
RobustBPEL2: Transparent Autonomization in Business Processes through
Dynamic Proxies

Onyeka Ezenwoye and S. Masoud Sadjadi
Autonomic Computing Research Laboratory

School of Computing and Information Sciences
Florida International University

11200 SW 8th Street
Miami, FL 33199

{oezen001,sadjadi}@cs.fiu.edu

Abstract

Web services paradigm is allowing applications to in-
teract with one another over the Internet. BPEL facilitates
this interaction by providing a platform through which Web
services can be integrated. However, the autonomous and
distributed nature of the integrated services presents unique
challenges to the reliability of composed services. The fo-
cus of our ongoing research is to transparently introduce
autonomic behavior to BPEL processes in order to make
them more resilient to the failure of partner services. In this
work, we present an approach where BPEL processes are
adapted by redirecting their interactions with partner ser-
vices to a dynamic proxy. We describe the generative adap-
tation process and the architecture of the adaptive BPEL
processes and their corresponding proxies. Finally, we use
case studies to demonstrate how generated dynamic prox-
ies are used to support self-healing and self-optimization in
instrumented BPEL processes.

1 Introduction

Web services are facilitating the uptake of Service-
Oriented Architecture (SOA) [3], allowing business orga-
nizations to electronically interact with one another over
the Internet. In this architecture, reusable, self-contained
and remotely accessible application components, which are
exposed as Web services, can be integrated to create more
course-grained aggregate services (e.g., a flight reservation
service). For this, high-level workflow languages such as
BPEL [7] can be used to define aggregate services (busi-
ness processes) that constitute a number of related services
(business functions). Unfortunately, these types of business
processes are known to be very fragile, about 80 percent

of the total amount of time used in developing business
processes is spent in exception management.

The integration of multiple services, which might have
been developed and hosted on heterogeneous environments,
introduces new levels of complexity in management. Also,
services interacting with aggregate services are often ge-
ographically scattered and communicate via the Internet.
Given the unreliability of such communication channels,
the unbounded communication delays, and the autonomy of
the interacting services, it is difficult for developers of busi-
ness processes to anticipate and account for all the dynam-
ics of such interactions. In addition, the high-availability
nature of some business processes requires them to work in
the face of failure of their constituent parts [2]. It is then
important to make aggregate services more resilient to the
failure of their partner services.

Autonomic computing [10] promises to solve the man-
agement problem by embedding the management of com-
plex systems inside the systems themselves, freeing the
users from potentially overwhelming details. A Web
service is said to be autonomic if it encapsulates some
autonomic attributes [9]. Autonomic attributes include
self-configuration, self-optimization, self-healing, and self-
protection. The focus of this work is to encapsulate self-
healing and self-optimizing behavior in business processes
in order to make them more resilient to failure.

We recently introduced RobustBPEL [8], a framework
that provides a systematic approach to making existing ag-
gregate Web services more tolerant to the failure. Using
RobustBPEL, we demonstrated how an aggregate Web ser-
vice, defined as a BPEL process, can be instrumented au-
tomatically to monitor its partner Web services at runtime.
To achieve this, events such as faults and timeouts are mon-
itored from within the adapted process. We showed how
our adapted process is augmented with a static proxy that

Eighth International Symposium on Autonomous Decentralized Systems (ISADS'07)
0-7695-2804-X/07 $20.00 © 2007

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on September 1, 2009 at 17:24 from IEEE Xplore. Restrictions apply.

replaces failed services with predefined alternatives.
While in the previous work the proxy is statically bound

to a limited number of alternative Web services, in this
paper we extend the RobustBPEL framework to gener-
ate a proxy that dynamically discovers and binds to exist-
ing services. Because more appropriate services may be-
come available after the composition and deployment of the
BPEL process and its corresponding static proxy, it makes
sense that upon failure or delay of any of the partner ser-
vices of the BPEL process, an equivalent service can be
discovered dynamically (at run-time) to serve as a substi-
tute. In doing this, we improve the fault tolerance and
performance of BPEL processes by transparently adapting
their behavior. By transparent we mean that the adaptation
preserves the original behavior of the business process and
does not tangle the code that provides autonomic behavior
with that of the business process [11]. This transparency
is achieved by using a dynamic proxy that encapsulates the
autonomic behavior (adaptive code).

The rest of this paper is is structured as follows. Sec-
tion 2 provides a background on some related technologies
and gives a brief introduction to the RobustBPEL frame-
work. Section 3 describes the dynamic proxy and how it
is generated. In section 4 we use two examples as case
studies to demonstrate the feasibility and usefulness of our
approach. Section 5 contains some related work. Finally,
some concluding remarks and a discussion on further re-
search directions are provided in Section 6.

2 Background

In this section, we provide some background information
for Web services, BPEL, Transparent Shaping and Robust-
BPEL. You can safely skip this section if you are familiar
with all the above technologies.

2.1 Web Services & BPEL

A Web service is a software component that can be ac-
cessed over the Internet. The goal of the Web service ar-
chitecture [3] is to simplify application-to-application inte-
gration. The technologies in Web services are specifically
designed to address the problems faced by traditional mid-
dleware technologies in the flexible integration of heteroge-
neous applications over the Internet. Its lightweight model
has neither the object model nor programming language re-
strictions imposed by other traditional middleware systems
(e.g., DCOM and CORBA). The interface to the functional-
ity provided by a Web service is described in Web services
Description Language (WSDL). To make a call on these
functions, a messaging protocol such as SOAP can be used.

Applications that provide specific business functions
(e.g., price quotation) are increasingly being exposed as

Web services. These services then become reusable com-
ponents that can be the building blocks for more complex
aggregate services. Currently search engines like Google,
Yahoo! and MSN are being exposed as Web services and
provide functions that range from simple queries, to genera-
tion of maps and driving directions. A business process that
can be derived from the aggregation of such services would
be one that, for instance, generates driving directions. As
illustrated by Figure 1, the process could work by integrat-
ing two service: (1) a service that retrieves the addresses of
nearby businesses; and (2) a service that gets the driving di-
rections to a given address. This business process can then
be used from the on-board computer of a car to generate
driving directions to the nearest gas station, hotel, etc.

Figure 1. A Business Process that integrates
remote components to create a new applica-
tion that gets driving directions.

To facilitate the creation of business processes, a high-
level workflow language, such as Business Process Execu-
tion Language (BPEL) [7], is often used. BPEL provides
many constructs for the management of a process includ-
ing loops, conditional branching, fault handling and event
handling (such as timeout). To make a BPEL process fault
tolerant, BPEL fault handling activities (e.g., catch and
catchAll constructs) can be used. We aim to separate the
task of making a BPEL process more robust from the task
of composing the business logic of the process.

2.2 Transparent Shaping & RobustBPEL

Transparent Shaping is a new programming model that
provides dynamic adaptation in existing applications. The
goal is to respond to the dynamic changes in their non-
functional requirements (e.g., changes request by end users)
and/or environments (e.g., changes in the executing envi-
ronment) [11]. In transparent shaping, an application is
augmented with hooks that intercept and redirect interaction
to adaptive code. The adaptation is transparent because it
preserves the original functional behavior and does not tan-
gle the code that provides the new behavior (adaptive code)
with the application code. By adapting existing applica-
tions, transparent shaping aims to achieve a separation of
concerns [5]. That is, enabling the separate development

Eighth International Symposium on Autonomous Decentralized Systems (ISADS'07)
0-7695-2804-X/07 $20.00 © 2007

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on September 1, 2009 at 17:24 from IEEE Xplore. Restrictions apply.

of the functional requirements (the business logic) from the
non-functional requirements of an application.

(a) Sequence of interactions in a typical aggregate Web service.

(b) Sequence of interactions in the adapt-ready aggregate Web service.

Figure 2. Architectural diagrams showing the
difference between the sequence of interac-
tions among the components in a typical ag-
gregate Web service and its generated adapt-
ready version.

RobustBPEL [8] is a framework that we developed pre-
viously as part of the transparent shaping programming
model. Using RobustBPEL, we can automatically gener-
ate an adapt-ready version of an existing BPEL process.
We note that in our previous study, we only focused
on adding self-healing (fault-tolerant) behavior to existing
BPEL processes.

Figure 2 shows the differences between the sequence of
interactions among the components in a typical aggregate
Web service and its corresponding generated adapt-ready
version. In a typical aggregate Web service (Figure 2(a)),
first a request is sent by the client program, then the ag-
gregate Web service interacts with its partner Web services
(i.e., WS1 to WSn) and responds to the client. If one of the
partner services fails, then the whole process is subject to
failure. To avoid such situations, adapt-ready process mon-
itors the behavior of it partners and tries to tolerate their
failure.

The developer can select a set of Web service partners to
be monitored. For example, in Figure 2(b) WSi and WSj

have been selected for monitoring. The adapt-ready process
monitors these two partner Web services and in the presence
of faults it will forward the corresponding request to the
static proxy. The static proxy is generated specifically for

this adapt-ready process and provides the same port types
as those of the monitored Web services (i.e., pti and ptj).
The static proxy in its turn forwards the request to an equiv-
alent Web service, which is “hardwired” into the code of
this proxy at the time it was generated. This means that
the number of choices for equivalent services are limited to
those known at the time the static proxy was generated.

In this work, we make the following assumptions: (1)
two services are equivalent, if they implement the same
port type; (2) Web service partners are stateless and idem-
potent. A port type is similar to an interface in the Java
programming language. It is possible for two applications
to be functionally equivalent without necessarily having the
exact same interface. When this occurs, a wrapper inter-
face/service can be used to harmonize the differences in
their interfaces. We show as example of this scenario in
our case studies.

2.3 Why Dynamic Proxies?

Given the rapid uptake of the service oriented program-
ming model, we expect the emergence of numerous services
that are functionally equivalent and thus can be substituted.
For instance, in our driving-direction example (Figure 1),
if the default map generation service provided by Google
fails, it should be possible to substitute this service with that
of MSN, Yahoo! or Mapquest.

In this paper, we extend RobustBPEL in two directions:
(1) by replacing static proxies with dynamic proxies that
can find equivalent services at run time (described in Sec-
tion 3); and (2) by adding self-optimizing behavior in exist-
ing BPEL processes, which is demonstrated using the case
studies in Section 4.

3 Dynamic Proxies

In our approach, a dynamic proxy is a Web service that
corresponds to a specific adapt-ready BPEL process and its
job is to discover and bind equivalent Web services. In
this section, we first provide an architecture that shows the
high-level functionality of a dynamic proxy and its inter-
actions with other services in the architecture. Next, we
explain how the adapt-ready BPEL process is instrumented
and how it interacts with the dynamic proxy. Finally, we
show a high-level view of the RobustBPEL2 Generator.

3.1 High-Level Architecture

Figure 3 illustrates the architectural diagram of an ap-
plication using an adapt-ready BPEL process augmented
with its corresponding dynamic proxy. This figures shows
the steps of interactions among the components of a typical

Eighth International Symposium on Autonomous Decentralized Systems (ISADS'07)
0-7695-2804-X/07 $20.00 © 2007

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on September 1, 2009 at 17:24 from IEEE Xplore. Restrictions apply.

adapt-ready BPEL process. Similar to a static proxy, the in-
terface for the generated dynamic proxy is exactly the same
as that of the monitored Web service. Thus, the operations
and input/output variables of the proxy are the same as that
of the monitored invocation. When more than one service
is monitored within a BPEL process, the interface for the
specific proxy is an aggregation of all the interfaces of the
monitored Web services. For example, the dynamic proxy
in Figure 3 has pti and ptj , which are the port types of the
two monitored Web services (namely, WSi and WSj). At
runtime, if a monitored service fails (or an invocation time-
out occurs), the input message for that service is used as
input message for the proxy. The proxy invokes the equiva-
lent service with that same input message. A reply from the
substitute service is sent back to the adapted BPEL process
via the proxy.

Figure 3. Architectural diagram showing the
sequence of interactions among the com-
ponents in an adapt-ready BPEL process
augmented with its corresponding dynamic
proxy.

Although the adapt-ready BPEL process remains a func-
tional Web service and the proxy is an autonomic Web ser-
vice (encapsulates autonomic attributes), functional Web
services can behave in an autonomic manner by using au-
tonomic Web services [9]. By replacing failed and de-
layed services with substitutes, the proxy service provides
self-healing and self-optimization behavior to the BPEL
process, thereby making the BPEL process autonomic.

3.2 Incorporating Generic Hooks inside
the Adapt-Ready BPEL Processes

Following the Transparent Shaping programming
model [11], we first need to incorporate some generic
hooks at sensitive joinpoints in the original BPEL process.
These joinpoints are certain points in the execution path of

the program at which adaptive code can be introduced at
run time. Key to identifying joinpoints is knowing where
in the BPEL process sensing and actuating are required
and inserting appropriate code (hooks) to do so. Because
a BPEL process is an aggregation of services, the most
appropriate place to insert interception hooks is at the
interaction joinpoints (i.e., the invoke instructions) [11].
The monitoring code we insert is in the form of standard
BPEL constructs to ensure the portability of the modified
process.

We adapt the BPEL process by identifying points in the
process at which external Web services are invoked and then
wrapping each of those invocations with a BPEL scope that
contains the desired fault and event handlers. A fault can be
a programmatic error generated by a Web service partner of
the BPEL process or unexpected errors from the Web ser-
vice infrastructure. The following snippet BPEL code (Fig-
ure 4) is an example of a service invocation in BPEL. Lines
3 and 4 identify the interface (portType) of the partner and
what method (operation) the invocation wishes to call.

1. <invoke name="InvokeWSi"
2. partnerLink="..."
3. portType="pti"
4. operation="operation1"
5. inputVariable="..."
6. outputVariable="...">
7. </invoke>

Figure 4. An unmonitored invocation.

The invocation showed in Figure 4 is identified and
wrapped with monitoring code. The code in Figure 5 shows
what the invocation looks like after the monitoring code
is wrapped around it. The unmonitored invocation is first
wrapped in a scope container which contains fault and
event handlers (lines 5-14 and 15-19 respectively in Fig-
ure 5). A catchAll fault handler is added (lines 6-13) to
the faultHandlers to handle any faults generated as a re-
sult of the invocation of the partner Web service. The fault-
handling activity is defined in lines 7-12, which basically
forwards the request to the dynamic proxy. When a fault
is generated by the partner service invocation, this fault is
caught by the catchAll and the proxy service is invoked
to substitute for the unavailable or failed service.

For the event handler, an onAlarm event handler (lines
16-18) is used to specify a timeout. An onAlarm clause
is used to specify a timeout “event” in BPEL. A timeout
can be used, for instance, to limit the amount of time that a
process can wait for a reply from an invoked Web service.
A throw activity is inserted inside the onAlarm event han-
dler (line 17) as the action that is carried out upon the time-
out. If the partner service fails to reply within the time stip-
ulated in the timeout event, the throw activity generates
a standard BPEL forcedTermination fault. This fault

Eighth International Symposium on Autonomous Decentralized Systems (ISADS'07)
0-7695-2804-X/07 $20.00 © 2007

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on September 1, 2009 at 17:24 from IEEE Xplore. Restrictions apply.

1. <scope>
2. <!-- linking instructions -->
5. <faultHandlers>
6. <catchAll>
7. <invoke name="InvokeProxy"
8. partnerLink="..."
9. portType="pti"
10. operation="operation1"
11. inputVariable="..."
12. outputVariable="..."/>
13. </catchAll>
14. </faultHandlers>
15. <eventHandlers>
16. <onAlarm for="’PT1S’">
17. <throw faultName="forcedTermination"/>
18. </onAlarm>
19. </eventHandlers>
20. <invoke name="InvokeWSi"
21. partnerLink="..."
22. portType="pti"
23. operation="operation1"
24. inputVariable="..."
25. outputVariable="..."/>
26.</scope>

Figure 5. A monitored invocation.

forces the monitored invocation to terminate. The gener-
ated forcedTermination fault is then caught by the fault
handler and the proxy service is invoked (lines 7-12) as a
substitute.

3.3 Interaction of Dynamic Proxy with
the Registry Service

When the dynamic proxy is invoked upon failure of a
monitored service, the proxy makes queries against the reg-
istry service to find equivalent services. At runtime, any
service provider can publish new equivalent services with
the registry, which can potentially substitute a failed service
in the future.

The registry technology used in the RobustBPEL2
framework is the Universal Description, Discovery and In-
tegration protocol (UDDI), which is a specification for the
publication and discovery of Web services. UDDI specifies
a set of data structures, messages and API for creating and
maintaining information about Web services in distributed
registries. The registry allows for three categories of infor-
mation to be published: (1) white pages that contain contact
information such as the name, address and telephone num-
ber of a given business; (2) yellow pages that contain infor-
mation that categorizes businesses based on some existing
taxonomies; and (3) green pages that contain technical in-
formation about the Web services provided by the published
businesses (this can include the URL of the service and its
WSDL).

In order to adequately categorize services in a UDDI
registry, certain conventions have to be adhered to. The
method of classification we use focuses on registering ser-
vices based on the information in their WSDL descrip-

tions, in other words, mapping WSDL to UDDI. Informa-
tion about the WSDL service and port are stored under
components of the UDDI data model. Data registered from
the WSDL includes the URL for each service port. The
dynamic proxy makes queries to the UDDI registry via the
API provided by JUDDI, which is an open source Java im-
plementation of the UDDI specification. The query term
is fixed since with the port types of the monitored services
is known during adaptation. At this stage of our work, no
selection criteria is used when multiple services are discov-
ered, although some selection policies can be easily incor-
porated into the proxy to introduce some added quality-of-
service.

3.4 The Generation Process in Robust-
BPEL2

As part of RobustBPEL2, we developed the
RobustBPEL2 Generator that automatically gener-
ates the adapt-ready version of a given BPEL process and
its associated dynamic proxy. The input to this generator
is a configuration file. Figure 6 shows the contents of a
configuration file that has all the required information:
lines 2-10 specify the input needed for the generation of the
adapt-ready BPEL process, while lines 11-36 specify that
for the generation of the proxy. As illustrated in Figure 7,
first, the Parser separates the information needed for
generating adapt-ready BPEL process and for generating
the dynamic proxy and sends them to the corresponding
compilers. Next, each of these two generators uses the in-
formation provided by the parser and retrieves the required
files from the local disk and starts its compilation process.

The Adapt-Ready BPEL Compiler retrieves the orig-
inal BPEL process using the location of the original BPEL
file, which is stated in line 5. It then uses the <adapt> el-
ement (lines 7-9) to find out the names of the invocations
to be monitored. An <invoke> element (line 8) with a
“*” as the value of the name attribute declares that all in-
vocations should be monitored. With all this information,
the Adapt-Ready BPEL Generator is ready to starts its
compilation process.

The Dynamic Proxy Compiler gets the location of
the proxy template is on line 12 and the necessary informa-
tion about every monitored service type (classified by port-
Type) from the <substitutes> tags (lines 19-34). The
information needed to generate the proxy code to find and
bind to services that implement the portType pti is listed
within the <service> elements of lines 20-30 and the
operations of every monitored invocation of the portType
are listed within the operations element. Next, the The
Dynamic Proxy Generator finds out about the location
of the binding stubs for services of the portType are in line
29 (this stub package is associated with the proxy as a Java

Eighth International Symposium on Autonomous Decentralized Systems (ISADS'07)
0-7695-2804-X/07 $20.00 © 2007

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on September 1, 2009 at 17:24 from IEEE Xplore. Restrictions apply.

1. <generator>
2. <bpel>
3. <processName name="processName"/>
4. <targetNamespace name="http://..."/>
5. <inputFile name="originalBPEL.bpel"/>
6. <outputFile name="adaptReadyBPEL.bpel"/>
7. <adapt>
8. <invoke name="*" timeout="’PT1S’"/>
9. </adapt>
10. </bpel>
11. <proxy type="dynamic">
12. <templateFile name="DynamicProxy-Template.java"/>
13. <outputFile name="DynamicProxy.java"/>
14. <wsdlFiles>
15. <wsdl name="wsins" url="WSi.wsdl"/>
16. <wsdl name="wsjns" url="WSj.wsdl"/>
18. </wsdlFiles>
19. <substitutes>
20. <service name="WSiService"
21. portType="pti"
22. wsdl="lns:wsins">
23. <operations>
24. <operation name="operation1"
25. port="Port"/>
26. </operations>
27. <query businessKey="BK1"
28. serviceName="WSiService"/>
29. <stub name="stub.wsi"/>
30. </service>
31. <service name="WSjService"
32. ...
33. </service>
34. </substitutes>
35. <package name="processName.proxy.dynamic"/>
36. </proxy>
37.</generator>

Figure 6. Configuration file for the generator

import statement). It then gets the information needed to
query the registry for services that implement the portType
from the <query> tag (lines 27-28). Finally, it gets the the
package for the proxy class from Line 35 (the broker bind-
ing stubs are part of this package) and compiles the dynamic
proxy.

4 Case Studies

In this section, we use two case studies to demonstrate
the self-healing and self-optimization behavior of the gener-
ated BPEL processes and their respective dynamic proxies.
For each case study, we start by describing the application,
then we present the configuration of the experiment envi-
ronment. Finally, we show the results of the experiment.

4.1 The Google-Amazon Process

The Google-Amazon business process integrates the
Google Web service for spelling suggestions with the Ama-
zon E-Commerce Web service for querying its store catalog.
The business process takes as input a phrase (keywords)
which is sent to the Google spell-checker for corrections. If
any word in the input phrase is misspelled, the Google spell-
checker sends back as reply the phrase with the misspelled

Figure 7. Inputs and outputs of the dynamic
proxy generator.

words corrected (the phrase is unchanged if the spellings are
correct). The reply from the Google service is used to create
keyword search of the Amazon bookstore via the Amazon
Web service.

From this original Google-Amazon process, we used the
generator to generate the adapt-ready process. For this
adaptation we have selected to have the generator only adapt
the invocation of the Google spell-checker. We then found
another publicly available Spell-checker Web service from
Cydne to act a substitute for the Google service. There is a
slight difference between the interfaces of the Google and
Cydne spell-checkers. We used a wrapper Web service for
the Cydne service in order to harmonize the interfaces.

4.1.1 The Experiment

As illustrated in Figure 8, client requests are made to the
BPEL process (labeled 1), which results in the invocations
to the Google Web services (labeled 2). To simulate the
unavailability of the Google service, we changed the URL
of the service from within the Google-Amazon process, to
point to a non-existent address. Thus upon the imminent
failure of the invocation for the Google service, the adapt-
ready BPEL process invokes the dynamic proxy (labeled
3). The dynamic proxy first queries the JUDDI registry for
substitute services (labeled 4). As a result of the query, it
finds the wrapper Web service for the Cydne spell-checker.
The proxy then binds to the wrapper service, which in turn
binds to the Cydne spell-checker with the input keywords
(labeled 5 and 6, respectively). The result of this invoca-
tion is sent back to the adapt-ready Google-Amazon process
and then used as input to query the Amazon store service.
For example, we used “Computer Algorthms” as input key-
word to the process, Google (or the wrapper) corrected it
to “Computer Algorithms”, and Amazon found this book:
“Bruce Schneier, Applied Cryptography: Protocols, Algo-
rithms, and Source Code in C, Second Edition”.

Eighth International Symposium on Autonomous Decentralized Systems (ISADS'07)
0-7695-2804-X/07 $20.00 © 2007

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on September 1, 2009 at 17:24 from IEEE Xplore. Restrictions apply.

Figure 8. The sequence of interactions
among the components in the Google-
Amazon case study.

4.2 The Loan Approval Process

The Loan-Approval process is a commonly used sam-
ple BPEL process. The Loan-Approval BPEL process is
an aggregate Web service composed of two other Web
services: a low-risk assessor service (LoanAssessor) and
a high-risk assessor service (LoanApprover). The Loan-
Approval process implements a business process that uses
its two partner services to decide whether a given individual
qualifies for a given loan amount. Both the business process
and the risk assessment services are deployed locally.

4.2.1 The Experiment

As illustrated in Figure 9, client requests are made to the
BPEL process (labeled 1), which results in the invocations
to the partner Web services (labeled 2). Upon failure of
these partner services or an invocation timeout, the adapt-
ready BPEL process invokes the dynamic proxy (labeled
3). The dynamic proxy first queries the JUDDI registry for
substitute services (labeled 4). The result of the query is
used to bind the substitute service and forward the requests
to this service (labeled 5).

Figure 9. The sequence of interactions
among the components in the Loan Approval
case study.

4.2.2 Self-Healing and Self-Optimization.

In order to demonstrate the autonomic behavior of the gen-
erated BPEL process and its corresponding dynamic proxy,
we have programmatically altered the Loan Approver Web
service to generate faults and a delay of two seconds after
a certain number of successive invocations. The successive
invocations to the Loan Approver Web service are the re-
sults of requests to the BPEL process made by the client
application. These requests are mapped on the X axis of the
chart shown in Figure 10. As the plot for the original BPEL
shows, for the successive invocations 11 to 20, the Loan Ap-
prover Web service generates a fault for those invocations,
and for the invocations 31 to 40, the Loan Approver Web
service is made to delay for 2 seconds before sending back
a reply to the BPEL process. We set the timeout duration
for the Loan Approval BPEL process to 1 second.

Figure 10. This chart shows the comparison
between the request completion time for the
original and the robust BPEL processes.

Figure 10 plots the request completion time for the two
sets of experiments. According to the experiment setup,
the first 10 request are completed normally and the average
completion time for both the original and the robust sets of
experiments are almost the same (about 47 milliseconds).
This result indicates that in normal operation, the overhead
added by the robust BPEL process is negligible.

Right after the completion of the first 10 requests, the
Loan Approver Web service starts throwing exceptions for
the next 10 requests. Although Figure 10 shows that the
completion time for the original BPEL stays as before, all
the requests are returned with exception. The robust BPEL
process, however, catches all such exceptions. The plot for
robust BPEL in Figure 10 shows an increase in the comple-
tion time, which is about 127 milliseconds.

For the requests 31 to 40, the Loan Approver Web ser-
vice responds to the requests after 2 seconds of delay. As

Eighth International Symposium on Autonomous Decentralized Systems (ISADS'07)
0-7695-2804-X/07 $20.00 © 2007

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on September 1, 2009 at 17:24 from IEEE Xplore. Restrictions apply.

the time out in the robust BPEL process is set to 1 second,
the robust BPEL process withdraws its invocations to the
original Web services and uses the substitute Web service.
In this way, the robust BPEL process completes the request
in almost half the time as that of the original BPEL process.

5 Related Work

Baresi’s approach [1] to monitoring involves the use of
annotations that are stated as comments in the source BPEL
program and then translated to generate a target monitored
BPEL program. This approach requires modifying the orig-
inal BPEL processes manually and the annotated code is
scattered all over the original code. The manual modifica-
tion of BPEL code is not only difficult and error prone, but
also hinders maintainability.

Charfi et al [4] use an aspect-based container to pro-
vide middleware support for BPEL. The process container
is the runtime environment for the BPEL process. All in-
teractions go through the container which plugs in support
for non-functional requirements. Aspects specify what and
how SOAP messages can be modified to add, for instance,
security information to the header. This framework is dif-
ferent form our because it requires a purpose built BPEL
engine. Also, the adaptation is done at a much lower level
(the messaging layer).

Erradi et al. [6] provide reliability through a policy
driven middleware called Web Services Message Bus (ws-
Bus), which is used to transparently enact recovery actions.
The wsBus intercepts the execution of composite services
and transparently provides recovery services based on an
extensible set of recovery policies. The wsBus also en-
forces SLA agreements. This approach is modular and sep-
arates the business logic of the process from the QoS re-
quirements, however, adaptation is done at a much lower
messaging layer.

The works mentioned above, although are able to pro-
vide some means of monitoring for singular or aggregate
Web services, they do not dynamically replace the delin-
quent services once failure or extensive delay has been de-
tected.

6 Conclusion and Future Work

We presented an approach to transparently adapting
BPEL processes to tolerate run-time and unexpected faults
and to improve the performance of overly loaded Web ser-
vices. We have introduced the dynamic proxy and demon-
strated how it is used to encapsulate autonomic behav-
ior. With the use of case studies, we demonstrated the
self-healing and self-optimization behavior of the dynamic
proxy.

In our future work, we plan to address the following is-
sues. First, substituting service implementations at runtime
may lead to failures on the client-side. Thus it is important
to be able to detect and resolve potential integration prob-
lems from discovered equivalent services. Also, discovered
services may fail so we aim to augment the proxy with a
mechanism to deal with such problems. Finally, rather than
the current specific proxies, a generic proxy that has a stan-
dard interface and works for all monitored services would
make life much simpler for developers.

References

[1] L. Baresi, C. Ghezzi, and S. Guinea. Smart monitors for
composed services. In ICSOC ’04: Proceedings of the
2nd international conference on Service oriented comput-
ing, pages 193–202. ACM Press, 2004.

[2] K. P. Birman, R. van Renesse, and W. Vogels. Adding high
availability and autonomic behavior to web services. In Pro-
ceedings of the 26th International Conference on Software
Engineering (ICSE 2004), pages 17–26, Edinburgh, United
Kingdom, May 2004. IEEE Computer Society.

[3] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Cham-
pion, C. Ferris, and D. Orchard. Web Services Architecture.
W3C, 2004.

[4] A. Charfi and M. Mezini. An aspect based process container
for BPEL. In Proceedings of The First Workshop on Aspect-
Oriented Middleware Developement, Genoble, France, No-
vember 2005.

[5] E. W. Dijkstra. Structured programming. Software Engi-
neering Techniques, edited by Buxton and Randell (avail-
able from NATO, Brussels), pages 84–87, 1970.

[6] A. Erradi and P. Maheshwari. wsBus: QoS-aware middle-
ware for relaible web services interaction. In IEEE Inter-
national Conference on e-Technology, e-Commerce and e-
Service, Hong Kong, China, 2005.

[7] O. Ezenwoye and S. M. Sadjadi. Composing aggregate web
services in BPEL. In Proceedings of The 44th ACM South-
east Conference, Melbourne, Florida, March 2006.

[8] O. Ezenwoye and S. M. Sadjadi. Enabling robustness in
existing BPEL processes. In Proceedings of the 8th In-
ternational Conference on Enterprise Information Systems
(ICEIS-06), May 2006.

[9] S. Gurguis and A. Zeid. Towards autonomic web services:
Achieving self-healing using web services. In Proceedings
of DEAS’05, Missouri, USA, May 2005.

[10] J. O. Kephart and D. M. Chess. The vision of autonomic
computing. IEEE Computer, 36(1):41–50, 2003.

[11] S. Masoud Sadjadi and P. K. McKinley. Using transpar-
ent shaping and web services to support self-management
of composite systems. In Proceedings of the International
Conference on Autonomic Computing (ICAC’05), Seattle,
Washington, June 2005.

Eighth International Symposium on Autonomous Decentralized Systems (ISADS'07)
0-7695-2804-X/07 $20.00 © 2007

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on September 1, 2009 at 17:24 from IEEE Xplore. Restrictions apply.

