
TRAP/J v2.1: An improvement for Transparent Adaptation

Technical Report FIU-SCIS-2007-09-01

May 2007

S. Masoud Sadjadi, Luis Atencio, and Tatiana Soldo

Autonomic and Grid Computing Research Laboratory

School of Computing and Information Sciences

Florida International University, 11200 SW 8th Street, Miami, FL 33199

{sadjadi, laten001,tsold001}@fiu.edu

Abstract

With the advent of mobile, pervasive, and grid

computing, software systems must be designed to

dynamically adapt to changes that might occur in their

runtime environments. Certainly, careful system design

and modeling are key factors for systems to be

complete. However, as technology changes and new

forms of technology continue to emerge,

predetermining all possible scenarios in which a

system may be running is nothing short of impossible.

These issues can be addressed with a tool called

TRAP/J (Transparent Reflective Aspect Oriented

Programming in Java. However, the first

implementation of this tool performs poorly on

demanding applications, severely lacked usability, and

provided very limited support for adaptation. In this

paper, we will be addressing various issues in the first

implementation of TRAP/J and we have developed a

new version, TRAP/J v2.1, which is aimed at providing

better performance and usability over the original

TRAP/J.

TRAP/J 2.1 is focused on improving the

performance of the generation and adaptation phases

of Transparent Adaptation and keeping in mind ease of

usability. This will allow a decision support system –in

our case, a user— to benefit from a user friendly,

interactive, web based Composer Interface through

which new behavior can be inserted into an

application remotely at runtime or startup time. In

addition, it has a Generator Interface that allows users

to choose which classes they wish to make adaptable.

1. Introduction

Transparent Adaptation has definitely been a big

step in the design of autonomic systems, which promise

to resolve the ever increasing complexity and size of

software systems developed today. This is, in big part,

given by the need of systems to adapt or alter their

behavior autonomically in response to high level

human policies and free users of many potentially

conflicting concerns like quality-of-service (QoS),

security, availability, battery life, network failures, etc.

Thus, not all decisions must be made at the time of

design of a complex system; needs for improvements

and enhancements can later be addressed via adaptation

tools. In grid computing, for example, the physical

runtime environment can change according to the

discovery and failure of resources –number of nodes,

memory; or even programmatically such as the

insertion of a new optimal algorithm that takes

advantage of grid resources more efficiently. All of

these factors can potentially change depending on the

execution environments in which systems are in; if

need be, more efficient algorithms can be developed by

experts separately and then inserted when application is

executing. For more information on this topic, please

refer to Transparent Grid Enablement (TGE) where

TRAP/J 2.1 is used to accomplish this.

Furthermore, tools that enable transparent

adaptation such as TRAP/J should be efficient. If

adaptation would incur so much overhead that the

overall performance of the system suffers dramatically,

in these cases adaptation will not be feasible. In other

words, the performance of an application that is being

adapted should be very close to the original

application. TRAP/J 2.1 enhances the overall

performance of its predecessor by shortening both its

compile-time and runtime architectures. Basically, the

critical execution path of the system has been

redesigned much shorter and efficient.

In addition, TRAP/J 2.1 is now very user friendly.

Using a client-server architecture it benefits users with

a web based GUI Composer Interface that clearly

shows the runtime status of the adapt-ready program

including its classes, instances created, adaptive

behavior (delegates) being used, and others. This gives

users an opportunity to make clear decisions on where

and when to insert adaptable behavior. To allow for

adaptable behavior to be inserted at startup time or

runtime, the adapt-ready application can be started in

two modes: run mode, paused mode. During run mode,

users can interact with the adapt-ready application

through the GUI interface and insert adaptive code at

runtime. In paused mode, user can start the application

with default adaptable behavior. The Generator

Interface allows users to choose from a project a subset

of classes that they want to make adaptable, including

any standard java library classes. These classes will

essentially form the adapt-ready application.

In future work, we will be discussing new and

more automated approaches to Transparent Adaptation

as well as adding a decision-support system that could

monitor performance of the adapt-ready application

and make decisions as to where and which type of

adaptation should take place in compliance with high

level human guidance.

2. Background Information

Transparent Adaptation or Transparent Shaping

allows applications to change their behavior statically

(at startup time) or dynamically (at runtime) without

any modifications to the original source code. TRAP/J

combines a software engineering paradigm, called

Aspect-Oriented Programming (AOP) and Structural

Reflection, to provide the capabilities for Transparent

Shaping, enhance modularization of code, and promote

code reuse.

TRAP/J makes extensive use of a component

called AspectJ which extends Java with features that

realize the Aspect-Oriented Programming (AOP) and

Aspect-Oriented Software Development (AOSD)

paradigms in Java. AOP is the means by which TRAP/J

enhances the level of modularization and reduces code

entanglement or spaghetti code provided by the

implementation of crosscutting concerns. For example,

non-functional concerns such as profiling, tracing,

security, or Quality of Service (QoS) often crosscut

horizontally several different modules, as in figure 1.

Figure 1. Non-functional concerns crosscutting among

different modules

 Furthermore, through the AspectJ compiler (ajc)

generic hooks are weaved into the application at

compile time. These hooks (called join points) are the

points where the desired crosscutting functionality

would take place. In AOP, the aspect is the basic

unit of abstraction (much like classes in Java) and is

composed of two constructs (pointcut and

advice). Pointcuts sense when a hook has been

reached in program execution, and it is at that point

where it redirects the call to an advice that contains the

implementation of the new functionality.

Figure 2. Aspects place hooks on source code and modularize

crosscutting functionality

In addition, reflective programming, typically

common in languages that run in a virtual machine

environment, allow programs to introspect (observe)

and possibly modify its structure and behavior at

runtime. In other words, through reflection, a developer

can obtain information about the structure of a class

such as its methods and fields. With this information

(metadata), reflection allows developers to create

classes and instances at runtime.

Furthermore, we will briefly explain the common

terminology used in the development and use of both

versions of TRAP/J. TRAP/J adaptation is composed

of two phases: 1) The Generation phase generates an

adapt-ready version of an existing application; it

includes the Aspect and Reflective classes. The Aspect

class performs the interception and redirection of code

through its generic hooks. The Reflective class wraps

the adaptable class and provides the mechanism to

manage and insert adaptive code. 2) The Composition

phase allows insertion of new code at startup time or

runtime. Adaptive behavior is provided through the

implementation of adaptive classes, which are called

delegate classes.

3. Previous System: TRAP/J

We will describe in high level the characteristics

of the first implementation of TRAP/J relating to its

performance and usability. In the following section we

will see how TRAP/J v2.1 addresses these issues.

3.1 Compile Time Model

TRAP/J’s compile time model consists of three

classes: Aspect, BaseLevel, and MetaLevel. The

Aspect class is generated by the Aspect Generator and

the rest by the Reflective Class Generator as shown in

figure 1. The Aspect is in charge of intercepting calls

from methods of the original application and

redirecting them to the new behavior. The BaseLevel

class provides implementation for all local and

inherited public, static, and final methods of the

adaptable class. The BaseLevel wraps its equivalent

adaptable class and extends it with mechanisms to

search and invoke the adaptive behavior in the

Delegate classes through the MetaLevel class.

 Figure 1 illustrates how the adapt-ready

application is generated. The adapt-ready application is

composed of the Aspect, Reflective Classes, and the

original application; all of which are input to the

Aspect compiler who is in charge of weaving the

generic hooks into the original application.

Figure 1. TRAP/J Compile time model

3.2 Runtime Model

One of the main goals of transparent adaptation is

to keep the performance of the adapt-ready application

very close to the original application (as if no

adaptation was provided). In other words, the level of

overhead must be reduced to a minimum. TRAP/J has

basically four layers in its runtime model: original

application, Base Level, Meta Level, and Delegate.

One issue is that the critical execution path of

TRAP/J has too many levels of indirection when

adaptable behavior is being invoked. To keep things

simple following figure 2, suppose a user decides to

make an application, OrigApp, adapt-ready. Within the

application, the user decides to make OrigClass

adaptable. When an instance OrigClass gets created

(ocInst), the Aspect intercepts this call and redirects

it to construct a Base Level instance. This is possible

due to the fact that the Base level instance extends the

origClass instance. Therefore, any method calls

meant for OrigClass will actually result in invoking

the equivalent (overridden) method calls on the Base

Level instance. The overridden method obtains the

reflective information about the invoked method and

uses its reference to a Meta Level instance to determine

if any of the loaded delegates implement a matching

method. If a matching delegate method exists, the

Aspect
Generator

Reflective Class
Generator

Source
Files

Java Compiler (javac)

Aspect BaseLeve
l

MetaLeve
l

AspectJ Compiler (ajc)

Class
List

Adapt-Ready
Application

Generator
Engine

adaptive behavior gets invoked; otherwise, the original

method will be invoked. The key issue is that this entire

process happens for any call to a method inside any of

the adaptable classes whether a Delegate with a

matching method has been inserted or not.

 Figure 2. TRAP/J runtime model

As we can see in figure 3, the main issue is where

the decision is made to determine whether adaptive

behavior is present. This introduces a lot of overhead to

the original application because for every method call

of an adaptable class, expensive reflective calls and

intense loop iterations occur unconditionally prior to

even knowing whether adaptive behavior is available;

hence, the application’s performance suffers greatly.

This degradation in performance is not constant, it

varies depending on the application and the amount of

adaptive behavior provided. In fact, the greater the

number of adaptable classes and the greater the number

of inserted delegate classes, the more overhead the

application will suffer. But even in the event that only

one adaptable class has been declared and little

adaptation has been provided, if the application is

making calls to methods of the adaptable class inside

the body of a loop, the performance will still suffer.

 Figure 3. TRAP/J execution path activity diagram

3.3 Usability

 Both generation and adaptation phases lack of a

clear GUI interface. The generator engine is invoked

through the command line by specifying configuration

settings and the file name of the list of classes the user

wants to make adaptable. The adaptation phase is done

through a delegate management console, where a user

types the name of the delegate he wants to use. Both

interfaces do not interact with the user. The delegate

management console provides no information as to the

current status of adaptation; namely, which classes or

instances are being adapted and by which delegates.

The lack of information about the state of adaptation is

the main issue of this tool.

4. New System: TRAP/J v2.1

TRAP/J v2.1 is a redesign of TRAP/J and

addresses the main concerns previously discussed

4.1 Compile time Model

The generator engine is similarly composed of an

Aspect Generator as well as a Reflective class

generator. The latter generates only one class,

 AApppplliiccaattiioonn
LLeevveell

BBaassee
LLeevveell

MMeettaa
LLeevveell

DDeelleeggaattee
LLeevveell

Class Heap

OrigClass oc_inst

MainClassinst

BaseLevel_OrigClass
oc_inst

MetaLevel_OrigClass
oc_inst

Del 1

Del 2

Del 3

del 1

del 2

del 3

X

MainClass

OrigApp.method()

BaseLevel.method()

m= Method object reflecting method()

MetaLevel.invokeMetaMethod(m)

Loop: searches for matching method in
every delegate.

ifDelFound
Yes

 super. method()

TRAP/J

No

delegateInstance. method()

WrapperLevel, which essentially merges the previous

MetaLevel and BaseLevel into one, more simplified

and manageable, class. The Aspect class is essentially

the same as in the original version of TRAP/J –redirect

the method calls made to an adaptable class to their

respective Wrapper Level implementations. Aside from

merging both layers, the Wrapper Level stores the

delegates that have been inserted using a smart delegate

insertion mechanism efficiently. This will become an

important factor in when measuring the runtime

performance of the new version.

In addition, the Generator also includes an Adapt-

ready Package generator, a feature that has been

extensively used in the Gridification of Java

applications. At the moment of generating the

WrapperLevel and Aspect classes, users may decide to

generate an adapt-ready package. This package is

essentially a JAR file which contains TRAP/J runtime

classes and the adapt-ready classes that, run in

conjunction with the original application, provides all

of the mechanism necessary to provide dynamic

adaptation at startup time or runtime.

 Figure 4. TRAP/J v2.1 Compile time model

4.2 Runtime Model

TRAP/J v2.1 provides many improvements over

its predecessor. By comparing Figure 5 and Figure 2

one can observe that the two outer layers are identical

in both TRAP/J and TRAP/J 2.1. The difference is that

in TRAP/J 2.1 the two middle layers from the previous

version were merged into one layer, the Wrapper

Level. Basically, the Wrapper Level encapsulates the

functionality of both the Meta Level and Base Level

from the original version of TRAP/J. Even though this

runtime model reduces the levels of indirection, it

alone does not guarantee a significant reduction of the

critical execution path. The main factor that plays a

key role is the smart delegate insertion mechanism that

TRAP/J 2.1 uses. In contrast to the previous version,

which simply adds each inserted delegate to the end of

a list data structure, TRAP/J 2.1 is designed to

determine exactly which methods does the delegate

provide adaptation for upon insertion. Therefore,

every time a delegate is inserted to adapt one of the

adaptable classes, this information is stored in the

respective Wrapper Level class, and thus made readily

accessible to the adapt-ready application. By using this

smart delegate insertion mechanism, we are paying the

cost of the additional time that it takes to insert a

delegate. But this cost is worth paying because the

additional knowledge that it provides the adapt-ready

application with, allows for it to run with a minimal

loss of performance with respect to the original

application. Figure 6 shows the reduced critical

execution path in TRAP/J 2.1: when a method from the

original application is invoked, the call is redirected to

the Wrapper Level method. At this point the adapt-

ready application is capable of knowing whether a

delegate with adaptable behavior has been provided, by

querying the information that is saved by the smart

delegate insertion mechanism. The difference between

the execution paths of TRAP/J and TRAP/J 2.1 lies

here. In the second version the adapt-ready application

only makes expensive reflective calls after it knows

that adaptive behavior is present. When no adaptive

behavior is provided, the adapt-ready application is

promptly aware of this and, therefore, does not incur

additional overhead. Thus, performance loss is greatly

reduced.

 Figure 5. Runtime model TRAP/J v2.1

 Figure 6. TRAP/J v2.1 execution path

The adapt-ready application is managed at runtime

by a singleton component, the Adaptation Manager. As

you can see in figure 5, it communicates closely with

the Wrapper Level to load and insert delegates. In

addition, it always keeps track of the current status of

the adapt-ready application.

The Adaptation Manager is the link between the

web based composer (see figure 8) and the adapt-ready

application. In other words, it allows users to retrieve

the current status and to provide the adaptive behavior

through the composer interface.

4.3 Usability

 In terms of usability, TRAP/J 2.1 features a

user friendly generator and composer interface. The

generator interface is equipped with an adapt-ready

package generator and a build-in AspectJ compiler.

4.3.1 Generator Interface

Figure 7 shows TRAP/J v2.1 Generator interface.

It is a simple user interface that allows users to browse

their current file system for the original application

project file. From a tree view display of the project,

users can choose which classes they want to make

adaptable from either the original application or a

standard java library class. An important thing to note

here is that any class in Java could be made adaptable

except, immutable class (e.g. java.lang.String,

java.lang.Integer). This imposes no restriction other

than the expected behavior: an immutable class is

always expected to behave the same way. Once the user

selects the classes he wants to make adaptable, he

clicks on the generate button. Users can also load

previously saved configuration files that contains all of

the classes selected if the user decides to regenerate a

similar adapt-ready application, as a snapshot of a

preciously saved configuration. After selecting all the

classes, user can invoke the Generator Engine to

generate the adapt-ready application. This provides a

significant improvement over the command line

counterpart in first implementation.

Heap

 AApppplliiccaattiioonn
LLeevveell

WWrraappppeerr
LLeevveell

DDeelleeggaattee
LLeevveell

OrigClass
Main Class

oc_Inst MainClassIns
t

WrapperLevel_
OrigClass

wL_Oc

Del 1
Del 2

Del 1
Del 2

TRAP/J v 2.1

OrigApp.method()

Yes

m=Method object
reflecting method()

Wrapper.invokeMethod(m)

delegateInstance. method()

No
ifDelPresent

Wrapper. method()

 super. method()

Class Library

Adaptation Manager

Figure 7. TRAP/J v2.1 Generator Interface

In addition, the Generator automates the process of

manually compiling the adapt-ready application. In

previous version of TRAP/J, users must manually

compile the generated adapt-ready application using

the AspectJ (ajc) compiler. This process is now done

automatically as part of the generation process as

TRAP/J 2.1 makes the necessary calls to the ajc.

Another convenient feature is that TRAP/J 2.1 can

create a TRAP/J runtime library which essentially

contains the core runtime classes weaved with the

generated classes. This allows users to deploy TRAP/J

easily to any machine. This has been successfully tested

in grid environments where TRAP/J was used to gridify

(adapt) applications otherwise not suited to run on a

grid. With this approach, however, the AspectJ

compiler must be called in order to weave together

TRAP/J runtime with the original application.

4.3.2 Composer Interface

TRAP v2.1 is structured with a client-server

architecture, which basically allows multiple remote

users to upload delegates (.class) files into the adapt-

ready application. TRAP/J incorporates a simple web

server implementation called NanoHTTPD, which

serves the composer interface that interacts with the

user. As we can see in figure 8, the Composer shows

the current status of the adapt-ready program including

all classes and instances being adapted, and delegates

which have been uploaded. The adapt-ready

application can be run in two modes: the “run” mode

allows a user to adapt the currently running adapt-ready

application by browsing and loading delegates

remotely. This interface depicts a clear status of the

currently running application by showing the name of

the application, the classes that were made adaptable,

all instances currently created, and all loaded delegates.

Figure 8. TRAP/J v2.1 Composer Interface

On the other hand, the application can be run in

“paused” mode. In this case, the user may load default

behavior for the entire class, and start the application

with this new behavior already inserted. When the

interface is launched is “paused” mode, the button

“Start Application” becomes enabled which notifies

users they can begin to execute the application. The

effect of specifying behavior of the entire class is that

all instances of the application will behave in

comparable fashion. Through the Composer Interface,

users can choose to load, remove, adapt, and unadapt

any delegates for either the entire class or particular

instances.

5. Case Study

We will demonstrate and explain the execution of

TRAP/J v2.1 based on a Maximum Subsequent Sum

(MSS) program.

We used three different algorithms with different

orders (see table 1) that all perform a MSS calculations

based on an input file of randomly generated numbers.

For each algorithm, we have developed a delegate

class. We will use TRAP/J to adapt MSS for both

instances and classes at startup time and at runtime.

Instance Algorithm Performance Time

Speed (sec)

1 Fast O(N) 0.0

2 Medium O(N
2
) 13.5

3 Slow O(N
3
) 30.4

 Table 1. MSS algorithms and running times results

As we can see in figure 8, MaxSum creates three

instances of MaxSumAlg, a class that implements a

Maximum Subsequent Sum algorithm. All instances

read from the same data structure of randomly

generated numbers. We have adapted all instances with

different algorithms at both runtime and startup time.

Initially, the application runs with a slow algorithm,

then we provided the adaptation to instances 2 and 3 at

runtime with the faster algorithms. We can also decide

to unadapt all instances and they will all go back to

their initial behavior.

6. Future Work

There are other approaches that could be taken to

provide Transparent Shaping. One approach uses

Attribute-Oriented Programming. Actually,

TRAP.NET uses a similar approach where adaptation

occurs at the level of methods. TRAP.NET is

essentially a plug in for Visual Studio and acts as a

preprocessor that reads and interprets custom attributes

and generates the adapt-ready application executable.

A similar approach could be used on Java, as well.

With the advent of J2SE 5.0 Annotations API, methods

and classes could be tagged with attributes that indicate

which methods/classes a user wants to make adaptable.

To realize this, a tool called XDoclet, an open source

Java tool, allows for custom attributes to be specified

within the Java code as Javadoc tags as figure 9 shows.

Similarly, we could make TRAP/J an Eclipse plug-in

preprocessor that reads and parses these annotations

from which it generates an adapt-ready application.

 Figure 9. Custom attributes used in adaptation

Another interesting extension is a trend called safe

adaptation. In grid computing, for instance, we have

used TRAP/J to adapt a matrix multiplication

application at startup time using hyper matrix

multiplication algorithm. The challenge is further

increased when adapting this kind of application at

runtime. Changing among blocking algorithms at

runtime requires TRAP/J to transition among

algorithms without loss of intermediate calculations.

7. Summary

TRAP/J v2.1 promises to deliver very close

performance to the original application. Original

method calls will be faster than TRAP/J since the

system will determine whether there’s a delegate

method present before obtaining the reflective

information; otherwise, any calls to any method for

which there is no delegate, the original method is called

without suffering any performance overhead (Refer to

figure 5 for detailed information). Moreover, TRAP/J

v2.1 will eliminate the exhaustive, unnecessary

searching from the previous version when invoking a

delegate method; the reflective information again is

obtained only when a delegate for that method has been

loaded.

/**
* @TRAP/J: makeAdaptable(true)
*/
public class MyClass {

 . . .

 /**

* @TRAP/J: makeAdaptable(true)
*/

 public void myMethod() {

 }

}

