
TRAP.NET: A Realization of Transparent Shaping in .NET 

 
S. Masoud Sadjadi and Fernando Trigoso 

School of Computing and Information Sciences 

Florida International University, Miami, FL, U.S.A 

{sadjadi, ftrig001}@cs.fiu.edu 

 

 
Abstract 
We define adaptability as the capacity of software in ad-

justing its behavior in response to changing conditions. 

To list just a few examples, adaptability is important in 

pervasive computing, where software in mobile devices 

need to adapt to dynamic changes in wireless networks; 

autonomic computing, where software in critical systems 

are required to be self-manageable; and grid computing, 

where software for long running scientific applications 

need to be resilient to hardware crashes and network out-

ages. In this paper, we provide a realization of the trans-

parent shaping programming model, called TRAP.NET, 

which enables transparent adaptation in existing .NET 

applications as a response to the changes in the applica-

tion requirements and/or to the changes in their execution 

environment. Using TRAP.NET, we can adapt an applica-

tion dynamically, at run time, or statically, at load time, 

without the need to manually modify the application 

original functionality-hence transparent. 

 

 

1. INTRODUCTION 

The goal of our ongoing research is to improve software 

adaptability. Imagine a world where software systems do 

not have to stop every time there was a need for adapting 

the software to the new changes in its requirements or in 

its execution environment. For example, as a wireless user 

moves from one wireless cell to another, the applications 

available to the user must adapt to different environments 

and resources with minimal interruption in their service. 

Critical systems such as financial networks or power sys-

tems cannot afford to shut down due to the need to adapt 

to new conditions or security attacks. A hurricane predic-

tion application running for hours cannot be restarted just 

because a few resources are out of service.  

Adaptable software presents itself as a possible solu-

tion to the above problems. An application is said to be 

adaptable if it can change its behavior dynamically at 

runtime, which may be due to changes in its environment 

or due to new functional or non-functional requirements 

[1]. Unfortunately, developing adaptable software is non-

trivial. An adaptable application involves both functional 

code and adaptive code. Functional code implements the 

business logic of the application while adaptive code im-

plements the adaptation logic which enables the applica-

tion to be adaptive. Usually, these two types of code are 

blended into one source code making its maintenance and 

adaptation difficult. 

The transparent shaping programming model poses a 

solution to solve the difficulty of developing adaptable 

applications [1]. This model allows the design and devel-

opment of adaptable applications without the need to 

modify their source code.  

Transparent shaping produces adaptable programs in 

two steps. In the first step, usually executed at compile 

time, an existing program is transformed so its behavior 

can be adapted at runtime.  And in the second step, exe-

cuted at runtime, these transformations receive the new 

behavior so the program can be adapted.  

The first step of transparent shaping generates an 

adapt-ready program.  An adapt-ready program is a pro-

gram whose behavior is initially equivalent to the original 

program except for the fact that it can be adapted at 

startup and/or run time. 

Applying transparent shaping to object-oriented pro-

grams yields a new programming model called Transpar-

ent Reflective Aspect Programming (TRAP) [1]. In this 

paper, we provide a realization of transparent shaping 

following the TRAP model, called TRAP.NET, which is 

targeted for .NET applications.  

TRAP.NET provides a language-independent mecha-

nism for transparently producing adapt-ready programs 

from existing programs in .NET.  TRAP.NET also pro-

vides a mechanism to adapt these adapt-ready programs.  

This adaptation can be static, at load time, or dynamic, at 

runtime. 

Static adaptation is more restrictive than dynamic ad-

aptation. Static adaptation can only occur once when the 

application is loading and it is useful for applications that 

will be deployed on different platforms. These applica-

tions only need to adapt to their corresponding platforms 

at startup time. Dynamic adaptation is useful for applica-

tions that need to adapt to changes in their environment or 

to new requirements without halting. 

The major contributions of this paper are summarized 

as follows. First, we assess the expressiveness and effec-



tiveness of .NET Attributes in providing a means to label 

what portions of an existing application should become 

adaptable. Attributes are pieces of metadata information 

that can be placed in the source code of .NET applica-

tions. TRAP.NET uses this metadata information to iden-

tify which pieces of functionality should be made adapt-

ready. Second, we researched and developed a language-

independent software tool that realizes the first step of 

transparent shaping appropriate for .NET applications. 

We call this software tool the generator. The generator 

automatically generates an adapt-ready application inde-

pendent of the programming language used in the devel-

opment of the original application. Finally, we researched 

and developed a language- and platform-independent 

software tool that realizes the second step of transparent 

shaping. We call this software tool the composer. The 

composer allows new adaptive behaviorto be added at 

startup or runtimeto replace the existing adapt-ready 

behavior.  

The remainder of this paper is organized as follows. 

Section 2 provides background on the .NET technologies 

that TRAP.NET uses. Section 3 explains the design, im-

plementation, and operation of TRAP.NET. Section 4 

compares TRAP.NET to some related work. Finally, Sec-

tion 5 offers some concluding remarks. 

2. BACKGROUND 

This section provides a brief overview of the .NET tech-

nologies that TRAP.NET uses to implement the transpar-

ent shaping model.  

The Microsoft .NET Framework is a software compo-

nent that provides vast pre-coded solutions to common 

program requirements in the form of class libraries.  It 

also manages the execution of programs written specifi-

cally for this framework [6]. The .NET Framework pro-

vides a run-time environment called the common lan-

guage runtime (CLR, or just runtime) that runs .NET ap-

plications and provides services that make the develop-

ment process easier. When compiling a .NET program, 

the compiler translates the source code into common in-

termediate language (CIL, or just IL), which is a CPU-

independent set of instructions that can be efficiently con-

verted to native code. CIL, formerly called Microsoft in-

termediate language or MSIL, resembles an object-

oriented assembly language. TRAP.NET is language-

independent as it provides adaptation at the CIL level.  

When a .NET compiler produces code in CIL, it also 

produces the corresponding metadata. Metadata is “data 

about data;” in the programming context it is data about 

the program. Metadata describes the types in the code, 

including the definition of each type, the signatures of 

each type’s members, the members that the code refer-

ences, and other data that the runtime uses at execution 

time. The CIL and metadata are contained in a portable 

executable (PE) file referred to as module. The presence 

of metadata in the module along with CIL enables the 

code to describe itself. The runtime locates and extracts 

the metadata from the module as needed during execution.  

.NET Reflection is the component that provides class 

libraries to access the metadata of .NET applications.  

Therefore it contains classes to describe every program-

ming element such as assemblies, modules, namespaces, 

types, fields, methods, attributes, events, etc. Using reflec-

tion, TRAP.NET can access the metadata and the IL code 

of existing applications. TRAP.NET takes advantage of 

this feature and puts all the adaptive-related metadata into 

the same file and this way, there is no need to load a sepa-

rate file with the metadata information about the adaptive 

behavior. 

Reflection can also be used to dynamically create an 

instance of a type, bind the type to an existing object, or 

get the type from an existing object. Then it can invoke 

the type’s methods or access its fields and properties. 

TRAP.NET can discover information about all the ele-

ments of an application. Also, it can modify an applica-

tion’s behavior mainly through the usage of dynamic 

methods.  Dynamic methods are methods that can be gen-

erated and executed at runtime. 

.NET Attributes are keyword-like descriptive declara-

tions. They resemble programming languages reserved 

keywords such as public or private.  These two keywords 

further define the behavior of class members by describ-

ing their accessibility to other classes. Because compilers 

are designed to recognize these predefined keywords, a 

developer does not traditionally have the opportunity to 

create their own. The CLR, however, allows the addition 

of attributes to annotate programming elements such as 

types, fields, methods and properties [7]. These attributes 

can be extracted using runtime reflection services. 

TRAP.NET uses attributes to label methods that should 

become adapt-ready and to gather metadata information 

about these methods. 

3. TRAP.NET OVERVIEW 

This section provides an overview of TRAP.NET from its 

usage perspective. It describes the steps required to 

achieve dynamic adaptation with TRAP.NET at develop-

ment time, compile time and run time. Static adaptation is 

presented at the end of this section since it reuses the 

techniques used to achieve dynamic adaptation. 

3.1. At Development Time 

To tailor the TRAP approach to the .NET develop-

ment practices we allow the user to manually place .NET 

Attributes to annotate which methods should be adapt-

ready.  In our particular case we implemented a custom 

attribute which we call the AdaptReady attribute.  By 

placing this attribute, the user is staging the application so 

it is suitable for the generator at compilation time.  The 

generator can then look for the methods with the Adap-



tReady attribute to automatically make them adapt-ready.  

The code snippet in Figure 1 shows this attribute with a 

method called Some-Method.  

Another important step that occurs at development 

time is the fact that the user has to add a reference to the 

TRAP.NET class library.  The AdaptReady attribute is 

defined in the TRAP.NET class library, thus to success-

fully compile the application with this attribute, the appli-

cation has to reference this class library.  This particular 

reference coalesces the original application and 

TRAP.NET into one application.  This union makes the 

generation process much easier since most of the func-

tionality to support adaptation can be placed in the 

TRAP.NET library.  Therefore, most of the adaptive code 

that needs to be weaved can be simple calls to functions in 

the TRAP.NET library. 

[AdaptReady(true)]

public void Some-Method()

{
     /* some implementation */
}

Figure 1. A method with the AdaptReady attribute.  

3.2. At Compile Time 

After the annotated application is compiled as it nor-

mally would, the user can send its application to the gen-

erator. The generator can be executed from a plug-in for 

Visual Studio or form the command-line. 

The generator is in essence an aspect weaver which 

adds the adaptive aspect to the methods annotated with the 

AdaptReady attribute. The adaptive aspect in this case 

consists of hooks that will intercept and redirect the con-

trol flow as appropriate.  As mentioned earlier, since all 

.NET assemblies are compiled into CIL, the generator can 

weave the adaptive aspect in CIL code.  The addition of 

the adaptive aspect at this level makes the TRAP.NET 

generator language independent and transparent with re-

spect to the original source code. 

When the generator is executed, it receives as input 

the annotated assembly. This assembly is immediately 

loaded into an Assembly object provided by the .NET 

reflection facilities. This object allows the discovery of 

the types and methods of the staged assembly. The gen-

erator iterates through the list of types and methods and 

finds all the methods with the AdaptReady attribute.  

At this point, as illustrated in Figure 2, first the anno-

tated assembly is disassembled using ILDASM, which is a 

tool distributed with the .NET Framework, to create a text 

file with the intermediate language (IL) code of the as-

sembly. Next, the source code of the method, in IL, is 

used as a base for the generation of the adapt-ready IL 

code. Finally, the adapt-ready IL code is reassembled us-

ing ILASM, which generates the adapt-ready assembly. 

The process described in this paragraph is called round-

tripping, which involves three steps: disassembly, tinker-

ing with the CIL source code, and reassembly [8].  

During the tinkering phase, the generator only adds the 

hooks to the methods that have the AdaptReady attribute.  

The actual hooks consist of a simple if-then-else statement 

to intercept and redirect the control flow.  The if-condition 

intercepts the control flow and checks whether adaptation 

is enabled for that particular method.  If it is, the auto-

matically generated code inside the if-condition redirects 

the control flow.  It loads and invokes the new adaptive 

functionality for this method using a dynamic method.  

The else-condition wraps the original functionality of the 

method which is executed if adaptation is not enabled. 

TRAP.NET Generator

Sample.exe

Adapt-Ready

Sample.exe

Sample.il

ILDASM

IL Disassembler

Adapt-Ready

Generation

ILASM

IL Assembler

Sample.il

Adapt-Ready

Sample.il

Adapt-Ready

Sample.il

Figure 2. TRAP.NET Round-tripping. 

Presenting the code of an adapt-ready method in CIL 

can be cumbersome due to the fact that intermediate lan-

guage notation is very similar to assembly language which 

tends to be lengthy even for simplistic logic. Moreover, 

understanding CIL requires knowledge of CIL instructions 

and syntax. Therefore, for clarity, in Figure 3 we show 

what an adapt-ready method would look like in pseudo-

code before and after generation.  

[AdaptReady(true)]

SOME-METHOD()

1    if this method is adapted

2         then call INVOKE-DYNAMIC-METHOD()

3         else call original implementation

[AdaptReady(true)]

SOME-METHOD()

1    call original implementation

(a) Some-Method before generation.

(b) Some-Method after generation.

Figure 3. Adapt-ready method in pseudo code before and 

after generation. 

Inside the if-condition, the generator has to perform 

code generation to invoke the dynamic method. The dy-

namic method has to be invoked with all the parameters of 

the original method which may be one or more and may 

be of different types. Also, the return type of the invoca-

tion needs to be casted to the return type of the original 

method. Using reflection the generator can determine the 

number and the types of parameters as well as the return 



type of the method. Based on this information, the code to 

invoke the dynamic method is automatically generated.  

Finally, besides adding the hooks, the generator also 

inserts a method call in the startup point of the applica-

tion. When the adapt-ready application starts running, this 

method call is the first thing that gets executed. This 

method is part of the TRAP.NET class library and initial-

izes all the components and data structures needed to sup-

port static and dynamic adaptation at runtime. As part of 

this initialization a communication channel is opened so 

the application can receive new functionality at runtime. 

This communication is implemented using .NET Remot-

ing, which supports interprocess communication in dis-

tributed applications.  

3.3. At Runtime 

The last few steps to achieve dynamic adaptation with 

TRAP.NET occur at runtime when the adapt-ready appli-

cation is executing.  They are triggered when the user de-

cides that the functionality of a particular adapt-ready 

method needs to adapt to some changing condition.  Fu-

ture work may involve automated decision making ac-

cording to some policy.  After this decision is made, the 

user develops the new functionality using the original 

source code.  Then, the user can utilize the composer to 

upload the new adaptive functionality.  

The composer is essentially a distributed application 

composed by two modules: the client composer and the 

server composer. The client composer is the user interface 

used to upload new functionality to the running applica-

tion. The server composer—hosted by the TRAP.NET 

class library—is part of the running adapt-ready applica-

tion and it serves requests from the client composer. The 

composer is the core of TRAP.NET because it achieves 

dynamic adaptation. Figure 5 shows the dependency of 

these components at runtime. 

Adapt-Ready

Assembly

Server Composer
(TRAP.NET.dll)

Client Composer

Network

Figure 5. Dependency of components at runtime. 

We developed two client composers, a Windows ap-

plication composer and a Web application composer.  

Among all of their functionality, these composers perform 

three basic operations.  The first one is to get the status of 

the adapt-ready application so the user can see which 

methods can be adapted.  The second operation lets the 

user upload a new delegate assembly to the adapt-ready 

application.  A delegate assembly is an assembly that con-

tains delegate methods.  Delegate methods contain the 

functionality that replaces the functionality of adapt-ready 

methods.  Once the delegate assembly is loaded, the third 

operation lets the user adapt an adapt-ready method with a 

delegate method.  

After the second operation, when user loads the dele-

gate assembly, the server composer matches adapt-ready 

methods to their potential delegate methods candidates. 

Potential delegate methods are methods that have the 

same return type and parameter types as the adapt-ready 

method. Once this matching is complete, the results are 

returned in XML format to the client. The user interface 

then displays the adapt-ready methods with their potential 

delegate methods. At this time, the user may select one of 

the delegate methods for adaptation of its adapt-ready 

method. This adaptation request is sent to the server which 

prepares the contents of this delegate method so they are 

suitable for adaptation. 

The preparation of the delegate method consists of the 

generation of a dynamic method with the contents and 

information of the delegate method. This generation is a 

complex process that relies heavily on reflection. The 

shell of the dynamic method has to have the same meta-

data as the delegate method. This metadata includes the 

parameter types, the declaring type and the local variables 

of the delegate method. After the shell of the dynamic 

method is completed, its contents are populated with the 

body of the delegate method. This body is the IL of the 

delegate method in byte code. Assuming the delegate 

method has no external references—that is, it only works 

with local variables and it does not call other methods—

the newly created dynamic method is ready for usage. 

This dynamic method is stored in a data structure inside 

the server composer so it can be referenced when needed. 

The next time the adapt-ready method is called, it finds 

out that is has been adapted and its execution enters the if-

condition which gets the dynamic method from the server 

composer. After the dynamic method is retrieved, the 

adapt-ready method invokes it with its current parameter 

values. 

The process just described assumes that the delegate 

method had no external references to members outside the 

method itself. Non-trivial applications usually require 

access to external references. Members are any language 

element that can be referenced, i.e. methods, constructors, 

fields, properties and events. Each of these members may 

also have return types, parameters, access modifiers (such 

as public or private) and implementation details (such as 

abstract or virtual) among others. When a delegate 

method is developed and compiled it may reference mem-

bers in the delegate assembly itself. After the delegate 

method is ported into a dynamic method in the running 

application, these references are still pointing to the dele-

gate assembly. However, the delegate assembly is not 

being executed and it is out of the context of the running 

application thus, these references are really pointing to 



nothing. Therefore invocation of a dynamic method with 

references to the delegate assembly would fail. The server 

composer solves this issue by redirecting these references 

to the running application. 

To redirect references into the running application, the 

composer takes the following steps. First, it finds the ref-

erences in the body of the delegate methods. After they 

are found, it resolves them, that is, it gets the actual dele-

gate member being referenced so it can discover its signa-

ture. Using the signature of the delegate member, it lo-

cates the member with the same signature in the running 

application. Then, it replaces the reference in the delegate 

body so it points to the member in the running application. 

The functionality that finds references in the body of 

delegate methods had to be developed from scratch. Re-

flection only provides access to the metadata of methods, 

not their actual contents. As a consequence, we developed 

a component, called the token parser, which finds external 

references in methods. Every member has a unique meta-

data identifier. These metadata identifiers—also referred 

to as metadata tokens—are used to uniquely reference 

members. The token parser extracts these references by 

parsing the byte code of delegate methods.  

Using reflection and the tokens discovered by the to-

ken parser, the composer can resolve the members being 

referenced. After these members are resolved, it locates 

them in the running application. Once the composer lo-

cates these members, it can obtain their metadata identifi-

ers or tokens. At this point the composer has the tokens 

that represent references in both assemblies. The com-

poser then proceeds to replace tokens in the delegate 

body. 

After replacement is completed, the new body is as-

signed to the dynamic method. The references in the dy-

namic method body have now been redirected to members 

in the running application. Now, the dynamic method is 

ready for invocation. 

So far we have presented how dynamic adaptation is 

achieved at runtime. TRAP.NET can be used in a mode 

that enables static adaptation. This type of adaptation oc-

curs at load time by reusing the functionality that achieves 

dynamic adaptation. To achieve static adaptation the gen-

erator adds code to the startup of the application to pause 

it as soon as it starts executing.  While the application is 

paused, the composer is the only available component 

which is waiting to receive delegate methods.  The user 

then sends delegate methods and adapts the desired adapt-

ready methods.  The composer then flags these methods as 

adapted and will not allow new adaptive functionality 

during the execution of the program.  When the user 

wishes, the application will be resumed. 

4. RELATED WORK 

Similar to TRAP.NET, other approaches to build adapt-

able programs involve intercepting calls to functional 

code, and redirecting them to adaptive code [1]. There are 

two main categories of related work. The first category 

involves approaches that extend middleware to support 

adaptive behavior (e.g., Iguana/J [3] that extends JVM). 

Since the role of traditional middleware is to hide resource 

distribution and platform heterogeneity from the business 

logic of applications; it is a natural place to put adaptive 

behavior. However, these approaches generally become 

outdated after a newer version of the middleware (e.g., 

JVM) is released.  

The second category includes approaches to transpar-

ently augment the application code with facilities for in-

terception and redirection. Examples related to our work 

include AspectJ [4], Aspect.NET [5] and TRAP/J [2]. 

AspectJ and Aspect.NET enable aspect weaving at com-

pile time which is similar to the task the TRAP.NET gen-

erator performs. However, they do not provide a means 

for dynamically weaving new code into the application at 

runtime. 

TRAP/J is an instance of TRAP in Java. To augment 

an existing Java program with the required hooks, TRAP/J 

uses compile-time aspect weaving provided by AspectJ. 

Following the TRAP approach, TRAP/J operates in two 

phases. In the first one, at compile time, TRAP/J converts 

an existing program into an adapt-ready program. This 

conversion is accomplished using an Aspect Generator 

and a Reflective Class Generator. These generators pro-

duce aspects and the reflective classes. Next, these two 

products, with the original source code, are passed to the 

AspectJ compiler which weaves the generated and the 

original source code together to generate and adapt-ready 

assembly. Note that the generation process in TRAP/J 

generates significantly more code than the generation 

process in TRAP.NET. The second phase occurs at run-

time when using the reflective classes, new behavior can 

be introduced to the application.  

A limitation of TRAP/J is the fact that it can only 

make classes adapt-ready.  Even if the user only wishes to 

make one method in a class adapt-ready, TRAP/J will 

make the entire class adapt-ready.  Performance and flexi-

bility seem affected by this limitation.   In contrast, 

TRAP.NET overcomes this limitation since it is able to 

make methods adapt-ready.  Moreover, methods are the 

units of functionality and behavior in the object oriented 

paradigm.  Since transparent shaping focuses on changing 

the business logic which is hosted by methods, 

TRAP.NET offers a more natural implementation.  The 

state of the object is not changed by adaptation itself.  

Adapting a method only changes its functionality.  The 

new adaptive functionality may change the state of the 

object as it was programmed by the user.  

Other contributions of TRAP.NET include its lan-

guage independence, tailoring of the transparent shaping 

model to .NET development practices and extensive 

member access.  TRAP.NET can make any application 



adapt-ready, independently of the language that it was 

developed since it works at the intermediate language 

level.  Also, by using attributes it customizes the transpar-

ent shaping model so it fits .NET development practices.  

Moreover, TRAP.NET is the implementation that offers 

the most types of member access to the adaptive function-

ality.  The new adaptive functionality may need to access 

resources or members in the running application.  

TRAP.NET enables this accessibility. 

5. CONCLUSIONS 

The next major step for TRAP.NET should be the devel-

opment of a case study with an application geared towards 

pervasive, autonomic or grid computing.  This case study 

will produce important results to improve and evaluate 

TRAP.NET in many aspects including performance, reli-

ability and usability. 

Safe adaptation and security are two main concerns 

that remain pending in this research.  Safe adaptation is 

the ability of a program to maintain its integrity during 

adaptation [9].  And, security deals with protecting an 

adaptable program from malicious entries [1].  These two 

issues are ongoing research areas for dynamic adaptation.  

Future work in TRAP.NET should support safe adaptation 

and security as these techniques become available. 

The major achievement of this paper is the research on 

the design and development of TRAP.NET. This tool is a 

successful realization of transparent shaping using the 

TRAP model that provides dynamic adaptation of applica-

tions without the need to modify their original functional-

ity. TRAP.NET provides the means to achieve separation 

of concerns when developing adaptive applications. It 

adheres to the aspect-oriented paradigm by adding adap-

tive functionality across the business logic of an applica-

tion.  It uses reflection to discover and modify the func-

tionality of an application.  Moreover, unlike similar tools, 

it intercepts only the methods selected by the user.  The 

rest of the application remains intact maintaining its origi-

nal performance.  Adaptive code in TRAP.NET is 

achieved by developing delegates which can provide its 

own new functionality and reuse the already existing func-

tionality of the adapt-ready application.  This important 

achievement contributes to the developing area of soft-

ware adaptation in order to support critical and long-time 

running applications such as the ones found in pervasive, 

autonomic and grid computing. 

ACKNOWLEDGMENTS 

This work was supported in part by IBM, the National 

Science Foundation (grants OCI-0636031, REU-0552555, 

and HRD-0317692). The authors are very thankful to the 

following students who played a significant role in the 

implementation of TRAP.NET: Allen Lee, Tuan Cam-

eron, Ana Rodriguez, Juan H. Cifuentes, Javier Ocasio, 

Amit Patel, Mitul Patel, Enrique E. Villa, Frank Suero, 

Etnan Gonzalez, Edwin Garcia, Alain Rodriguez, and 

Lazaro Millo. 

TRAP.NET is a follow-up work on the Transparent 

Shaping research originated in Michigan State University 

and the authors are thankful to Philip McKinley, Betty 

Chen, and Kurt Stirewalt who contributed to the original 

ideas in Transparent Shaping, its TRAP extension, and the 

realization of TRAP in Java, called TRAP/J. Our gratitude 

is also extended to our colleagues at Florida International 

University, Peter Clarke and Masoud Milani, who pro-

vided us with feedback on this work. 

REFERENCES 

[1] S. M. Sadjadi. Transparent Shaping of Existing Soft-

ware to Support Pervasive and Autonomic Comput-

ing. A Dissertation submitted to Michigan State Uni-

versity, 2004. 

[2] S. Masoud Sadjadi, Philip K. McKinley, Betty H.C. 

Cheng, and R.E. Kurt Stirewalt. TRAP/J: Transparent 

generation of adaptable Java programs. In Proceed-

ings of the International Symposium on Distributed 

Objects and Applications (DOA'04), Agia Napa, Cy-

prus, October 2004. 

[3] Redmond, B., Cahill, V.: Supporting unanticipated 

dynamic adaptation of application behavior. In Pro-

ceedings of ECOOP, 2002. 

[4] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, 

C. Videira Lopes, J. M. Loingtier, and J. Irwin. As-

pect-oriented programming. In Proceedings of the 

European Conference on Object-Oriented Program-

ming (ECOOP). Springer-Verlag LNCS 1241, June 

1997. 

[5] Vladimir O. Safonov. Aspect.NET – an aspect-

oriented programming tool for Microsoft.NET. In 

Microsoft Research SSCLI RFP II Capstone Work-

shop 2005, September 2005. 

[6] .NET Framework.  Wikipedia.  2 March 2007.  Avail-

able at URL: http://en.wikipedia.org/wiki/ .NET_ 

framework. 

[7] Attributes Overview. MSDN Library for Visual Stu-

dio 2005. 2005. Available at URL:  http:// 

msdn.microsoft.com/library/en-us/cpguide/html/ 

cpconattributesovervi-ew.asp. 

[8] Serge Lidin.  Expert .NET 2.0 IL Assembler. Apress. 

2006, pages 389-408. 

[9] Ji Zhang, Zhenxiao Yang, Betty H.C. Cheng, and 

Philip K. McKinley. Adding safeness to dynamic ad-

aptation techniques. In Proceedings of the ICSE 2004 

Workshop on Architecting Dependable Systems, Ed-

inburgh, Scotland, May 2004. 


