
A Language-based Approach to Addressing Reliability in Composite Web
Services

Onyeka Ezenwoye
Electrical Engineering and

Computer Science Department
South Dakota State University

Brookings, SD 57007
Email: onyeka.ezenwoye@sdstate.edu

S. Masoud Sadjadi
School of Computing and

Information Sciences
Florida International University

11200 SW 8th Street, Miami, FL 33199
Email: sadjadi@cs.fiu.edu

Abstract

With Web services, distributed applications can be en-
capsulated as self-contained, discoverable software com-
ponents that can be integrated to create other applications.
BPEL allows for the composition of existing Web services
to create new higher-function Web services. We identified
that the techniques currently applied at development time
are not sufficient for ensuring the reliability of composite
Web services In this paper, we present a language-based
approach totransparentlyadapting BPEL processes to im-
prove reliability. This approach addresses reliability atthe
Business process layer (i.e the language layer) using a code
generator, which weaves fault-tolerant code to the original
code and an external proxy. The generated code uses stan-
dard BPEL constructs, and therefore, does not require any
changes to the BPEL engine.

Keywords: Web service composition, Reliability, Adapt-
ability, Business Process.

1 Introduction

Web services are gaining acceptance as the predominant
standards-based approach to building open distributed sys-
tems. With Web services, distributed applications can be
encapsulated as self-contained, discoverable and Internet-
accessible software components that can be integrated to
create other applications. The fundamental aspects of Web
services can be summarized as follows: (1) strict separation
of service interface description, implementation, and bind-
ing; (2) declarative policies and Service Level Agreements
(SLAs) to govern service interactions; and (3) loosely cou-
pled, standards-based and message-centric interactions be-
tween autonomous and replaceable service components [1].

To facilitate flexibility and interoperability, Web services
are described using a standard, machine-readable, XML-
based language calledWeb Service Description Language.
This service description provides the details necessary toin-
teract with the service, including message formats that de-
tail the operations, transport protocols, and location. Fi-
nally, interaction with Web services is achieved through
SOAP messaging.

The family of specifications that make up the Web ser-
vice standards includes a specification for service com-
position known asBusiness Process Execution Language
(BPEL). BPEL allows for the composition of existing Web
services to create new higher-function Web services [2].
BPEL is used to define workflows that represent composite
services. The composite services, also known asbusiness
processes, contain activities that coordinate the interaction
between the partner services in the composition. Figure 1(a)
illustrates a business process that is a composition of two
service: (1) a service that retrieves the addresses of nearby
businesses; and (2) a service that gets the driving directions
to a given address. Figure 1(b) depicts a basic set of work-
flow patterns that are supported by BPEL. In the sequence
pattern (Figure 1(b)(i)), an activity in a process is enabled
after the completion of another activity in the same process.
Parallelism (Figure 1(b)(ii)), allows activities to be executed
simultaneously. Loops (Figure 1(b)(iii)), allow for one or
more activities to be executed repeatedly. In the choice pat-
tern (Figure 1(b)(iv)), a number of branches are chosen and
executed as parallel threads. Based on these basic patterns,
more sophisticated constructs can be built [3].

As the use of Web services continues to grow, so has
the need to deliver reliable service compositions with pre-
cise Quality of Service (QoS) attributes covering functional
correctness, performance and dependability [1]. This is be-
cause current Web services standards provide limited con-
structs for specifying exceptional behavior and recovery



Driving Direction
Service

Business Location
Service

Map Generation
Service

Client
Program

Composed
Web Service

Partner
Web Services

1

2

Service interface Service dependency1Web service (WS) Sequence of events

Legend:Legend:

(a) A Business Process that integrates remote components tocreate a
new composite component for providing driving directions.

A

B

(i)

A B

(ii)

A

(iii)

A B

(iv)

(b) Selected workflow patterns supported by BPEL: (i) Sequence, (ii)
Parallelism, (iii) Loop, (iv) Choice.

Figure 1.

actions. Currently, BPEL is a composition language that
mainly concentrates on modeling the business process in
terms of interacting Web services but does not consider the
behavior of such models at runtime.

While it is relatively easy to make an individual service
fault-tolerant, addressing reliability and availabilityof Web
services collaborating in multiple application scenariosis a
challenging task. This is because the integration of mul-
tiple services, which are potentially developed and main-
tained on autonomous heterogeneous environments, intro-
duces new levels of complexity in management. Thus the
composed service has no influence over the factors affect-
ing QoS provision and partner services can spontaneously
appear and disappear over on the Internet. Moreover, ser-
vices may fail because of problems in their execution such
as network faults, overload and lack of resources [1].

Given the unreliability of communication channels, the
unbounded communication delays, and the autonomy of the
interacting services, it is difficult for developers of compos-
ite services to anticipate and account for all the dynamics
of such interactions. There is therefore a need for adapt-
ability in composed services to make them more robust and
dependable. The need for adaptability is particularly ev-
ident in complex long-running applications as is found in
scientific Grid computing. In Grid computing, computa-
tional and storage resources are exposed as an extensible
set of networked services that can be aggregated to create

higher-function applications [4]. These highly availableap-
plications need to remain operational and rapidly responsive
even when failures disrupt some of the nodes in the system.

In this paper, we present asystematicapproach to mak-
ing existing aggregate Web services more tolerant to the
failure. We demonstrate how a composite Web service, de-
fined as a BPEL process, can be instrumented automatically
to monitor its partner Web services at runtime. To achieve
this, events such as faults and timeouts are monitored from
within the adapted process. We show how our adapted pro-
cess is augmented with a proxy that dynamically replaces
failed services. In doing this, we improve the fault tolerance
and performance of BPEL processes by transparently adapt-
ing their behavior. Bytransparent, we mean the following;
first, the adaptation preserves the original behavior of the
business process and does not tangle the code that provides
self-healing and self-optimization behavior with that of the
business process; and second, the fault-tolerant approach
does not need any modification of the BPEL engine1. This
transparency is achieved by using adynamicproxy that en-
capsulates the autonomic behavior (adaptive code).

The rest of this paper is is structured as follows. Sec-
tion 2 provides a background in addressing reliability in
composite components. Section 3 overviews our approach
and gives a brief introduction to the RobustBPEL frame-
work, we also describes the dynamic proxy. Section 4 con-
tains some related work. Finally, some concluding remarks
are provided in Section 5.

2 Addressing Reliability in Composite Com-
ponents

The goal offault-toleranceis to improvedependability
in a systemby enabling it to perform its intended functions
in the presence of a given number of faults [5]. There ex-
ists several definitions of dependability. These definitions
often depend on the attributes (e.g., availability, reliability
and safety) of the system that are being defined as a criterion
to decide whether or not a system is dependable at a given
time. The attribute defined may depend on the intended use
of the system [6].

In general, dependability is based on the notion ofre-
liance in the context of interacting components. It asso-
ciates to the relationdepends upon, where a componentA
depends upon a componentB if the correctness ofB’s ser-
vice delivery is necessary for the correctness ofA’s service
delivery [6]. This relationship is typical of composite ser-
vices since they are entirely dependent on interaction with
partner services. An error may propagate from a partner to
the composite thereby creating new errors.

1A BPEL engine is a virtual machine that executes BPEL grammar



Our work focuses on thereliability attribute of depend-
ability with a specialization onrobustnessas asecondary
attribute. Avizienis [6] defines reliability as the continu-
ity of correct service, it defines robustness as dependabil-
ity with respect toexternalfaults. Techniques for achiev-
ing dependability that are applied at development time are
not sufficient enough for ensuring the reliability of compos-
ite Web services that are expected to dynamically discover
and assemble components, configure themselves, and oper-
ate securely and reliably in a completely automated man-
ner. This calls for the development of new reliability tech-
niques that introduceautonomicfunctionality to address
these challenges.

New reliability techniques for service compositions can
be developed at four layers. Figure 2 shows the different
layers at which reliability techniques can be applied.

Business Process
Layer

Program component Message flow

NetworkNetwork
Transport Layer

SOAP Messaging
Layer

SOAP Messaging
Layer

Service Provider
Layer

ConsumerConsumer

ProviderProvider

Figure 2. Layers to apply reliability tech-
niques

Service provider layer: At this level, reliability focuses
on the service hosting environment. Here, reliability can be
achieved by techniques that provide redundancy of compu-
tation and data, load sharing to improve performance and
fault tolerance, and clustering which interconnects multiple
servers to avoid single point of failure [1].

Transport layer: At this level, the focus is on imple-
menting reliable messaging for Web services at the transport
layer. Since the reliability of SOAP messaging is dependent
on the underlying transport layer, techniques in this layer
center on using message-oriented middleware (MOM) [7]
to ensure reliability and robustness of message traffic.

SOAP messaging layer:Addressing reliability at this
layer focuses on extending SOAP messages to include relia-
bility properties that allow messages to be delivered reliably
between services in the presence of component, system, or
network failures.

Business process layer:Reliability at this layer aims to
provide dependable composition of Web services through
advanced failure handling and compensation-based trans-
action protocols [1]. Efforts in this layer can be categorized
into two groups;language-basedandnon language-based
approaches.Language-basedtechniques provide advanced
failure handling and adaptability by augmenting the pro-
cess logic with additional language constructs whilenon-
languagebased approaches focus specifically on the pro-
cess supporting infrastructure such as the execution engine.

Our work fits into this category by enabling adaptability
in BPEL process to address the concerns raised above. One
might argue that BPEL should be extended with constructs
to handle those concerns. However, this would increase the
complexity of the language and it is also against the prin-
ciple of separation of concerns. Constructs for specifying
exceptional behavior and recovery actions should be modu-
larized and externalized and not scattered and tangled with
the service implementation. Entangling the logic for ex-
ceptional behavior and recovery actions with the business
logic of the application negatively impacts maintainability
and adaptability.

3 Overview of Our Approach

We developed RobustBPEL [8] as part of the transparent
shaping programming model. Using RobustBPEL, we can
automatically generate anadapt-readyversion of an exist-
ing BPEL process. In a typical composed Web service (see
Figure 1(a)), a request is first sent by the client program,
then the composite Web service interacts with its partner
Web services and responds to the client. If one of the part-
ner services fails, then the whole process is subject to fail-
ure. To avoid such situations, adapt-ready version of the
original composed service monitors the behavior of it part-
ners and tries to tolerate their failure. As monitoring all
the partner Web services might not be necessary, the de-
veloper can select only a subset of Web service partners to
be monitored. The adapt-ready process monitors selected
Web services and in the presence of faults it will forward
the corresponding request to aproxy. The proxy is gener-
ated specifically for this adapt-ready process and provides
the same interface as those of the monitored Web services.
The proxy in its turn forwards the request to asubstitute
Web service.

In this work, we make the following assumptions: (1)
two services aresubstitute, if they implement the same in-
terface; (2) Web service partners arestatelessand idempo-
tent. It is possible for two applications to be functionally
equivalent without necessarily having the exact same inter-
face. When this occurs, a wrapper interface/service can be
used to harmonize the differences in their interfaces.

Given the rapid uptake of the service oriented program-



ming model, we expect the emergence of numerous services
that are functionally equivalent and thus can be substituted.
For instance, in our driving-direction example (Figure 1(a)),
if the default map generation service provided by Google
fails, it should be possible to substitute this service with
that of MSN, Yahoo! or Mapquest. Also, in Grid program-
ming environments where scientific applications are run on
computational Grids, a failed (or slow) Grid service can be
replaced by another service on the Grid. Thus, in our ap-
proach, we associate an adapt-ready composed service with
adynamic proxy(which is also a Web service) and its job is
to discover and bind tosubstituteWeb services.

3.1 High-Level Architecture

Figure 3 illustrates the architectural diagram of an ap-
plication using an adapt-ready BPEL process augmented
with its corresponding dynamic proxy. This figure shows
the steps of interactions among the components of a typical
adapt-ready BPEL process. Similar to a static proxy, the in-
terface for the generated dynamic proxy is exactly the same
as that of the monitored Web service. Thus, the operations
and input/output variables of the proxy are the same as that
of the monitored invocation. When more than one service
is monitored within a BPEL process, the interface for the
specific proxy is an aggregation of all the interfaces of the
monitored Web services. For example, the dynamic proxy
in Figure 3 haspti andptj , which are the port types of the
two monitored Web services (namely,WSi andWSj). At
runtime, if a monitored service fails (or an invocation time-
out occurs), the input message for that service is used as
input message for the proxy. The proxy invokes the equiva-
lent service with that same input message. A reply from the
substitute service is sent back to the adapted BPEL process
via the proxy.

Although the adapt-ready BPEL process remains a func-
tional Web service and the proxy is an autonomic Web ser-
vice (encapsulates autonomic attributes), functional Web
services can behave in an autonomic manner by virtue of
their interaction with autonomic Web services. By replac-
ing failed and delayed services with substitutes, the proxy
service provides self-healing and self-optimization behav-
ior to the BPEL process, thereby making the BPEL process
autonomic.

3.2 Incorporating Generic Hooks inside the
Adapt-Ready BPEL Processes

Following the Transparent Shaping programming
model [9], we first need to incorporate some generic hooks
at sensitivejoinpointsin the original BPEL process. These
joinpoints are certain points in the execution path of the
program at which adaptive code can be introduced at run

Client Program

1

2
WS1

pt1

WSn

ptn

...
...

Dynamic

Proxy

4

UDDI

~WSi

ptj

~WSj

ptj

UDDI registry

services

Dynamically

identified equivalent 
Web services for 

WSi and WSj

n partner

Web services

5

Service interface (pt)

Service dependency (static binding)

1Web service (WS) Sequence of events

Legend:Legend:

Service dependency (dynamic binding)

ptjpti

3 Absence of Faults

Presence of Faults

Adapt-Ready
Composed

Web Service

generated to 

handle the faults 

by two selected 

partner Web 

services

(WSi and WSj)

Figure 3. Architectural diagram showing the
sequence of interactions among the compo-
nents in an adapt-ready BPEL process aug-
mented with its corresponding dynamicproxy.

time. Key to identifying joinpoints is knowing where
in the BPEL processsensingand actuatingare required
and inserting appropriate code (hooks) to do so. Because
a BPEL process is an aggregation of services, the most
appropriate place to insert interception hooks is at the
interaction joinpoints (i.e.,theinvocationinstructions). The
monitoring code we insert is in the form of standard BPEL
constructs to ensure the portability of the modified process.

We adapt the BPEL process by identifying points in the
process at which external Web services are invoked and then
wrapping each of those invocations with a BPELscope
that contains the desired fault and event handlers. A fault
can be a programmatic error generated by a Web service
partner of the BPEL process or unexpected errors from the
Web service infrastructure. The unmonitored invocation is
first wrapped in ascope container which contains fault and
event handlers. The fault handlers detect any faults gener-
ated as a result of the invocation of the partner Web ser-
vice. A fault-handling activity is defined, which basically
forwards the request to the dynamic proxy. When a fault
is generated by the partner service invocation, this fault is
caught and the proxy service is invoked to substitute for the
unavailable or failed service.

For the event handler, an alarm clause is used to specify
a timeout. A timeout can be used, for instance, to limit the
amount of time that a process can wait for a reply from an
invoked Web service. If the partner service fails to reply
within the time stipulated in the timeout event, a generated
fault forces the monitored invocation to terminate and the
proxy service is invoked as a substitute.



4 Related Work

Since Web services technology is still emerging, most
of the work that aim to address the requirements for reliable
and fault tolerant Web services execution are still in theirin-
fancy. These efforts can be distinguished by their focus on
different layers (see Figure 2) of the Web services infras-
tructure . We note that our work is focused on the business
process layer and as a result the work in the other layers are
complementary to ours.

4.1 SOAP Messaging Layer

Some works aim to address the reliability of Web
services from theSOAP messaging layerby addressing
the issues concerning reliable transport-independent mes-
saging. To this end, SOAP-based protocols like WS-
ReliableMessaging [10] and WS-Reliability [11] strive to
standardize message delivery by specifying rules for ac-
knowledgment, message correlation, ordered delivery and
so on. Such a protocol does however contribute to ineffi-
ciency if the underlying transport layer does use protocols
that address reliable message delivery [1].

4.2 Transport Layer

Other approaches and technologies focus on implement-
ing reliable massaging for Web services at the transport
layer. The reliability of SOAP messaging largely depends
on the underlying transport chosen. Since SOAP-over-
HTTP is not reliable, attempts are being made to build mes-
saging middleware that accept messages from sending pro-
cesses and delivers them reliably to receiving processes.
Reliable messaging implementations communicate across a
network on behalf of senders and receivers, and have built-
in transactional support to manage message conversations
in the context of a larger business process [1]. Examples of
message-oriented middleware are IBM WebsphereMQ [12]
and Microsoft Message Queuing (MSMQ) [13]. These
implementations support their own proprietary messaging
APIs and protocols, as well as the standard Java Message
Service (JMS) API [14]. These approaches however do not
guarantee reliability for multi-hop messaging over different
protocols as they assume that reliable transport protocols
will be available for the entire path of the message [1,15].

4.3 Service Provider Layer

At this layer, approaches focus on the service hosting
container. Here, approaches aim to achieve reliability by us-
ing techniques that provide redundancy of computation and
data, load sharing to improve performance and fault toler-
ance, and clustering to avoid single point of failure [1].

Dialani et al. [16] provide an approach to enabling fault
tolerance instatefulWeb services by requiring the devel-
oper to implement an interface for rollback and checkpoint.

Birman et al. [17] propose extensions to the Web services
architecture to support mission-critical applications. They
propose some extensions to track the health of individual
Web service.

4.4 Business Process Layer

We further categorize works that focus on the business
process layer into two groups:language-basedand non
language-based.

Non-languagebased approaches focus specifically on
the process supporting infrastructure such as the execution
engine. They include wsBus [18], which is a lightweight
service-oriented middleware for transparently enacting re-
covery action in service-based processes. This approach
is modular and separates the business logic of the process
from the QoS requirements; however, this approach re-
quires the installation of additional middleware.

Charfi et al. [19] use an aspect-based container to provide
middleware support for BPEL. The process container is the
runtime environment for the BPEL process. All interactions
go through the container which plugs in support for non-
functional requirements. This framework is different from
ours because it requires a purpose built BPEL engine.

Language-basedtechniques provide advanced failure
handling and adaptability by augmenting the process logic
with additional language constructs. These approaches in-
clude BPEL for Java (BPELJ), which combines the capa-
bilities of BPEL and the Java programming language. This
combination is achieved by extending the BPEL to allow
for sections of Java code to be included in BPEL process
definitions. BPELJ, however, requires an extended BPEL
engine that understands the additional constructs. Also, ex-
ception handling logic in BPELJ often gets tangled with the
process logic, thus hampering maintainability.

Other language-based techniques include the work done
by Baresi et al. [20]. In their approach, BPEL processes
are monitored at run-time to check whether individual ser-
vices comply with their contracts. Monitors are automati-
cally defined as additional services and linked to the service
composition via annotations in the composition. This ap-
proach achieves the desired separation of concern, however,
it requires manually modifying the original BPEL process
and the monitoring code is entangled with the process logic.
The manual modification of BPEL code is not only difficult
and error prone, but also hinders maintainability.

5 Conclusion

Techniques that are applied at development time are not
sufficient enough for ensuring the reliability of compos-
ite Web services that are expected to dynamically discover
and assemble components, configure themselves, and oper-



ate securely and reliably in a completely automated man-
ner. This calls for the development of new reliability tech-
niques that introduceautonomicfunctionality to address
these challenges. New reliability techniques for service
compositions can be developed at four layers, namely; (1)
Service provider, (2) SOAP messaging, (3) Transport and
(4) Business process layers. We presented a language-based
approach to transparently adapting BPEL processes to im-
prove reliability. This approach addresses reliability atthe
Business process layer.

References

[1] A. Erradi, P. Maheshwari, and V. Tosic, “A policy-
based middleware for enhancing web services relia-
bility using recovery policies,” inProceedings of the
2006 IEEE International Conference on Web Services,
Chicago, USA, September 2006.

[2] O. Ezenwoye and S. M. Sadjadi, “Composing aggre-
gate web services in BPEL,” inProceedings of The
44th ACM Southeast Conference, Melbourne, Florida,
March 2006.

[3] D. Cybok, “A grid workflow infrastructure: Research
articles,” Concurrency and Computation: Practice
and Experience, vol. 18, no. 10, pp. 1243–1254, 2006.

[4] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke,
“Grid services for distributed system integration,”
Computer, vol. 35, no. 6, pp. 37–46, 2002.

[5] V. P. Nelson, “Fault-tolerant computing: Fundamental
concepts.”IEEE Computer, vol. 23, no. 7, pp. 19–25,
1990.

[6] A. Avizienis, J.-C. Laprie, B. Randell, and
C. Landwehr, “Basic concepts and taxonomy of
dependable and secure computing,”IEEE Transac-
tions on Dependable and Secure Computing, vol. 01,
no. 1, pp. 11–33, 2004.

[7] S. Goel, H. Sharda, and D. Taniar, “Message-oriented-
middleware in a distributed environment.” inThird In-
ternational Workshop on Innovative Internet Commu-
nity Systems, June 2003, pp. 93–103.

[8] O. Ezenwoye and S. Sadjadi, “RobustBPEL2: trans-
parent autonomization in business processes through
dynamic proxies,” inProceedings of the 8th Interna-
tional Symposium on Autonomous Decentralized Sys-
tems, Sedona, Arizona, March 2007.

[9] S. M. Sadjadi, P. K. McKinley, and B. H. Cheng,
“Transparent shaping of existing software to support
pervasive and autonomic computing,” inProceedings

of the first Workshop on the Design and Evolution of
Autonomic Application Software 2005, St. Louis, Mis-
souri, May 2005.

[10] “Web services reliable messaging,” http://www.ibm.
com/developerworks/library/specification/ws-rm/.

[11] “WS-Reliability 1.1,” November 2004,
http://docs.oasis-open.org/wsrm/ws-reliability/
v1.1/wsrm-wsreliability%-1.1-spec-os.pdf.

[12] L. Gilman and R. Schreiber,Distributed Computing
with IBM MQSeries. Wiley, 1996.

[13] “Microsoft. microsoft message queuing MSMQ,”
http://www.microsoft.com/windowsserver2003/
technologies/msmq/default.ms%px.

[14] M. Hapner, R. Burridge, and R. Sharma, “Java mes-
sage service specification,” Sun Microsystems, Tech.
Rep., Nov. 1999.

[15] S. Tai, T. Mikalsen, and I. Rouvellou, “Using
message-oriented middleware for reliable web ser-
vices messaging.” inSecond International Workshop
of Web Services, E-Business, and the Semantic Web,
2003, pp. 89–104.

[16] V. Dialani, S. Miles, L. Moreau, D. D. Roure, and
M. Luck, “Transparent fault tolerance for web services
based architectures,” inEighth International Europar
Conference. Padeborn, Germany: Springer-Verlag,
aug 2002.

[17] K. P. Birman, R. van Renesse, and W. Vogels, “Adding
high availability and autonomic behavior to web ser-
vices.” in Proceedings of the 26th International Con-
ference on Software Engineering. Edinburgh, United
Kingdom: IEEE Computer Society, May 2004, pp.
17–26.

[18] A. Erradi and P. Maheshwari, “wsBus: QoS-aware
middleware for relaible web services interaction,” in
Proceedings of the IEEE International Conference
on e-Technology, e-Commerce and e-Service, Hong
Kong, China, 2005.

[19] A. Charfi and M. Mezini, “An aspect based process
container for BPEL,” inProceedings of The First
Workshop on Aspect-Oriented Middleware Develope-
ment, Genoble, France, November 2005.

[20] L. Baresi, C. Ghezzi, and S. Guinea, “Smart monitors
for composed services,” inProceedings of the 2nd in-
ternational conference on Service oriented computing.
ACM Press, 2004, pp. 193–202.


