modeling across multiple geographic and

temporal scales for implementation of real time ensemble simulations, there is the

potential for creating a suite of products both distinct and integrated which couple

multiple types and scales of model simulations (atmospheric, ocean wave, storm surge,

hydrological, socio-economic models, etc.). This capability coupled with user- and

application-centric visualizations gives rise to a new class of data analytics for decision

support in a proactive sense that has heretofore been unavailable.

Ocean wave and storm surge models are also run on the grid and are used to better

predict impacts on coastal infrastructure, shipping and oil drilling interests in the

eastern Gulf of Mexico and along the shoreline as the hurricane continues its eastward

track. Mean and ensemble members of the atmospheric, ocean wave, storm surge and

hydrological models are coupled to create predictions on storm movement, intensity,

near shore wave heights, storm surge, and flooding forecasts that include both

optimistic and pessimistic bounds on the likely outcomes. The various model forecasts

are concurrently produced and visualized with grid resources to create customized

decision support guidance for emergency management, utility, transportation, debris

removal and other interests as the storm makes landfall along the western Florida coast.

National authorities do not currently have the required computational power nor

the bandwidth to produce such high resolution (cloudscale) ensembles and deliver them

to emergency management, businesses, and the public. Within the grid environment,

smaller domain storm surge results and visualization of complex rainfall, wind fields

and waves can be generated for distinct localities in high detail. Mesoscale and

cloudscale model ensemble forecasts continue to run in real time utilizing grid

resources to enable timely generation of decision support products. Information, data

and analytics are produced in multiple forms, which are then integrated and delivered

to support planning, response and remediation as the storm moves eastward across

Florida and exits along the northeastern coast. These analytics allow improved

estimates of damage to electrical grids and transportation infrastructure while

supporting efforts to plan and mobilize storm recovery.

Grid enablement for the generation of new and unique products, guidance and

analytics in support of mission critical decision making in a transparent manner while

utilizing a dynamic, heterogeneous and geographically disparate set of computing

resources is one of the strategic goals of the LA Grid hurricane mitigation project. It is

a necessary and evolutionary step in the convergence of science and technology for

societal benefit.

7. Future Plans

Our initial work demonstrated in previous sections is part of a novel approach to grid

application development we call Transparent Grid Environment (TGE), whose goal is

to allow domain experts to effectively express the logic and software artifacts of

domain applications while hiding the details of the grid architecture, software, and

hardware stack. This TGE paradigm will serve as the foundation for the study of

application development methodologies, platforms, and tools that will significantly

ease grid-enabled application development (hence broadening grid utilization) and

make applications more portable and adaptable to future changes of grid technologies.

We believe that grids utilizing the TGE paradigm will be agile, flexible, and capable of

serving a broad set of scientific and business communities.

Our approach is characterized as application-driven (hence “top-down”) by basing

and focusing our investigation on (1) supporting grid-enablement for a few carefully

chosen critical application domains, e.g. hurricane mitigation and bioinformatics, and

(2) developing common methodologies, services and tools for deploying grid-enabled

applications in these domains. In our approach, we factor out common services that can

be reused across domains. This will ensure that our tools have broad significance and

utility to a range of applications, thus avoiding the tendency for tools to be too generic

to be effective. Our future plans entail investigation of the following key challenges:

1. High-level Visual Interactive Development Environment (IDE): What is the

appropriate IDE for domain experts to easily specify the logic of their

applications? Do IDEs targeted for different domains have many common

properties? Is it possible to develop a common IDE that supports multiple

domains? Are the workbenches being developed and used by domain experts today

the right solution?

2. Automated Code Generation and Software/Hardware Reuse: How can we

automate the generation of executable code from a high-level specification

provided by a domain expert? How can we reuse the existing software and

hardware components and map abstract specifications to concrete resources in

order to execute the application?

3. Hiding the Heterogeneity of Grid Architectures: How do we hide the details of

heterogeneous grid architectures and resources and provide a virtualized interface

for application development while addressing efficient resource utilization?

Under the LA Grid initiative, we have established a globally-integrated research

and education program to respond to the above challenges and to realize a TGE. We

have taken a divide-and-conquer approach that allows us to tackle the above challenges

in parallel. To conduct our investigations we have identified nationally-important

domains of Grid Applications, as discussed in Sections five and six. We have

established a number of Grid Integration projects that enable aggregation and

discovery of data, visualization of data, and weaving of high-level grid enablement

services into the logic of domain-specific applications, as described in Section four.

Finally, we have established several Grid Enablement projects that provide a layer of

abstraction on top of heterogeneous Grid architectures by offering high-level services,

as presented in Sections one, two, and three.

As our research progresses, the technologies and their associated tools developed

in these projects will form grid application enabling platforms at different levels of

abstraction. First, the projects in the Grid Applications Layer will identify the

requirements and provide methodologies, frameworks, and modeling tools that enable

domain experts to model, design, and code their applications with minimal attachment

to the underlying grid. In designing and developing these “application interfaces,”

common high-level, application-oriented functions, components, and tools are

extracted and packaged into the Grid Integration Layer, which provides services that

can be reused by other applications in the targeted domains. The projects in the Grid

Enablement Layer will provide system-level services and tools to support efficient and

transparent management and utilization of heterogeneous grid resources through

uniform virtualized interfaces. Such services will make applications even more

adaptable to changes of the underlying infrastructure.

The LA Grid initiative aims to simplify the manner by which scientific and

business domain experts develop, use, and maintain software applications over

distributed computing resources. Using our TGE approach we will create innovative

tools which promote the reuse of commonalities across domains resulting in flexible

and cost effective grid implementations which allow experts in diverse domains to

easily code their application logic using an integrated development process.

References

[1] http://www-unix.mcs.anl.gov/mpi/.

[2] http://www.globus.org/ogsa/.

[3] http://www.globus.org/wsrf/.

[4] http://www-unix.mcs.anl.gov/mpi/mpich2/.

[5] http://www.globus.org/toolkit/.

[6] http://www.unicore.org/.

[7] http://www.cs.wisc.edu/condor/.

[8] R.M. Badia, R. Sirvent, J. Labarta, J.M. Perez, Programming the GRID: An

Imperative Language Based Approach, Book chapter in Engineering the Grid,

Section 4, Chapter 12 , January 2006.

[9] S.M. Sadjadi, P.K. McKinley, B.H.C. Cheng, and R.E.K. Stirewalt, TRAP/J:

Transparent generation of adaptable Java programs, Proc. International

Symposium on Distributed Objects and Applications (DOA'04), Agia Napa,

Cyprus, October 2004.

[10] R.V. van Nieuwpoort, J. Maassen, T. Kielmann, and H.E. Bal, Satin: Simple and

efficient Java-based grid programming, Scalable Computing: Practice and

Experience 6(3), 19-32, September 2005.

[11] S. Gorlatch and J. Dunnweber, From Grid Middleware to Grid Applications:

Bridging the Gap with HOCs, in Future Generation Grids, Springer Verlag, 2005.

[12] M. Aldinucci, M. Coppola, M. Danelutto, M. Vanneschi, and C. Zoccolo, Assist as

a research framework for high-performance grid programming environments, in

Grid Computing: Software Environments and Tools, J.C. Cunha and O.F. Rana,

Eds., Springer Verlag, 2004.

[13] F. Baude, L. Baduel, D. Caromel, A. Contes, F. Huet, M. Morel, and R. Quilici,

Programming, Composing, Deploying for the Grid, in Grid Computing: Software

Environments and Tools, J.C. Cunha and O.F. Rana, Eds., Springer Verlag,

January 2006.

[14] http://taverna.sourceforge.net/.

[15] V. Subramani, R. Kettimuthu, S. Srinivasan, and P. Sadayappan, Distributed Job

Scheduling on Computational Grids Using Multiple Simultaneous Requests, Proc.

11
th

 IEEE International Symposium on High Performance Distributed Computing,

Edinburg, Scotland, July 24-26, 2002.

[16] I. Rodero, et al., Looking for an Evolution of Grid Scheduling: Meta-brokering,

submitted to ICS 2007.

[17] http://www.globus.org/grid_software/computation/csf.php.

[18] http://www-306.ibm.com/software/tivoli/products/scheduler-loadleveler/.

[19] http://www.gridway.org/.

[20] http://www.ogf.org/.

[21] A. Anjomshoaa, M. Drescher, D. Fellows, A. Ly, S. McGough, D. Pulsipher, and

A. Savva, Job Submission Description Language (JSDL) Specification, Version

1.0, November 2005, Copyright © Global Grid Forum (2003-2005).

[22] http://www-306.ibm.com/software/tivoli/products/dynamic-workload-

broker/index.html.

[23] C. Peltz, Web services orchestration and choreography, IEEE Computer, 36(10),

44–52, 2003.

[24] S. Weerawarana, F. Curbera, Business process with BPEL4WS: Understanding,

http://www-128.ibm.com/developerworks/library/ws-bpelcol1/, 2002.

[25] O. Ezenwoye and S.M. Sadjadi. TRAP/BPEL: A framework for dynamic

adaptation of composite services, Proc. International Conference on Web

Information Systems and Technologies (WEBIST 2007), Barcelona, Spain, March

2007.

[26] http://www.cs.wisc.edu/condor/dagman.

[27] http://yawlfoundation.org/index.php.

[28] http://www-306.ibm.com/software/integration/wps/.

[29] http://www.activebpel.org/.

[30] E. Deelman, G. Singh, M.H. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, G. K.

Vahi, G.B. Berriman, and J. Good, Pegasus: A framework for mapping complex

scientific workflows onto distributed systems, Scientific Programming 13 (2005),

219–237.

[31] http://vdt.cs.wisc.edu/components/vds.html.

[32] G. von Laszewski and M. Hategan, Java CoG Kit Karajan/GridAnt Workflow

Guide, Technical Report, Argonne National Laboratory, Argonne, IL, USA, 2005.

[33] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E.A. Lee, J.

Tao, and Y. Zhao, Scientific Workflow Management and the KEPLER System,

Concurrency and Computation: Practice & Experience, Special Issue on Scientific

Workflows, 2005.

[34] S. Hwang and C. Kesselman, GridWorkflow: A Flexible Failure Handling

Framework for the Grid, Proc. 12th IEEE International Symposium on High

Performance Distributed Computing, Seattle, WA, June 2004.

[35] Data Grid Management System, http://www.sdsc.edu/srb/index.php/DGMS.

[36] Y. An, A. Borgida, and J. Mylopoulos, Constructing Complex Semantic Mappings

between XML Data and Ontologies, Proc. Fourth International Semantic Web

Conference (2005), 6–20.

[37] http://umlsks.nlm.nih.gov/.

[38] http://www.w3.org/TR/owl-features/.

[39] http://www.w3.org/RDF/.

[40] http://pellet.owldl.com/.

[41] http://www.w3.org/TR/rdf-sparql-query/.

[42] http://jakarta.apache.org/commons/vfs/.

[43] A. Jagatheesan, and A. Rajasekar, An introduction to data grid management

systems, Proc. SIGMOD (2003), 683.

[44] http://www.sdsc.edu/srb/index.php/.

[45] L.M. Haas, M.A. Hernandez, H. Ho, L. Popa, and M. Roth, Clio Grows Up: From

Research Prototype to Industrial Tool, Proc. SIGMOD (2005), 805–810.

[46] L. Popa, Y. Velegrakis, R.J. Miller, M.A. Hernandez, and R. Fagin, Translating

Web Data, Proc. VLDB (2002), 598–609.

[47] H. Jiang, H. Ho, L. Popa, and W.S. Han, Mapping-Driven XML Transformation,

Proc. 16th International World Wide Web Conference (2007).

[48] C. Yu and L. Popa, Constraint-Based XML Query Rewriting for Data Integration,

Proc. SIGMOD (2004), 371–382.

[49] L. Chiticariu, P.G. Kolaitis, and L. Popa, Semi-Automatic Generation and

Exploration of Schema Integration Alternatives, Manuscript under preparation

(2007).

[50] H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Rajaraman, Y. Sagiv, J.D.

Ullman, V. Vassalos, and J. Widom, The TSIMMIS Approach to Mediation: Data

Models and Languages, Journal of Intelligent Information Systems, 8(2) (1997),

117–132.

[51] O.M. Duschka and M.R. Genesereth, Answering recursive queries using views,

ODS (1997), 109–116.

[52] I. Manolescu, D. Florescu, and D. Kossmann, Answering XML Queries on

Heterogeneous Data Sources, VLDB (2001), 241–250.

[53] A.Y. Halevy, Answering Queries Using Views: A Survey, VLDB (2001) 270–294.

[54] A.Y. Halevy, Z.G. Ives, J. Madhavan, P. Mork, D. Suciu, and I. Tatarinov, The

Piazza Peer Data Management System, IEEE Trans. Knowl. Data Eng., 16(7)

(2004), 787–798.

[55] T. Barrett, D. Troup, S. Wilhite, P. Ledoux, D. Rudnev, C. Evangelista, I. Kim, A.

Soboleva, M. Tomashevsky, and R. Edgar, NCBI GEO: mining tens of millions of

expression profiles database and tools update, Nucleic Acids Research, 35 (2006),

D760–D765.

[56] L. Stein, Creating a Bioinformatics Nation, Nature, 417(6885) (2002), 119–120.

[57] http://www.ncbi.nlm.nih.gov/.

[58] http://www.hapmap.org/.

[59] http://www.biobase-international.com/pages/.

[60] https://www.pharmgkb.org/.

[61] W. Kent, C. Sugnet, T. Furey, K. Roskin, T. Pringle, A. Zahler, and D. Haussler,

The Human Genome Browser at UCSC, Genome Research, 12(6) (2002), 996–

1006.

[62] A. Su, et al., Large-scale analysis of the human and mouse transcriptomes,

National Academy of Sciences of the United States of America (2002).

[63] V. Matys, et al., TRANSFAC: transcriptional regulation, from patterns to profiles,

Nucleic Acids Research, 31 (2003), 374–378.

[64] M. Friedman, A. Levy, and T. Millstein, Navigational plans for data integration,

Proc. 16
th

 National Conference on Artificial Intelligence (AAAI), 1999.

[65] R.L. Elsberry, T.D.B. Lambert, and M. Boothe, Accuracy of atlantic and eastern

north pacific tropical cyclone intensity forecast guidance. Submitted to Weather

and Forecasting (2006).

[66] F.D. Marks, and L.K. Shay, Landfalling tropical cyclones: Forecast problems and

associated research opportunities, Bull. Amer. Met. Soc., 79 (1998), 305–323.

[67] http://www.wrf-model.org/index.php.

[68] http://www.openmp.org/drupal/.

[69] H.E. Willoughby. Improvements in observations, models and forecasts.

HURRICANE! Coping with Disaster, R.H. Simpson, Ed., AGU (2002), 205-216.

[70] P. Singh, N. Zhao, S.-C. Chen, and K. Zhang, Tree Animation for a 3D Interactive

Visualization System for Hurricane Impacts, Proc. IEEE Intl. Conf. on Multimedia

(2005), 598-601.

[71] S.-C. Chen, S. Hamid, S. Gulati, N. Zhao, M. Chen, C. Zhang, and P. Gupta, A

Reliable Web-based System for Hurricane Analysis and Simulation, Proc. IEEE

International Conference on Systems, Man and Cybernetics (2004), 5215–5220.

[72] S.-C. Chen, M.-L. Shyu, C. Zhang, W.Z. Tang, and K. Zhang, Damage Pattern

Mining in Hurricane Image Databases, Proc. IEEE Intl. Conf. on Info. Reuse and

Int. (2003), 227–234.

[73] O. Ezenwoye and S.M. Sadjadi, Composing aggregate web services in BPEL,

Proc. 44th ACM Southeast Conference (ACMSE), March 2006, Melbourne, FL.

[74] O. Ezenwoye and S.M. Sadjadi, TRAP/BPEL: A framework for dynamic

adaptation of composite services, Proc. International Conference on Web

Information Systems and Technologies (WEBIST), March 2007, Barcelona, Spain.

[75] O. Ezenwoye and S.M. Sadjadi. RobustBPEL2: Transparent autonomization in

business processes through dynamic proxies, Proc. 8th International Symposium

on Autonomous Decentralized Systems (ISADS), March 2007, Sedona, AZ.

[76] O. Ezenwoye and S.M. Sadjadi, Enabling robustness in existing BPEL processes.,

Proc. 8th International Conference on Enterprise Information Systems, May 2006,

Paphos, Cyprus.

[77] S.M. Sadjadi, J. Martinez, T. Soldo, L. Atencio, R.M. Badia, and J. Ejarque,

Improving separation of concerns in the development of scientific applications.

Technical Report FIU-SCIS-2007-02-01, School of Computing and Information

Sciences, Florida International University, Miami, FL, February 2007.

