
Computer Networks 53 (2009) 1570–1586
Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/locate /comnet
Transparent autonomization in CORBA

S. Masoud Sadjadi a,*, Philip K. McKinley b

a Florida International University, Miami, FL 33199, United States
b Michigan State University, East Lansing, MI 48824, United States

a r t i c l e i n f o a b s t r a c t
Article history:
Available online 29 December 2008

Keywords:
Transparent shaping
Adaptive middleware
CORBA
Autonomic computing
Self-optimization
Dynamic adaptation
Quality-of-service
Mobile computing
Generic proxy
1389-1286/$ - see front matter Published by Elsevi
doi:10.1016/j.comnet.2008.12.012

* Corresponding author. Tel.: +1 305 348 1835.
E-mail addresses: sadjadi@cs.fiu.edu (S.M. Sad

msu.edu (P.K. McKinley).
URLs: http://www.cs.fiu.edu/~sadjadi (S.M. Sadj

msu.edu/~mckinley (P.K. McKinley).
Increasingly, software systems are constructed by integrating and composing multiple
existing applications. The resulting complexity increases the need for self-management
of the system. However, adding autonomic behavior to composite systems is difficult, espe-
cially when the constituent components are heterogeneous and they were not originally
designed to support such interactions. Moreover, entangling the code for self-management
with the code for the business logic of the original applications may actually increase the
complexity of the systems, counter to the desired goal. In this paper, we address autonom-
ization of composite systems that use CORBA, one of the first widely used middleware plat-
forms introduced more than 17 years ago that is still commonly used in numerous systems.
We propose a model, called Adaptive CORBA Template (ACT), that enables autonomic
behavior to be added to CORBA applications automatically and transparently, that is, with-
out requiring any modifications to the code implementing the business logic of the original
applications. To do so, ACT uses ‘‘generic” interceptors, which are added to CORBA applica-
tions at startup time and enable autonomic behavior to be introduced later at runtime. We
have developed ACT/J, a prototype of ACT in Java. We describe a case study in which ACT/J
is used to introduce three types of autonomic behavior (self-healing, self-optimization, and
self-configuration) to a distributed surveillance application.

Published by Elsevier B.V.
1. Introduction

Driven by the Internet revolution and its effects on
information technology, the last decade has witnessed
proliferation of integration middleware technologies
addressing software integration problems [1]. Instead of
developing new software systems from scratch, the focus
of integration middleware technologies has been on lever-
aging available software resources by enabling their inter-
operation [2]. CORBA 2.0 [3], released in 1996, was among
the first middleware technologies to address integration is-
sues [4], and since then CORBA has been successfully used
in the integration of numerous software systems [5].
er B.V.

jadi), mckinley@cse.

adi), http://www.cse.
A typical CORBA application comprises heterogeneous
software components, often developed in different pro-
gramming languages and targeting different platforms
(operating systems, devices, and networks). Indeed, a ma-
jor goal of CORBA and other middleware platforms is to
hide this heterogeneity from the business logic of the inte-
grated applications. While this approach helps developers
to integrate their systems more easily, the management
of complex CORBA-based systems is challenging, especially
as they evolve to accommodate new software and hard-
ware technologies. In particular, managing composite sys-
tems involves ensuring non-functional concerns such as
quality-of-service, fault tolerance, and security. Unfortu-
nately, these concerns are often directly affected by the
underlying technologies and the environments in which
the application is deployed.

Autonomic computing [6] promises a general solution to
the management problem that relies on complex systems

mailto:sadjadi@cs.fiu.edu
mailto:mckinley@cse.msu.edu
mailto:mckinley@cse.msu.edu
http://www.cs.fiu.edu/~sadjadi
http://www.cse. msu.edu/~mckinley
http://www.cse. msu.edu/~mckinley
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet

S.M. Sadjadi, P.K. McKinley / Computer Networks 53 (2009) 1570–1586 1571
to manage themselves. Instead of requiring low-level
interaction with users or system administrators, self-man-
aging systems would require only high-level human guid-
ance – defined by goals and policies – in order to work as
expected. Each autonomic element in the system com-
prises a managed element, implementing the business logic
of the system, and an autonomic manager, implementing
the self-managing behavior of the system. However, self-
management concerns (self-healing, self-optimization,
self-configuration, and self-protection) tend to crosscut
the functional decomposition in the managed elements
[7–9]. Consequently, if the code for self-management is
entangled with the code for the business logic of the origi-
nal systems, then the complexity of managing the resulted
autonomic system may actually increase, contradicting the
purpose of autonomic computing.

This paper describes the Adaptive CORBA Template (ACT),
a framework that enables dynamic addition of autonomic
behavior to existing CORBA systems, without modifying
the application code. At startup time, ACT turns the con-
stituent software programs into managed elements by
transparently inserting generic hooks capable of intercept-
ing all CORBA remote interactions. Next, at run time, these
hooks can be used to introduce autonomic managers into
the system. An autonomic manager in turn can intercept
the requests, replies, and exceptions that pass through
the CORBA Core (called ORB, which stands for Object Re-
quest Broker), adapting or redirecting them as needed.
Effectively, ACT enables transparent autonomization (i.e.,
transparent addition of self-managing behavior) in CORBA
applications.

We identify three types of applications that may benefit
from such a capability. First, dependable applications are
required to operate continuously without interruption;
code for handling newly discovered faults and in general
self-managing behavior can be added to these applications
as they execute. Second, embedded applications are re-
quired to provide very small footprints; a minimal auto-
nomic code can be added to the application at compile or
startup time, while optional and temporary autonomic
code can be swapped in and out as needed during run time.
Third, the source code for some legacy CORBA applications
may be unavailable, or modifying the source code may be
undesirable. Such applications can be autonomized trans-
parently using ACT, without modifying or even recompil-
ing the original application source code.

Various aspects of the ACT framework have been de-
scribed in earlier conference papers [10,11]; this paper
provides a complete picture of the ACT project, presents
a more comprehensive architectural solution, and includes
additional details of the autonomization process and
experimental results for three different types of autonomic
behavior: self-healing, self-optimization, and self-configu-
ration. The remainder of this paper is organized as follows.
Section 2 provides a background on CORBA and describes
the architecture and operation of ACT, as well as a Java pro-
totype, ACT/J. Section 3 presents a case study where we
used the ACT prototype to add three different types of
autonomic behavior to an existing surveillance application.
Section 4 categorizes related research projects, and Section
5 provides concluding remarks.
2. ACT architecture and operation

ACT is intended to support the construction of adaptive
CORBA applications from existing CORBA applications
transparently, that is, without modifying the original appli-
cation functionality. ACT should enable CORBA applica-
tions to support adaptive behavior at run time without
the need to stop, modify, recompile, relink, or restart the
applications. Moreover, ACT should introduce nominal
overhead to the performance of the existing applications.
With these design goals in mind, we developed a two-step
process that supports transparent autonomization in exist-
ing CORBA applications. In the rest of this section, we pro-
vide a brief overview of CORBA and the autonomization
process, describe the architecture and internal operation
of ACT, and discuss the prototype implementation of ACT
in Java.
2.1. CORBA background

The Common Object Request Broker Architecture (CORBA)
[12] is an integration and distribution middleware specifi-
cation defined by the Object Management Group (OMG)
[4]. Fig. 1 depicts a simple client–server CORBA application
comprising a client and a server program and their orienta-
tion among three system layers: application, middleware,
and network.

Let us assume that the client has a valid reference to the
CORBA object realized by the servant. For clarity, a broker
program is not shown. The Object Request Broker (ORB), the
core of CORBA, allows objects to interact transparently
with other objects (located locally or remotely). A CORBA
object is represented by its interface, is identified by its ref-
erence, and is realized in an object-oriented program as a
local object called the servant. The client calls methods
on the servant as if the CORBA object were located in the
client address space. The Interface Definition Language
(IDL) is a language for defining CORBA interfaces. An IDL
compiler is used to automatically generate the code for
stubs and skeletons. An IDL stub represents a servant lo-
cally in the client address space and an IDL skeleton repre-
sents a client locally in the servant address space. IDL stubs
and skeletons marshal and unmarshal requests and re-
sponses to enable object interactions over a network.

CORBA Portable Request Interceptors provide a transpar-
ent mechanism to intercept messages (reified requests, re-
plies, and exceptions) inside the ORBs of a CORBA
application. For example, a portable interceptor can be
used to forward a particular request to a different CORBA
object (e.g., forwarded request flows 2, 3, and 4 in Fig. 1).
However, to ensure portability, interceptors are not al-
lowed to reply to intercepted requests or to modify the
parameters [12]. This restriction limits the ability of re-
quest interceptors alone to adapt the behavior of CORBA
applications.
2.2. Autonomization process

Fig. 2 illustrates the two-step process to autonomize an
existing CORBA application using ACT. As this process is

Fig. 1. CORBA request portable interceptors.

1572 S.M. Sadjadi, P.K. McKinley / Computer Networks 53 (2009) 1570–1586
similar for both server- and client-side programs, in this
figure we only show the client-side process. Also, for clar-
ity, some details such as stubs, skeletons, and IIOP (Inter-
net Inter-ORB Protocol) are not shown. During the first
step, which occurs at startup time, a generic interceptor is
added to the existing CORBA application (Client GI for
the client program and Server GI for the server program).
A generic interceptor is a specialized request interceptor
that is registered with the ORB of a CORBA application at
startup time, but enables late (dynamic) registration of
other portable interceptors. Once registered, a generic
interceptor intercepts all the requests, replies, and excep-
tions passing through the ORB. The initial behavior of a
generic interceptor is simply to forward all the intercepted
interactions to their original destinations. Therefore, when
there is no need for dynamic adaptation, the original appli-
cation functionality and behavior is preserved. As we will
show in later sections, the overhead of the interception
and redirection by a generic interceptor is negligible for
most applications. At this point, the CORBA program (with
the generic interceptors registered both at the client- and
server-side programs) is called a managed element, or an
adapt-ready program.
Fig. 2. ACT autonom
As illustrated in Fig. 2, during the second step, which
occurs at run time, the generic interceptors in the adapt-
ready CORBA programs can be controlled remotely (e.g.,
by using administration consoles supported in ACT) to load
the ACT Core (Client ACT Core for the client program and
Server ACT Core for the server program). The right side of
Fig. 2 shows how the client generic interceptor redirects
the flow of a request/reply to the client ACT core. The
ACT core basically encapsulates the code that responds to
the unanticipated changes at run time. In the autonomic
computing terminology, this code is known as ‘‘autonomic
manager” [6]. Once such code is added to an adapt-ready
program, the application is called an autonomic element,
or an ACT-ready program. For flexibility, making the pro-
gram to be an autonomic element can be done either at
startup time (right after the program has become adapt-
ready) or it can wait until run time when the need arises.

2.3. ACT architecture

ACT comprises two main types of components: generic
interceptors and instances of the ACT core. As depicted in
Fig. 3, the client generic interceptor intercepts all outgoing
ization steps.

Fig. 3. ACT configuration in the context of a simple CORBA application.

S.M. Sadjadi, P.K. McKinley / Computer Networks 53 (2009) 1570–1586 1573
requests and incoming replies (or exceptions) and for-
wards them to its ACT core. Similarly, the server generic
interceptor intercepts all the incoming requests and outgo-
ing replies (or exceptions) and forwards them to its ACT
core.

Fig. 4 shows the flow of a request/reply sequence inter-
cepted by the client ACT core. The components of the core
include dynamic interceptors, a proxy, a decision maker,
and an event mediator. Each component is described in
turn.

2.3.1. Dynamic interceptors
According to the CORBA specification [12], a request

interceptor is required to be registered with an ORB at
the ORB initialization time. The ACT core enables registra-
tion of request interceptors after the ORB initialization
Fig. 4. ACT core components interacti
time (at run time) by publishing a CORBA interceptor-reg-
istration service. Such request interceptors are called dy-
namic interceptors. Dynamic interceptors can be
unregistered with the ORB at run time when they are no
longer needed. In contrast, a request interceptor that is
registered with the ORB at startup time is called a static
interceptor and cannot be unregistered with the ORB dur-
ing run time. We note that the code developed for a static
interceptor and that for a dynamic interceptor can be iden-
tical, the difference being the time at which they are regis-
tered. In ACT, only the generic interceptors are static.

A rule-based interceptor is a particular type of dynamic
interceptor that uses a set of rules to direct the operations
on intercepted requests. The rules can be inserted, re-
moved, and modified at run time. A rule consists of two ob-
jects: a condition and an action. To determine whether a
ng with the rest of the system.

1574 S.M. Sadjadi, P.K. McKinley / Computer Networks 53 (2009) 1570–1586
rule matches a request, a rule-based interceptor consults
the rule’s condition object. If a match is found, the inter-
ceptor sends the request to the action object of the rule.
Since it is part of a CORBA portable interceptor, the action
object cannot itself reply to the request or modify the re-
quest parameters [12]. The action object can, however,
send new requests, record statistics, or raise a ForwardRe-

quest exception, causing the request to be forwarded to an-
other CORBA object, such as a proxy.

2.3.2. Proxies
A proxy is a special CORBA object that plays the role of a

surrogate for other CORBA objects. A proxy receives re-
quests originally targeted for its corresponding CORBA ob-
ject, as depicted in Fig. 4. Unlike a request interceptor, a
proxy is not prohibited from replying to intercepted re-
quests. A proxy can reply to the intercepted request by
sending a new request (possibly with modified arguments)
to either the target object or to another object. Alterna-
tively, a proxy can reply to the intercepted requests using
local data (e.g., cached replies).

In ACT, there are two types of proxies: specific and gen-
eric proxies. A specific proxy is a surrogate for a specific
CORBA object. It provides the same set of methods as the
CORBA object (that is, a specific proxy is required to imple-
ment the same interface as that of its corresponding COR-
BA object). A generic proxy, in contrast, is a surrogate for all
CORBA objects. A generic proxy can receive requests des-
tined to any CORBA object and can send requests to the ori-
ginal target CORBA objects or to any other CORBA objects
dynamically. As a result, a generic proxy may introduce
more overhead than a specific proxy. A generic proxy is
generated per language, whereas a specific proxy is gener-
ated per CORBA object. Due to its special role in ACT, the
generic proxy is described in more detail in a dedicated
subsection (see Section 2.5).

2.3.3. Decision makers
A decision maker assists proxies in replying to inter-

cepted requests as depicted in Fig. 4. A decision maker re-
ceives requests from a proxy and, similar to a rule-based
interceptor, uses a set of rules to direct the operation on
the intercepted requests. However, unlike a rule-based
interceptor, a decision maker is not prohibited from reply-
ing to the requests.

2.3.4. Event mediators
An event mediator is a CORBA object that decouples

event generators from event listeners using a publish/sub-
scribe approach. We adopted this concept from the work
by Bacon et al. [13]. An event mediator publishes a listener
service, enabling registration of CORBA objects as event lis-
teners. The event mediator is informed of events through a
notification service. An event mediator forwards a copy of
a new event to all listeners that have registered interest in
this type of event.

2.4. ACT Internal operation

To describe the interactions among the ACT compo-
nents, we refer again to the configuration shown in Figs.
3 and 4. Here, we consider only the activities on the client
side and, for clarity, stubs and skeletons are not
considered.

First, the request from the client to the servant is for-
warded to the proxy. After the request is received by the
client ORB, it is intercepted by the client generic intercep-
tor, where it is forwarded to the client rule-based intercep-
tor. The client rule-based interceptor checks its active
rules. In this scenario, let us assume it finds a rule that
matches the request. The rule raises a ForwardRequest

exception, which is passed to the client generic interceptor
and then to the client ORB, where the request target is
changed to the proxy. Before the new request is sent to
the proxy, it is intercepted again by the client generic
and rule-based interceptors, but this time no exception is
raised, and the call simply returns. The proxy receives
the request.

Next, the proxy processes the request and forwards it to
the servant. The proxy consults the decision maker, where
an event may be raised to handle an unexpected situation.
The decision maker may adapt the client application by
modifying the request parameters, sending new requests
to other objects, or directing the proxy to reply to the re-
quest (e.g., using cached replies). We assume that in this
scenario, the decision maker modifies the request parame-
ters and directs the proxy to send the modified request to
the servant via the client ORB. The modified request is also
intercepted by the client generic and rule-based intercep-
tors, but again no exception is raised. Therefore, the mod-
ified request is sent to the server ORB.

The reverse sequence of actions occurs at the server
application (not shown), and the reply to the modified re-
quest is returned to the client ORB. The reply is intercepted
by the client generic interceptor and rule-based intercep-
tors, where no exception is raised. The reply is sent back
to the proxy, where it is forwarded to the decision maker
for possible modifications and possible event raising.

Finally, using the reply from the servant and the direc-
tion given by the decision maker, the proxy replies to the
client’s request. The reply is intercepted by the client gen-
eric and rule-based interceptors. Again no exception is
raised, and the client ORB sends the reply back to the
client.

The extensive redirecting of messages in ACT raises the
issue of performance overhead. We deem such overhead as
necessary to provide flexibility and transparency. More-
over, our experimental results, described in Section 3.2,
indicate that the overhead is actually quite small.

2.5. Generic proxy

To enable dynamic weaving of adaptive functionality
that is common to multiple applications, ACT needs to
intercept and adapt CORBA requests, replies, and excep-
tions in a manner independent of the semantics (the
application logic) and syntax (the CORBA interfaces) of
specific applications.

As opposed to a specific proxy, which provides the same
set of methods as the target CORBA object, the generic
proxy is a particular CORBA object that is able to receive
any CORBA request. To determine how to handle a

S.M. Sadjadi, P.K. McKinley / Computer Networks 53 (2009) 1570–1586 1575
particular request, the generic proxy accesses the CORBA
interface repository [12], which provides all the IDL
descriptions for CORBA requests. The repository executes
as a separate process and is usually accessed through the
ORB. Most CORBA ORBs provide a configuration file or sup-
port a command-line argument that allows the user to
introduce the interface repository to the application ORB.
Providing IDL information to the generic proxy via the
interface repository implies no need to modify or recom-
pile the application source code. The interface repository,
however, requires access to the CORBA IDL files used in
the application, which are typically available.

In its default operation, the generic proxy intercepts
CORBA requests, acquires the request specifications from
a CORBA interface repository, creates similar CORBA re-
quests and sends them to the original targets, and forwards
replies from those targets back to the original clients. A
generic proxy also publishes a CORBA service that can be
used to register a decision maker.

Fig. 5 illustrates the sequence of a request/reply in the
ACT core, which contains a rule-based interceptor, a gener-
ic proxy, and a rule-based decision maker. First, a request
from the client application is intercepted by the rule-based
interceptor, which checks its rules for possible matches. A
default rule, initially inserted in its knowledge base, directs
the rule-based interceptor to raise a ForwardRequest excep-
tion, which results in its forwarding the request to the gen-
eric proxy. When the generic proxy receives the request, it
acquires the request interface definition via the application
ORB, which in turn retrieves the information from the
interface repository. The generic proxy creates a new re-
quest and forwards it to the rule-based decision maker.
The rule-based decision maker checks its knowledge base
for possible matches to the request. Depending on the
Fig. 5. Incorporating generic
implementation of the rules, the decision maker may re-
turn either a modified request to the generic proxy or a re-
ply to the request. If the decision maker returns the request
(or a modified request), the generic proxy will continue its
operation by invoking the request. If the reply to the re-
quest is returned by the decision maker, the proxy replies
to the original request using the reply from the decision
maker. The generic proxy uses the CORBA dynamic skele-
ton interface (DSI) [12] to receive any type of request.
The generic proxy and the rule-based decision maker use
the CORBA dynamic invocation interface (DII) [12] to cre-
ate and invoke a new request dynamically.

2.6. ACT/J: ACT prototype in Java

We have developed ACT/J, a prototype of ACT in Java,
and used it to evaluate the ACT framework in real applica-
tions. We tested ACT/J atop ORBacus [14], a CORBA-com-
pliant ORB distributed by IONA Technologies. ORBacus,
like JacORB [15], TAO [16], and many other CORBA ORBs,
supports CORBA portable interceptors, the only require-
ment for using ACT.

To make a CORBA application ACT-ready at startup
time, we need to resolve the following bootstrapping is-
sues. First, we need to register a generic interceptor with
the application ORB. Like many other ORBs, ORBacus uses
a configuration file that enables an administrator to regis-
ter a CORBA portable interceptor with the application ORB.
JacORB and TAO use a similar approach. Second, since the
components in the ACT core are also CORBA objects, they
require an ORB to support their operation (registration of
services, and so on). Therefore, we need either to obtain a
reference to the application ORB for this purpose, or to cre-
ate a new ORB. ORBacus does provide such a reference,
proxy in the ACT core.

1576 S.M. Sadjadi, P.K. McKinley / Computer Networks 53 (2009) 1570–1586
although the CORBA specification does not support this
feature. To implement ACT/J over an ORB that does not
provide such a reference, we could simply create a new
ORB, although its use introduces additional overhead.

In this study, the composer of the adaptive application
is assumed to be a human, who performs dynamic adapta-
tion using the administrative consoles. Therefore, to test
the operation of ACT/J, we developed two administrative
consoles: the Interceptor Registration Console and the Rule
Management Console. In other settings, the composer
might be a piece of software – an aspect weaver, a compo-
nent loader, a runtime system, or a metaobject [7]. The
Interceptor Registration Console enables a user to manually
register a dynamic interceptor. This console first obtains
a generic interceptor name from the user and checks if
the generic interceptor is registered with the CORBA nam-
ing service. Next, the user can register a dynamic intercep-
tor with the generic interceptor. The Rule Management
Console allows a user to manually insert rules into rule-
based interceptors. In the next section, we describe a case
study in which we use ACT/J to enhance an existing CORBA
application with different types of autonomic behavior.
3. Case study: an autonomic surveillance application

To evaluate ACT/J, we conducted a case study in which
self-management code is woven into an existing CORBA
application, without modifying the application source
code. The experiments demonstrate that ACT/J is capable
of adding self-healing, self-optimization, and self-configu-
ration to CORBA applications with negligible performance
overhead. We begin this section with a brief overview of
the existing application, followed by the description of
the experiments.

3.1. The example application

Surveillance systems are becoming an important part of
our daily life. Such systems are commonly deployed in air-
ports, banks, offices, and even individual homes. Currently,
surveillance systems are undergoing a transition from tra-
ditional analog solutions to digital ones. Compared to tra-
Fig. 6. The architecture of an autonom
ditional analog systems, digital surveillance systems offer
better flexibility in video/image content processing, trans-
mission, motion detection, facial recognition, and object
tracking.

Fig. 6 shows an example surveillance system. The left
side of the figure shows the physical configuration; the
system comprises two types of components: video/image
capture and control components. The capture component
usually includes one or more cameras and an encoder de-
vice. This component captures the raw video or images
and compresses the data using a prescribed coding stan-
dard (e.g., MPEG2, MPEG4, or H.263). The video control
component monitors the video channels and controls the
operation of the cameras. The right side of Fig. 6 depicts
our strategy for making each such component an auto-
nomic element. The autonomic manager is the ACT core
and the redirection (interception and modification arrows)
is done by the generic interceptor.

In the case study, we used an existing and freely avail-
able CORBA image-retrieval application developed previ-
ously by BBN Technologies [17]. As illustrated in Fig. 7,
this application has two parts: a client program (image cli-
ent) that continuously retrieves images from a server pro-
gram (described next) and displays the images on the
screen as soon as they are available; and a server program
(image server) that stores images, wait for the requests for
images, and replies to each request by sending back an im-
age. The image server provides four different versions of
each image, varying in size and quality. Typical compara-
tive file sizes we used in the experiments are 90, 25, 14,
and 4 KB, corresponding to large-processed, large-unpro-
cessed, small-processed, and small-unprocessed.

The image-retrieval application was developed in Java
and was distributed as part of the Quality Objects (QuO)
framework. QuO [18] is released under an open-source li-
cense. It is a powerful adaptive framework that supports
dynamic adaptation in CORBA and Java RMI applications.
Some background on QuO is provided later in this section.
Please note that except for the last experiment described in
this section, we did not use the native adaptability features
in QuO. Rather, our focus in on how ACT/J can be used to
enhance the application without modifying the application
code.
ic video surveillance application.

Fig. 7. The image-retrieval application developed previously by BBN Technologies [18]: Recommended configuration: Linux OS and wired network.

S.M. Sadjadi, P.K. McKinley / Computer Networks 53 (2009) 1570–1586 1577
3.2. ACT/J overhead

We autonomized the image-retrieval application in two
steps. First, we made the application adapt-ready by intro-
ducing a generic interceptor to the image client and image
server at startup time. To do so, we started the image client
and server applications with a command-line parameter
directing them to an ORBacus configuration file defining
how to load, create and register a generic interceptor with
their respective ORBs. Next, using the generic interceptors
and the administrative consoles, we inserted the auto-
nomic manager (the ACT core) in both image client and im-
age server, converting them to become autonomic
elements (ACT-ready programs). Since the default behavior
of ACT is to intercept all the remote interactions and for-
ward them to their original targets, this configuration en-
ables us to measure the overhead of introducing this
control mechanism.

To evaluate the overhead of using ACT/J, we conducted
two sets of experiments: for one set, we used the original
image-retrieval application; and for the other set, we used
the autonomic version of the application. For each set, we
used images of varying size (14 different sizes ranging
from 1 KB to 8 MB) and evaluated the average round-trip
delay on a low traffic 11 Mbps wireless network. The image
server was running on a desktop computer connected to an
802.11b wireless access point through a wired network,
and the image client was running on a laptop computer
Fig. 8. Overhead of using ACT/J measured b
connected to the access point through the wireless net-
work. The laptop was kept stationary throughout this
experiment. Fig. 8 compares the round-trip delay for
retrieving images of varying size, using both the original
application and the autonomic version. As shown, this
overhead introduced by ACT/J is negligible.

3.3. Self healing

In the next set of experiments, the client code executes
on the laptop of a mobile user who is monitoring a physical
facility through continuous still images drawn from multi-
ple camera sources. We executed the server on a desktop
computer connected to a 100 Mbps wired network. Both
the desktop and laptop systems are running the Linux
operating system.

The client laptop is located in a three-cell wireless net-
work, and the objective of this exercise is to introduce
hand-off behavior to the application enabling its connec-
tivity to be switched among different wireless access
points without interrupting the application. Fig. 9 shows
the physical configuration of the three access points used
in the experiment. (The wireless cells are drawn as circles
for simplicity – the actual cell shapes are irregular, due to
the physical construction of the building and orientation of
antennas.) AP-1 and AP-3 provide 11 Mbps connections,
whereas AP-2 provides only 2 Mbps. The desktop running
the server application is close to AP-1. AP-1 and AP-2 are
y round-trip delay in request/reply.

Fig. 9. The configuration of the access points used in the experiment.

1578 S.M. Sadjadi, P.K. McKinley / Computer Networks 53 (2009) 1570–1586
managed by our Computer Science and Engineering (CSE)
Department, whereas AP-3 is managed by the College of
Engineering. This difference implies that the IP address as-
signed to the client laptop needs to change as the user
moves from a CSE wireless cell to a College cell. The self-
healing rules in ACT are aware of such handoff in mobile
computing and as such they provide a better connectivity
for the application.

Fig. 10 shows two plots corresponding to the two exper-
iments we conducted to demonstrate the self-healing
behavior of the autonomized surveillance application:
one plot corresponds to the experiment with the original
application and the other plot corresponds to the experi-
ment with the autonomized application. In both experi-
ments, for the first 120 s, the user stays close to the
location A and then at time 120 s the user starts walking
from location A to location B for 60 s (see Fig. 9 for location
reference). As illustrated in Fig. 10, for the first 180 seconds
into the experiments, the frame rates for the two experi-
ments remains at about 4.5 frames per second (the frame
rate for the autonomized application is a bit less than the
original application because of the overhead introduced
by ACT). At time 180 s, the user begins walking from B to
Fig. 10. Frame rate demonstrating the se
C and then back from C to B for 120 s. For this period, as
the subnetwork does not change and the IP address pro-
vided by the Department DHCP server is still valid, both
applications switch to the access point at location C (AP-
2) without any problem. During this period, the frame rate
goes down to 2 frames per second because of the lower
bandwidth of AP-2 (2 Mbps vs. the 11 Mbps bandwidth
of AP-1).

At point 300 s, the user begins walking from B to D and
then back from D to B for 180 s. During this period, the ori-
ginal application loses connection and the frame rate goes
to zero. Even when the signal for AP-3 is strong enough, the
original application still cannot use this wireless network
to resume its operation because the IP address assigned
by the Department is not valid for the College network.
The autonomized application, however, tries aggressively
to maintain the connection. It can work also with the
new IP address assigned by the College network and for a
significant part of this 180 s period, it maintains a high
frame rate. Finally, at point 480 s, the user begins walking
from B back to A for 120 s. During this period, both appli-
cations try to use AP-1 for their operation (the autonom-
ized version is quicker in this regard) and they both
lf-healing behavior added by ACT.

S.M. Sadjadi, P.K. McKinley / Computer Networks 53 (2009) 1570–1586 1579
maintain a 4.5 frame rate for the rest of experiments. We
note that if the period of disconnection is long enough,
the original application will crash (a network exception is
thrown by CORBA ORBs and the original application does
not know how to handle this exception).

3.4. Self optimization

To investigate how ACT/J can support self-optimization,
we developed an application-specific rule that maintains
the frame rate of the application by controlling the image
size or inserting inter-frame delays dynamically. The origi-
nal image-retrieval application operates in a default mode,
which retrieves and plays images as fast as possible. ACT/J
enables a developer to weave the new rule into the appli-
cation at run time, thereby providing new functionality
(frame rate control) transparently with respect to the
application. The self-optimization rule maintains the frame
rate of the application in the presence of dynamic changes
to the wireless network loss rate, the network (wired/wire-
less) traffic, and CPU availability.

Fig. 11 shows the Automatic Adaptation Console,
which diplays the application status and also enables
the user to enter quality-of-service preferences. As shown
in this figure, the rule uses several parameters to decide
on when and how to adapt the application in order to
maintain the frame rate. These parameters have default
values as shown in the figure, but can be modified at
run time by the user. The Average Frame Rate Period

indicates the period during which the average frame rate
should be calculated to be considered for adaptation. The
Stabilizing Period specifies the amount of time that
the rule should wait until the last adaptation stabilizes;
Fig. 11. Automatic Ada
also if a sudden change occurs in the environment such
as a hand-off from one wireless cell to another one, the
system should wait for this period before it decides on
the stability of the system. The rule detects a stable situ-
ation using the Acceptable Rate Deviation; when the
frame rate deviation goes below this value, the system is
considered stable. Similarly, the rule detects an unstable
situation, if the instantaneous frame rate deviation goes
beyond the Unacceptable Rate Deviation value. The
rule also maintains a history of the round-trip delay asso-
ciated with each request in each wireless cell. Using this
history and the above parameters, the rule can decide to
maintain the frame rate either by increasing/decreasing
the inter-frame delay or by changing the request to ask
for a different version of the image with smaller/larger
size. The default behavior of the rule is to display images
that are as large as possible, given the constraints of the
environment.

Fig. 12 shows a trace demonstrating automatic adapta-
tion of the application in the following scenario. In this
experiment, the user has selected a desired frame rate of
2 frames per second, as shown in Fig. 11. For the first
60 s of the experiment, the user stays close to location A
(Fig. 9). The rule detects that the desired frame rate is low-
er than the maximum possible frame rate, based on ob-
served round-trip times. Hence, it inserts an inter-frame
delay of approximately 200 ms to maintain the frame rate
at about 2 frames per second. At time 120 s, the user starts
walking from location A to location B for 60 s. The auto-
matic adaptation rule maintains the frame rate by decreas-
ing the inter-frame delay during this period.

At time 180 s, the user begins walking from location B
to location C and back again, returning to location B at
ptation Console.

4

3.5

3

2.5

2

1.5

1

0.5

0
0 60 120 180 240 300 360 420 480 540

Fig. 12. Maintaining the application frame rate using automatic adaptation.

1580 S.M. Sadjadi, P.K. McKinley / Computer Networks 53 (2009) 1570–1586
360 s. During this period, because the AP-2 access point
provides 2 Mbps, the automatic adaptation rule detects
that the current frame rate is lower than that desired. It
first removes the inter-frame delay, but the frame rate
does not reach to 2 frames per second. Therefore, it re-
duces the quality of the image by asking for a smaller im-
age size. Now the frame increases beyond that desired, so
the automatic adaptation rule inserts an inter-frame de-
lay of 400 ms to maintain the frame rate at 2 frames
per second. Although there is some oscillation, the rate
stabilizes by time 360 s. At this point, the user continues
walking from location B to location A, prompting the rule
to reverse the actions. First the inter-frame delay is in-
creased to maintain the frame rate, followed by an in-
crease in image size. In this manner, the rule brings the
application back to its original behavior. Again, because
the current frame rate is higher that expected, an inter-
frame delay of about 200 ms is inserted to maintain the
frame rate at 2 frames per second. This result is promis-
ing and demonstrates that it is possible to add self-opti-
mizing behavior to a CORBA application transparently
and dynamically.

3.5. Self configuration

To investigate the use of ACT in transparent self-config-
uration, we combined ACT/J with QuO. ACT and QuO can
work together in two major ways. First, ACT enables legacy
CORBA applications to incorporate and benefit from QuO
functionality, without modifying the source code of the
application (indeed, even if the source code is unavailable).
Such a need may arise if the application is to be executed in
an environment where conditions might be quite different
than originally planned. Second, combining QuO and ACT
enables weaving of adaptive code into distributed applica-
tions at both compile time and run time; we describe a
specific example later in this section. We begin a brief
overview of QuO, for completeness, followed by a discus-
sion of how ACT and QuO interact and a description of an
experiment in which they were combined to enhance an
extant application.
3.5.1. QuO background
QuO employs aspect-oriented programming [19] to sep-

arate the non-functional aspects from the functional as-
pects of an application. Fig. 13 illustrates a very simple
QuO application. The client wrapper (or delegate) is the
main point of contact between the client and the QuO core.
The client wrapper is generated from a program written in
the aspect-oriented structural description language (ASL)
[20]. The QuO core comprises a contract and several system
conditions. A contract is written in the contract-description
language (CDL) [20] and defines acceptable regions of oper-
ation. System conditions can be considered as software ‘‘sen-
sors” that record values representing the state of the
execution environment. QuO combines the code for the
QuO core and the code for wrapper into a package called
a qosket. Using an aspect weaver called quogen [18], QuO
weaves a qosket into an application at compile time.

As shown in Fig. 13, a request from the client is first re-
ceived by the client wrapper. In a typical CORBA applica-
tion, a client has a reference to a CORBA object stub. In
QuO, however, the application developer explicitly creates
the client wrapper, which wraps the stub (the wrapped
stubs are not shown). The client wrapper consults the con-
tract in the client QuO core. The contract evaluates the cur-
rent acceptable region of operation according to the details
of the request and the status of the system as monitored by
the system-condition objects. Once the current region of
operation is identified, the actions specified in the contract
are carried out. These actions might include returning a ca-
ched reply to the client, sending a request different than
the original, forwarding the request with modified param-
eters, or redirecting the request to another CORBA object. If
the reply is not generated locally, the request (or a modi-
fied request) is passed to the client ORB. The request is
then sent to the server side of the application, where the
reverse sequence of actions occurs. The reply generated
by the servant, possibly modified by the server QuO core,
will eventually reach the client ORB, where it is passed to
the client wrapper. The client wrapper consults the client
QuO core again for possible modifications and, finally, re-
turns the reply to the client.

Fig. 13. A simplified depiction of the QuO architecture.

S.M. Sadjadi, P.K. McKinley / Computer Networks 53 (2009) 1570–1586 1581
3.5.2. Dynamic weaving of qoskets using ACT
Combining ACT with QuO enables transparent weaving

of new qoskets into applications at run time. Fig. 14 shows
a request/reply sequence in a simple CORBA application
using both QuO and ACT. The client and server generic
interceptors are registered with the client and server ORBs,
respectively, at startup time. To weave a new qosket into
the application at run time, a new rule can be inserted in
the client rule-based interceptor. The new rule can direct
the rule-based interceptor to load the code for a proxy
and a decision maker. The proxy in this case is simply a
modified QuO wrapper, and the decision maker is exactly
the contract defined in the new qosket. The rule then inter-
cepts all incoming and outgoing requests/replies and for-
wards them to the proxy, where they are processed as if
the qosket had been woven in to the application at compile
time.
Fig. 14. Coupling A
3.5.3. Example: supporting unanticipated adaptation
To evaluate the performance and functionality of the

hybrid ACT/QuO architecture described above, we used it
to insert new adaptive functionality into the image-retrie-
val application at run time. This application supports sev-
eral different types of qoskets, which can be woven into
the application at startup time. A particular qosket called
‘‘UserAdapt” enables a user to modify the application inter-
actively by directing it to retrieve different versions of the
images. For example, selecting small instead of large ver-
sions of images can be used to reduce bandwidth con-
sumption and delay.

We developed a new qosket called UserAdaptFrameRate

to weave to the application at run time using ACT/J. This
qosket enables the user to interactively control the rate
at which images are retrieved. The code that defines the
contract (in CDL) for the new qosket is listed below:
CT and QuO.

1582 S.M. Sadjadi, P.K. McKinley / Computer Networks 53 (2009) 1570–1586
contract UserAdaptFrameRate (syscond

quo::ValueSC quo_sc::ValueSCImpl userFrameRate)
{

region Fast (userFrameRate == 2) {}
region Normal (userFrameRate == 1) {}
region Slow (userFrameRate == 0) {}

};

The code that defines the wrapper (in ADL) for the new
qosket is listed below:

behavior UserAdaptFrameRate ()

{

void slide::SlideShow::read(in long gifNum-

ber, out string size, out octetArray buf)

{
before METHODCALL

{

region Fast {}
region Normal {. . . Thread.sleep(50);. . .

}
region Slow {. . . Thread.sleep(100);. . . }

}

}. . .

}

We defined three regions of operations Fast, Normal, and
Slow in the contract, enabling the user to control the frame
rate, for example, to conserve bandwidth. This control is
accomplished by inserting appropriate delays. For the Fast

region, we did not insert any delay, but for the Normal and
Slow regions, we inserted 50 and 100 ms frame-interval de-
lays, respectively. We used the quogen utility to compile the
new qosket.

3.5.4. Experimental results
To demonstrate the interaction between ACT and QuO,

we ran an experiment that involves both static and dy-
namic weaving of qoskets into this application. The exper-
iment is intended to represent run time upgrading of a
surveillance system to add a new feature that controls
the frame rate.

We executed the server on a desktop computer con-
nected to a 100 Mbps wired network and the client on a
laptop computer connected to an 11 Mbps 802.11b wire-
less network; both systems are running the Linux operat-
ing system. At startup time the ‘‘UserAdapt” qosket is
woven into the application by specifying the wrapper class
as a command-line parameter. Later, at run time, we used
our Interceptor Registration Console to weave the ‘‘User-

AdaptFrameRate” qosket into the application. Fig. 15 shows
two screen dumps of the application: the top one displays
the large version of an image and the bottom one displays
the small version.

Fig. 16 shows a trace of the rate at which frames are dis-
played at the client application. During the experiment, a
user modifies the application as follows. When the applica-
tion starts, large versions of frames (the default option) are
retrieved from the server as fast as possible. The size of
these images, combined with the limited bandwidth of
the wireless network, produces a frame rate of approxi-
mately 2 images per second for the first 30 s of this exper-
iment. At this point, the user selects the small-images
option by way of the GUI in the ‘‘UserAdapt” qosket, there-
by increasing the frame rate to approximately 14 images
per second.

At 60 seconds into the experiment, the user dynami-
cally weaves the UserAdaptFrameRate qosket into the appli-
cation, using the interactive administration utilities. Fig. 16
shows a short, downward spike in the frame rate caused by
the delay for weaving the new qosket. We consider such a
one-time delay to be acceptable for this type of application.
Immediately after the qosket is inserted, an interactive
console is displayed by the qosket, enabling the user to
choose from the three options (Fast, Normal, and Slow)
interactively at run time. The Fast option is the default.
At 90 s into the experiment, the user selects the Normal op-
tion; the additional 50 ms delay reduces the frame rate to
approximately 7.5 images per second. At 120 s, the user
chooses the Slow option (100 ms delay), which reduces
the frame rate to approximately 5.5 images per second.
At 150 s, the user chooses the Fast option again, which in-
creases the frame rate to 14 images per second.

This experiment illustrates how ACT can be used to
dynamically incorporate new behavior (in this case, a
new QuO qosket) into a CORBA application at run time.
The process is transparent to the application, in that we
did not modify the application code or the QuO code. We
simply restarted the application and specified the ACT
generic proxy in a command-line parameter.

4. Related work

We designed ACT to enable transparent autonomization
to CORBA applications. However, the autonomic behavior
might be provided by other adaptive frameworks. Specifi-
cally, ACT can be used to dynamically load components
of one adaptive framework into an existing CORBA applica-
tion that was developed using a different framework. By
transparently intercepting requests and replies, ACT en-
ables such applications to exploit adaptive functionality
defined in other frameworks. We refer to such a system
as a framework gateway. Next, we discuss several adaptive
middleware frameworks and their relationship to ACT. We
group the frameworks into three categories: aspect-
oriented middleware, reflective middleware, and intercep-
tion-based middleware.

4.1. Aspect-oriented middleware

Aspect-oriented middleware enables separation of the
functional aspects from the non-functional aspects (e.g.,
quality-of-service, security, and fault-tolerance) of a dis-
tributed application [21,22,8,9]. One of the most extensive
projects in this area is Quality Objects (QuO) [18,23], which
provides an adaptable framework to support QoS in CORBA
applications. QuO weaves QoS aspects, referred to as qos-
kets, into the applications at compile time by wrapping
stubs and skeletons with specialized delegates, which

Fig. 15. Screen captures of ACT/QuO image-retrieval application: (top) 252 KB version of image displayed; (bottom) 19 KB version of image displayed.

S.M. Sadjadi, P.K. McKinley / Computer Networks 53 (2009) 1570–1586 1583
intercept requests and replies for possible modifications
[18]. In Section 3.5, we showed how ACT can interact with
QuO transparently, enabling new qoskets to be dynami-
cally woven into the application at run time. In a related
project, Jacobsen et al. [24] developed an annotated ver-
sion of the CORBA IDL that enables weaving of semantic
properties (such as synchronization and security) into the
CORBA skeleton at compile time.

Adapting Image Size and Frame Rate

0

2

4

6

8

10

12

14

16

1 31 61 91 121 151
Time in seconds

Fr
am

e
R

at
e

Fig. 16. Dynamic adaptation in a ACT/QuO hybrid application.

1584 S.M. Sadjadi, P.K. McKinley / Computer Networks 53 (2009) 1570–1586
AspectIX [25,26] is an aspect-oriented distribution mid-
dleware that is based on the distributed object model [27],
in which an object comprises multiple fragments distrib-
uted across nodes. AspectIX enables dynamic weaving of
non-functional aspects into object fragments. Although As-
pectIX is CORBA compliant, its dynamic adaptation feature
cannot be used when it interoperates with other non-As-
pectIX, but CORBA-compliant ORBs. To solve this problem,
ACT could be used as a framework gateway that hosts frag-
ments of a distributed object at the non-AspectIX ORBs.
Squirrel [28] is an adaptive distribution middleware, spe-
cialized for streaming data, that supports QoS for multime-
dia applications. Again, ACT could be used as a gateway
that enables interoperation among non-Squirrel and Squir-
rel ORBs. Specifically, ACT can enable non-Squirrel ORBs to
accept and use smart proxies [29] transparently so that they
could better communicate with Squirrel ORBs.

4.2. Reflective middleware

Reflective middleware uses computational reflection to
enable inspection and modification of middleware dynam-
ically during application execution [30]. DynamicTAO [31]
and UIC [32] are CORBA-compliant reflective ORBs that
employ the component-configurator pattern [33] to sup-
port dynamic adaptation. OpenORB [34,35] is a reflective
ORB that provides explicit binding of remote objects and
enables unanticipated dynamic adaptation using structural
and behavioral reflection [36]. The Coyote project [37] also
addresses unanticipated dynamic adaptation in distributed
applications using Iguana/J. ZEN [38] is a Java ORB that
uses Java reflection and the virtual component pattern
[39] to provide a minimal-footprint ORB that loads ORB
components on demand. To exploit the adaptive features
provided by these ORBs, one must use the same ORB in
all the autonomous programs that constitute the CORBA
application. ACT could be used as a gateway between a
non-reflective CORBA-compliant ORB and a reflective
ORB, as well as between two reflective ORBs of different
types, to enable interoperation while exploiting the adap-
tive features of the reflective ORBs. To do so, ACT could
host different reflective ORBs transparently while inter-
cepting all CORBA requests, replies, and exceptions and
passing them to the appropriate reflective ORB.
4.3. Intercepting middleware

The concept of transparently intercepting CORBA re-
quests and replies has been used in several projects. Fried-
man et al. [40,41] use CORBA portable interceptors [12] to
enhance the client side of a CORBA application by intro-
ducing proxies that can cache replies and forward requests
to other CORBA objects. This work is among the first to ex-
ploit CORBA portable interceptors for transparent adapta-
tion. In the IRL project, Baldoni et al. [42,43] use portable
interceptors to transparently introduce their implementa-
tion of fault-tolerant CORBA [44,12] to CORBA-compliant
ORBs. Moser et al. [45,46] also use an interception-based
approach to transparently introduce their implementation
of fault-tolerant CORBA (Eternal [46] over Totem [47]) to
CORBA applications. Eternal, however, employs an operat-
ing-system interception-based approach instead of using
CORBA portable interceptors. In the ALICE project, Haahr
et al. [48] use mobility gateways, which are proxies at the
edge of wired network, to support mobility of CORBA
applications by intercepting requests to/from mobile hosts.
In general, the above projects focus on modifying program
behavior in a particular way, for example, to enhance fault-
tolerance. In contrast, ACT uses the concept of generic
interceptors to enable adaptation of different types (secu-
rity, fault-tolerance, QoS, and mobility) in ways that were
not necessarily anticipated at application development
time. Moreover, generic interception enables ACT to be
used as a framework gateway to facilitate interoperation
of multiple solutions.

We note that despite the name similarity of our ACT
framework and the IBM ACT, there is no relation between
these two technologies. The IBM ACT stands for Advanced
Connectivity Technology and is an alternative to current
keyboard, video, and mouse (KVM) solutions for monitor-
ing multiple racks with multiple servers from one or more
consoles; effectively, eliminating the need for long and
bulky KVM cables.
5. Conclusions

In this paper, we described ACT, an extension of Trans-
parent Shaping [49] in CORBA. ACT can be used to produce

S.M. Sadjadi, P.K. McKinley / Computer Networks 53 (2009) 1570–1586 1585
families of adaptable program from existing CORBA pro-
grams. Specifically, ACT can be used to develop new adap-
tive CORBA frameworks and to enhance existing
frameworks with adaptive functionality and interoperabil-
ity features. ACT can adapt legacy CORBA applications at
run time without the need to modify or recompile their
source code. We developed ACT/J, an instance of ACT in
Java. A case study was conducted, where we used ACT/J
to introduce three types of autonomic behavior to an exist-
ing image-retrieval application used for surveillance. The
results of our experiments show that the overhead intro-
duced by ACT is negligible. We also showed that ACT can
enable transparent integration of new adaptive code into
extant QuO applications.

Further information

This work is part of the ONR-supported RAPIDware
project. A number of related papers and software down-
loads, including the ACT/J prototype, are available at the
project website: http://www.cse.msu.edu/rapidware. Fur-
ther information on the Software Engineering and Network
Systems Laboratory can be found at the following URL:
http://www.cse.msu.edu/sens. For more information about
Transparent Shaping refer to the following URL: http://
www.cis.fiu.edu/acrl.

Acknowledgements

This work was supported in part by the US Department
of the Navy, Office of Naval Research (Grant No. N00014-
01-1-0744), by National Science Foundation (Grants CCR-
9912407, EIA-0000433, EIA-0130724, 1038, ITR-0313142,
CCR-9901017, OISE-0730065, HRD-0833093, and OCI-
0636031), by U.S. Army (Grant W911WF-08-1-0495), by
a Quality Fund Grant from Michigan State University, and
by IBM.

References

[1] Application Integration & Web Services Summit 2004. Gartner, May
2004.

[2] J. Wilber, Q&A with industry analysts: How are e-business trends
impacting developers and development teams? The Rational Edge,
February 2004.

[3] The Common Object Request Broker: Architecture and Specification
Revision 2.0, Object Management Group, Framingham,
Massachusett, July 1995.

[4] J. Siegel, OMG overview: CORBA and the OMA in enterprise
computing, Communications of the ACM 41 (10) (1998) 37–43.

[5] Object Management Group, CORBA success stories, available at URL:
<http://www.corba.org/success.htm>.

[6] J.O. Kephart, D.M. Chess, The vision of autonomic computing, IEEE
Computer 36 (1) (2003) 41–50.

[7] P.K. McKinley, S.M. Sadjadi, E.P. Kasten, B.H.C. Cheng, Composing
adaptive software, IEEE Computer (2004) 56–64.

[8] K. van den Berg, J.M. Conejero, J. Hernàndez, Analysis of crosscutting
in early software development phases based on traceability, in:
Transactions on Aspect-Oriented Software Development (TAOSD),
Springer-Verlag, Berlin, Heidelberg, 2007, pp. 73–104.

[9] J.M. Conejero, K. van den Berg, J. Hernàndez, Disentangling
crosscutting in aosd: Formalization based on a crosscutting
pattern, Jornadas de Ingenieria del Software y Bases de Datos,
2006, pp. 325–334, ISBN 84-95999-99-4.

[10] S.M. Sadjadi, P.K. McKinley, ACT: an adaptive CORBA template to
support unanticipated adaptation, in: Proceedings of the 24th IEEE
International Conference on Distributed Computing Systems
(ICDCS’04), Tokyo, Japan, March 2004.

[11] S.M. Sadjadi, P. McKinley, Transparent self-optimization in existing
CORBA applications, in: Proceedings of the International Conference
on Autonomic Computing (ICAC-04), New York, NY, May 2004, pp.
88–95.

[12] The Common Object Request Broker: Architecture and Specification
Version 3.0, Object Management Group, Framingham, Massachusett,
July 2003.

[13] J. Bacon, K. Moody, J. Bates, R. Hayton, C. Ma, A. McNeil, O. Seidel, M.
Spiteri, Generic support for distributed applications, IEEE Computer
33 (3) (2000) 68–76.

[14] ORBacus for C++ and Java version 4.1.0, IONA Technologies Inc.,
2001.

[15] G. Brose, N. Noffke, JacORB 1.4 documentation, Freie UniversitSt
Berlin and Xtradyne Technologies AG, Tech. Rep., August 2002.

[16] D.C. Schmidt, D.L. Levine, S. Mungee, The design of the TAO real-time
object request broker, Computer Communications 21 (4) (1998)
294–324.

[17] J. Zinky, J. Loyall, R. Shapiro, Runtime performance modeling and
measurement of adaptive distributed object applications, in:
Proceedings of the International Symposium on Distributed Object
and Applications (DOA 2002), Irvine, California, October 2002.

[18] N. Wang, C. Gill, D. Schmidt, A. Gokhale, B. Natarajan, J. Loyall, R.
Schantz, C. Rodrigues, Qos-enabled middleware, in: Qusay H.
Mahmoud (Ed.), Chapter in Middleware for Communications, vol. 3
(1), 2004.

[19] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Videira Lopes,
J.M. Loingtier, J. Irwin, Aspect-oriented programming, in:
Proceedings of the European Conference on Object-Oriented
Programming (ECOOP), LNCS, vol. 1241, Springer-Verlag, 1997.

[20] R. Schantz, J. Loyall, M. Atighetchi, P. Pal, Packaging quality of service
control behaviors for reuse, in: Proceedings of the Fifth IEEE
International Symposium on Object-Oriented Real-Time
Distributed Computing, Washington, DC, April 2002.

[21] R. Pawlak, R. Douence (Eds.), The First Workshop on Aspect-Oriented
Middleware Development (AOMD 2005), November 2005.

[22] O. de Moor, G. Kiczales (Eds.), Sixth International Conference on
Aspect-Oriented Software Development (AOSD-2007), March 2007.

[23] J.A. Zinky, D.E. Bakken, R.E. Schantz, Architectural support for quality
of service for CORBA objects, Theory and Practice of Object Systems
3 (1) (1997).

[24] H.-A. Jacobsen, B. Kraemer, A design pattern based approach for
generating synchronization adaptors from annotated IDL, in:
Proceedings of the IEEE International Conference on Automated
Software Engineering, 1998, pp. 63–72.

[25] F.J. Hauck, U. Becker, E.M.M. Geier, U. Rastofer, M. Steckermeier,
Aspectix: a quality-aware, object-based middleware architecture, in:
Proceedings of the 3rd IFIP International Conference on Distrib. Appl.
and Interoperable Sys. – DAIS, 2001.

[26] R. Kapitza, F. Hauckn, H. Reiser, Decentralized, adaptive services: the
aspectix approach for a flexible and secure grid environment, in:
Proceedings of the GSEM 2004 Conferences, GSEM, Erfurt, Germany,
November 2004.

[27] M. van Steen, P. Homburg, A.S. Tanenbaum, The architectural design
of Globe: a wide-area distributed system, Vrije Universiteit,
Amsterdam, The Netherlands, Tech. Rep. 422, March 1997.

[28] R. Koster, A.P. Black, J. Huang, J. Walpole, C. Pu, Thread transparency
in information flow middleware, Software-Practise and Experience
33 (4) (2003) 321–349.

[29] N. Wang, K. Parameswaran, D.C. Schmidt, O. Othman, Evaluating
meta-programming mechanisms for ORB middleware, IEEE
Communications Magazine, Special Issue on Evolving
Communications Software: Techniques and Technologies, October
2001.

[30] F. Kon, F. Costa, G. Blair, R.H. Campbell, The case for reflective
middleware, Communications of the ACM 45 (6) (2002) 33–
38.

[31] F. Kon, M. Román, P. Liu, J. Mao, T. Yamane, L.C. Magalhães, R.H.
Campbell, Monitoring, security, and dynamic configuration with the
dynamicTAO reflective ORB, in: Proceedings of the IFIP/ACM
International Conference on Distributed Systems Platforms
(Middleware 2000), New York, April 2000.

[32] M. Roman, F. Kon, R.H. Campbell, Reflective middleware: from your
desk to your hand, IEEE Distributed Systems Online 2 (5) (2001).

[33] D. Schmidt, M. Stal, H. Rohnert, F. Buschmann, Pattern-Oriented
Software Architecture, vol. 2, John Wiley, 2001.

[34] C.-F. Sørensen, M. Wu, T. Sivaharan, G.S. Blair, P. Okanda, A. Friday,
H.A. Duran-Limon, A context-aware middleware for applications in

http://www.cse.msu.edu/rapidware
http://www.cse.msu.edu/sens
http://www.cis.fiu.edu/acrl
http://www.cis.fiu.edu/acrl
http://www.corba.org/success.htm

1586 S.M. Sadjadi, P.K. McKinley / Computer Networks 53 (2009) 1570–1586
mobile ad hoc environments, in: Middleware for Pervasive and Ad
hoc Computing, 2004, pp. 107–110.

[35] G.S. Blair, G. Coulson, P. Robin, M. Papathomas, An architecture for
next generation middleware, in: Proceedings of the IFIP
International Conference on Distributed Systems Platforms and
Open Distributed Processing (Middleware’98), The Lake District,
England, September 1998.

[36] G. Blair, G. Coulson, N. Davies, Adaptive middleware for mobile
multimedia applications, in: Proceedings of the Eighth International
Workshop on Network and Operating System Support for Digital
Audio and Video, 1997, pp. 259–273.

[37] B. Redmond, V. Cahill, Supporting unanticipated dynamic adaptation
of application behaviour, in: Proceedings of the 16th European
Conference on Object-Oriented Programming, June 2002.

[38] R. Klefstad, D.C. Schmidt, C. O’Ryan, Towards highly configurable
real-time object request brokers, in: Proceedings of the Fifth IEEE
International Symposium on Object-Oriented Real-Time Distributed
Computing, April–May 2002.

[39] A. Corsaro, D. Schmidt, R. Klefstad, C. O’Ryan, Virtual component a
design pattern for memory constrained embedded applications, in:
Proceedings of the Ninth Conference on Pattern Language of
Programs (PLoP 2002), 2002.

[40] R. Friedman, E. Hadad, Distributed wisdom: analyzing distributed-
system performance–latency vs. throughput, IEEE Distributed
Systems Online 7 (1) (2006) 1.

[41] R. Friedman, E. Hadad, Client side enhancements using portable
interceptors, in: Proceedings of the Sixth IEEE International
Workshop on Object-oriented Real-time Dependable Systems,
January 2001.

[42] C. Marchetti, R. Baldoni, S. Tucci-Piergiovanni, A. Virgillito, Fully
distributed three-tier active software replication, IEEE Transactions
on Parallel and Distributed Systems 17 (7) (2006) 633–645.

[43] R. Baldoni, C. Marchetti, A. Termini, Active software replication
through a three-tier approach, in: Proceedings of the 22th IEEE
International Symposium on Reliable Distributed Systems, Osaka,
Japan, October 2002, pp. 109–118.

[44] P. Narasimhan, T. Dumitras, A.M. Paulos, S.M. Pertet, C.F. Reverte, J.G.
Slember, D. Srivastava, Mead: support for real-time fault-tolerant
CORBA, Concurrency – Practice and Experience 17 (12) (2005) 1527–
1545.

[45] P. Narasimhan, L.E. Moser, P.M. Melliar-Smith, Eternal – a
component-based framework for transparent fault-tolerant CORBA,
Software Practice and Experience 32 (2002) 771–788.

[46] L. Moser, P. Melliar-Smith, P. Narasimhan, L. Tewksbury, V.
Kalogeraki, The eternal system: an architecture for enterprise
applications, in: Proceedings of the Third International Enterprise
Distributed Object Computing Conference (EDOC’99), July 1999.

[47] L.E. Moser, P.M. Melliar-Smith, D.A. Agarwal, R.K. Budhia, C.A.
Lingley-Papadopoulis, T.P. Archambault, The Totem system, in:
Proceedings of the 25th International Symposium on Fault
Tolerant Computing, Pasadena, California, 1995, pp. 61–66.

[48] M. Haahr, R. Cunningham, V. Cahill, Supporting CORBA applications
in a mobile environment, in: Proceedings of the Fifth ACM/IEEE
International Conference on Mobile Computing and Networking,
1999.

[49] S.M. Sadjadi, P.K. McKinley, B.H. Cheng, Transparent shaping of
existing software to support pervasive and autonomic computing,
in: Proceedings of the first Workshop on the Design and Evolution of
Autonomic Application Software 2005 (DEAS’05), in conjunction
with ICSE 2005, St. Louis, Missouri, May 2005.

Dr. Masoud Sadjadi received a B.S. degree in
Hardware Engineering in 1995, a M.S. degree
in Software Engineering in 1999, and a Ph.D.
degree in Computer Science from Michigan
State University in 2004. He is currently an
assistant professor in the School of Computing
and Information Sciences at Florida Interna-
tional University. He is the Co-Director of the
Autonomic Computing Research Laboratory
(ACRL, http://acrl.cis.fiu.edu), the leader of
several projects under the Latin American
Grid (LA Grid, http://latinamericangrid.org),

an active Co-PI of FIU Partnership for International Research and Educa-
tion (PIRE, http://pire.fiu.edu/), and one of the Co-Founders of the Global
CyberBridges (GCB, http://cyberbridges.net), the Research and Education

for Undergraduates (REU, http://www.cis.fiu.edu/reu), and the Commu-
nication Virtual Machine (CVM, http://www.cis.fiu.edu/cvm) projects at
FIU. He has extensive experience in software development and leading
large scale software projects. Currently, he is collaborating with
researcher in eight countries and is leading several international research
projects. He was the Program Co-Chair of the IEEE ICNSC 2008, has served
in organizational and program committees of several international con-
ferences and workshop, and has served as a referee for several IEEE and
SP&E journals. His current research interests include Software Engineer-
ing, Distributed Systems, and High-Performance Computing with the
focus on Autonomic, Pervasive, and Grid Computing. He has published
more than 50 papers and is PI or Co-PI of 10 grants from NSF, IBM, and FIU
for total of over $4.3 million. He is a member of the IEEE.

Philip K. McKinley received the B.S. degree in
mathematics and computer science from Iowa
State University in 1982, the M.S. degree in
computer science from Purdue University in
1983, and the Ph.D. degree in computer sci-
ence from the University of Illinois at Urbana-
Champaign in 1989. Dr. McKinley is currently
a Professor in the Department of Computer
Science at Michigan State University, where
he has been on the faculty since 1990. He was
a member of technical staff at Bell Laborato-
ries in Naperville, Illinois from 1982–1990, on

leave of absence 1985–1989. Dr. McKinley has served as an Associate
Editor for IEEE Transactions on Parallel and Distributed Systems and was
co-chair of the program committee for the 2003 IEEE International Con-

ference on Distributed Computing Systems. His current research interests
include adaptive middleware, collaborative applications, mobile com-
puting, and group communication protocols. He is a member of the IEEE
and ACM.

http://acrl.cis.fiu.edu
http://latinamericangrid.org
http://pire.fiu.edu/
http://cyberbridges.net
http://www.cis.fiu.edu/reu
http://www.cis.fiu.edu/cvm

	Transparent autonomization in CORBA
	Introduction
	ACT architecture and operation
	CORBA background
	Autonomization process
	ACT architecture
	Dynamic interceptors
	Proxies
	Decision makers
	Event mediators

	ACT Internal operation
	Generic proxy
	ACT/J: ACT prototype in Java

	Case study: an autonomic surveillance application
	The example application
	ACT/J overhead
	Self healing
	Self optimization
	Self configuration
	QuO background
	Dynamic weaving of qoskets using ACT
	Example: supporting unanticipated adaptation
	Experimental results

	Related work
	Aspect-oriented middleware
	Reflective middleware
	Intercepting middleware

	Conclusions
	Further information
	Acknowledgements
	References

