
X-Communicator: Implementing an advanced adaptive SIP-based User Agent for

Multimedia Communication

Shakil Siddique, Raimund K. Ege and S. Masoud Sadjadi

School of Computer Science

Florida International University

ssidd003@cs.fiu.edu

Abstract

 Our paper describes a SIP and RTP based software

component which is platform independent and is adaptable

to various network infrastructures. The software
component, named “X-Communicator” is capable of

multimedia communications including audio, video, text

(instant messaging), secure file transfer and desktop

streaming with the last three features currently being

implemented. The goal is to provide a complete remote-

assistance solution and to make the system capable of
adjusting to dynamic environment changes. X-

Communicator features NAT handling capability and uses

intelligent network detection components to identify

network infrastructure. For the multimedia RTP data

stream transmission it utilizes P2P streaming. The system
uses SIP for transferring various control information and

implements security. X-Communicator is very user-friendly

and can interoperate with other SIP based standard user

agents (soft or hard phones) and adjusts its communication

capability accordingly. The paper proposes different

possible network environments and the software’s
capability. X-Communicator is currently implemented as a

functional prototype and is undergoing further

development.

1. Introduction

 Voice over IP has become a steady and popular stream of

internet community and there are numerous frantic ongoing

developments in this area. Session Initiation Protocol (SIP)

and H.323 are the backbone for establishing, managing and

terminating internet sessions between two or more User

Agent Clients (UAC) in these IP based networks. The

UACs may be soft-phones (e.g. X-Lite, MSN V 5.x etc.) or

hard-phones (e.g. CISCO 7960). In case of soft-phone the

scope of development is huge since many services may be

incorporated with the system as add-ons. Currently there

are quite a few notable development works that are already

available for use (e.g. SIPC from SIPquest, SIP-

Communicator from Apache Software Foundation) and a

number of them are in progress. In SIP based network there

is also another important entity, User Agent Server (UAS),

but we focus on the UAC soft-phones.

 In this paper we discuss about features of a SIP based

collaborative tool namely X-Communicator (XC) and

compare its functionality and differences with other

traditional soft-phones. The system works with any

traditional SIP servers and ensures basic soft-phone

features, such as call initiation, management, simultaneous

call handling (conferencing) and also some other features,

such as presence, address book management, desktop

streaming, file transfer, text messaging etc are in process of

development and integration. The system relies on SIP

messages for registration, call management and implements

audio video stream transfer using Real Time Protocol

(RTP) in a peer to peer architecture, so that there is no RTP

traffic in the server side. It is designed to adapt to different

network environments, such as open internet traffic, behind

router, which would be discussed in detail in section 3 etc.

The system is designed in such a manner that it can adapt

and implement different corporate policies in the future.

XC is also adaptable to network changes, it can handle

mobility i.e. network changes. Different existing SIP soft-

phones have router and private network handling

capability, but to some extent only. It has been observed

that most of the systems fail to work properly in the

presence of restricted-cone Network Address Translator

(NATs), one of the most widely used variant of NAT’s. XC

is designed to handle this kind of network environments

and operate accordingly.

 Our effort is to implement most of the features that are

available in different SIP based UACs onto XC, enable

adaptability in different aspects and some new features of

collaborative tools such as calendar systems that are not

available in the existing ones.

 Next section provides some information about the

terminologies used throughout the paper. Section 3

describes how the system should behave in brief and its

features. Section 4 explains some important aspects of the

implementation techniques and section 5 is the conclusion

and future work related discussion.

2. Background and Terminologies

The paper presumes that reader has knowledge about IP

based network, client-server model, and concept of

sessions. In this section we describe possible network

environments and how the terms used in this paper fit into

the environment.

We have chosen SIP over UDP as the communication

protocol for the XC, since there is less communication

0-7803-8865-8/05/$20.00 ©2005 IEEE. 271

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on September 1, 2009 at 17:44 from IEEE Xplore. Restrictions apply.

overhead compared to H.323. We describe the SIP network

as an overlay on the IP based network. There are various

network configurations possible. For simplicity we choose

a simple client-server environment where UACs are of both

forms soft-phones and hard-phones. We have chosen SIP

Express Router (SER) as our SIP server (UAS), since it

provides most of the services to support XC. It is notable

that an SER can be used as SIP registration server, a

redirect server and as a proxy server. The registration server

is used for user registration, where the user location is

stored in a location database, which can be trivially

implemented using a relational database such as MySQL or

an LDAP server. The other functionality of a SIP server as

a proxy or a redirect server is beyond the scope of this

paper, but interested reader are encouraged and may refer to

[3][4] for further information.

Figure 1: Possible Network Infrastructure (all users
are registered to the SIP server.)

SIP [RFC 3261] is being developed by SIP working

group, Internet Engineering and Task Force (IETF). It is a

text based request-reply signaling protocol used for

initiating, terminating and controlling sessions between

end-users in the packed-based network.

We also consider the presence of a router in the network

as depicted in the figure 1, which is quite common in most

of the typical network configurations. The notion of router

brings the concept of NAT, where a private IP based

network is defined behind the router. This private network

identifies its clients through their unique IP addresses that

are invalid in the actual internet. The open internet is the

network where each client has a unique public IP address.

Thus, when a client in a private network want to

communicate outside the router in the public internet, the

router assigns a particular public IP address for a timed

session against the private IP address it has. The process of

mapping the public address to private is network address

translation (NAT). Once a session is recorded in the router,

any incoming reply to the NATted client is routed as

mapped in the router sessions. There are different flavors of

NAT, namely full-cone, restricted-cone, restricted-port-

cone and symmetric NAT. We discard the usage of

symmetric NATs since SIP has restrictions and cannot be

used if UAC is behind such a translator. More information

about NATs can be found in [5][6]. We elaborate our

discussion on the other type of NATs later in section 3

where we propose a sample algorithm that helps to handle

NAT traversal.

The network configuration also considers STUN [10]

servers where the acronym stands for simple traversal of

UDP through NATs [6]. If a client issues a STUN message

request to such a server, the server reveals the public

address assigned by NAT with a message reply. Thus, a

UAC may identify any port mappings to public internet,

using STUN requests and obtain the public port mapping

accordingly. Once the public port mappings are known to

the client, the client may use the SIP messages using

contact headers to inform the other client of its intended

port to receive data and be able to send and receive

accordingly.

XC uses Java Media Framework (JMF) from Sun

Microsystems to send and receive audio and video data

stream. The multimedia stream is exchanged using Real

Time Protocol (RTP) [7] and its implementation using Java

language is trivial.

In the next section we discuss various features available

in XC and its implementation design technique.

3. System Features and Implementation

3.1 Common features

The XC offers many services apart from that of

available UACs’. The common features include text

messaging, audio and video communication, file transfer,

authentication and presence information.

 The implementation of text messaging is trivial and is

implemented using SIP messaging architecture.

The audio and video stream transfer is implemented

using JMF and are transferred in a P2P fashion with other

UACs. The media stream detection is event-driven, so any

272

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on September 1, 2009 at 17:44 from IEEE Xplore. Restrictions apply.

such stream is automatically identified and is compiled

accordingly. In case of data stream security, a basic

formalism is applied, such that, the port used for audio or

video stream is selected during the time of initial call set up

using SIP and Session Description Protocol (SDP)

messages, so that only intended participants are aware of

the information. JMF also allow using different types of

data stream from its rich library, so a particular SIP session

may be pre-negotiated before data transmission between

two or more user agents. The SDP is used in SIP request

messages to exchange information about media-stream

capabilities for both UACs in a session. For example, in the

case of audio data stream, G77 ulaw stream may be chosen

between an XC and X-lite UAC. Similarly the video stream

may also be chosen as H.261 or JPEG/RTP. The basic

system architecture is depicted in figure 2.

Figure 2: System Architecture

XC is currently using SIP and SDP stack available from

NIST (http://www.nist.gov) known as NIST-SIP-API and

NIST-SDP-API.

The file transfer operation is currently implemented

using pure P2P through sockets, but the implementation can

be changed depending upon requirement. For example,

JMF may be used to send and receive file using file object

as custom data source.

3.2 Remote assistance

The system also offers other services as add-ons, which

we discuss below. XC has remote assistance, where a UAC

may request to view other UAC’s desktop view, so that any

information can be shared between the participating agents

in a session. For example, if a user needs to have guidance

in terms of direction in a location, the other participant may

transfer a virtual reality map of the location, and using the

remote assistance feature, users may collaborate to a

desired solution. This feature is applicable to any other

application or document related remote assistance, since a

steady video-stream is generated from the desktop screen-

shots and is transmitted using the JMF to the other agent.

Therefore any information is virtually shared between the

end users.

Java API has the robot class in AWT package, which

may create current screen-shot of desktop. A steady stream

of such screen-shots may be generated and fed as a custom

data source in the JMF. The media manager can transmit

desktop stream as JPEG/RTP or H.261 format. For high

quality purpose, the first format may be chosen, but in

terms of efficiency, H.261 is widely chosen.

This part of development is in progress. As XC is

designed to be modularized, we have developed a prototype

that provides desktop streaming service, and would be

integrated as an add-on onto XC.

3.3 Adaptability

XC is adaptable to network changes and can detect and

manage mobility. In real-world a user may travel from one

location to other using a hand-held device, changing

different subnets. In this case, the IP address also changes

accordingly, and XC is able to handle the environment

change.

During the registration process of XC with a SIP server,

user credentials are cached into the system, where the

information is obtained from authentication process, and a

separate thread for re-registration process is launched.

During a call establishment and during call management,

XC performs network layer check by means of method

invocations to STUN compatible component. If the

different IP information is returned then the re-registration

thread updates the necessary port and IP information to the

SIP server and issues SIP and SDP message requests

accordingly. Thus the network mobility is transparent to the

user and user credential is recorded only once.

3.4 NAT handling technique

The system also is designed to operate behind most of

the NATs and is capable of maintaining steady

communication without user intervention. As mentioned

before, there are different flavors of NAT and we consider

all types except the symmetric version.

XC uses different port for each service. For example it

may use port 5080 for registration, 80080 for FTP. Let us

consider a scenario where one UAC XC 1 communicates

with another one, XC 2. To use each port behind a NAT,

XC 1 must first find out the public port mapping for each

273

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on September 1, 2009 at 17:44 from IEEE Xplore. Restrictions apply.

port in order to send and receive data using that port. Once

the public port mapping has been identified, this

information is sent to the other client using SIP message,

and a dummy session is created using the private port

number to the using sample data stream to establish session

with the router. The purpose of this dummy session is to

record the port mapping in the router and to keep this

information in a periodic basis before the actual data stream

arrives from the other UAC (XC 2). This is necessary,

because if the data is transmitted from XC 2 to XC 1 prior

to dummy session establishment (although the receiver

knows its public port mapping from the STUN server) the

data would be lost since the router does not have the port

mapping for the private port (yet), hence cannot re-transmit

the data over to the desired client.

In a generic scenario, the SIP server, router and STUN

server are in public internet.

Figure 3: NAT handling by X-Communicator in port-
restricted-cone version.

In case of full-cone NAT, each private port is assigned a

unique public port by the router. In an actual

implementation let us consider XC 1 and XC 3 behind the

same router whose IP is 131.94.92.71, a public IP address.

If the private IP address of XC 1 and 3 are 192.168.0.10

and 192.168.0.14 respectively and they have FTP service

enabled, which uses port 80080, then a typical public port

mapping returned by the STUN server could be

131.94.92.71:62962 and 131.94.92.71:64964 respectively,

where the initial IP address of the public port mapping is

that of the router. Therefore, using dummy session, both

these UACs can operate properly.

However, in the case of restricted-cone NAT, the

scenario is different. The router does not provide unique

public port for each private port number, instead it maps its

own public IP and the private port of each client and returns

the information as a public port mapping for both the

clients. Using the above example, the practical output

would be 131.94.92.71:80080 for both the clients, which is

not desirable. Since the later port mapping would override

the previous port mapping, and the router would only know

the later port mapping information. The ultimate result

would be that the data intended for XC 1 would be

transmitted wrongly to XC 3.

To handle this problem, we propose to provide an

algorithm that would use the private IP address and port of

a UAC as function parameters and generate private ports

that would be unique in public domain, but different for the

same service in the UACs in same private network. This

approach would solve the problem of port overriding in the

restricted-cone NAT and would still be applicable and valid

in other contexts, such as full-cone and open internet.

Figure 3 illustrates a sample technique using the

example given above.

If we consider the case of randomly generating port

numbers for different services, then there might be a

situation, where two or more UACs behind same router

might get same port mappings, resulting communication

flaw. However, using this scheme as described above, we

can avoid such situation. The approach described above is

only a sample technique, but illustrates the concept of using

internal IP address and port numbers to generate unique

public port mapping. This feature is being implemented

currently.

3.5 Multiple terminal usage

We also propose multi-device communication in this

architecture, where a single user may use UAC hard-

phones, such as CISCO 7960 for audio and XC for video

and other features simultaneously. The idea is to provide

flexibility of using audio conversation using VoIP phones

to user during a single virtual session.

During an ongoing SIP session between two UACs, user

1 may want to use available phones. Using address book

features user can connect to a VoIP phone in a separate SIP

session with user 2 having the hard-phone’s information in

the contacts, so even though actually there are two separate

session, user would get the flavor of using one virtual

session utilizing multiple terminals. Once the XC connects

274

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on September 1, 2009 at 17:44 from IEEE Xplore. Restrictions apply.

establishes the session with a hard-phone of user 2, the soft-

phone would disconnect audio session and keep the

existing session with user 1 for other features. This feature

is not yet implemented.

4. Functional Flow

In this section we present the brief functional flow of

different processes in the XC implementing the features.

We start with the registration process and follow through

establishment towards termination of a call.

XC uses XML based system configuration and the

address book or contact information can be stored locally or

in the server, depending upon environment. For example

SER provides contact information to be saved in the server

side, where as VOCAL, another SIP server from vovida.org

do not support this feature.

Once the system is initialized, the STUN component (as

shown in figure 1) detects network configuration, and

obtain necessary port mappings using a STUN server for all

the services that are enabled. XC then registers itself with

user provided authentication credentials to desired SIP

server. At the same time, the presence module is initialized

and using the contact list necessary presence messages is

transmitted and received from the presence module. The

multimedia component that comprises of JMF is then

initialized and system becomes ready for communication.

User may select SIP addresses from address book that is

displayed in the presence pane or provide SIP URI in the

system and initiate call. During call establishment XC

obtains information about the other party’s capability, for

example audio and video codec, file transfer capability,

port information etc using SDP descriptions. Once a call is

established XC obtains all the information using SIP

messages about service requirement. For example, if both

the UACs are XC and remote assistance service is required,

XC obtains port information using STUN component and

sends information to the other party. Similarly the port

information is obtained from the other party. Once this

information is obtained, XCs establish peer to peer

communication to transfer data stream in both direction.

However, the control information is exchanged using SIP.

When a call is terminated, the media manager

component terminates the media session and then the SIP

component terminates the SIP session.

5. Conclusions

As mentioned before there are numerous possibilities to

extend services in this architecture. We have two versions

of above implementation namely X-Communicator and

Oghma which are still undergoing development for full-

functionality. Current systems provide the basic

functionality and remote assistance service and are

adaptable to different network environments.

In the future versions, we intend to implement several

more functionality for optimization and quality of service

(QoS). For QoS transferring the video stream using

compression technique would make the system more

efficient for congested networks.

Similar technique can be applied to the desktop stream

transfer. Also we plan to provide transparent-board

application integrated into the remote assistance service so

that both users can draw on the stream pane for better

means of communication. This feature can be achieved by

drawing objects on one client side on the display pane and

the generate SIP messages to record and transfer co-

ordinate information for each points of drawing and

transfer the data to the other side, so that the image can be

re-drawn on the display pane. The functionality of this

feature is similar to MSN’s whiteboard application, except

it would provide drawing objects on image stream with

different colors for different users.

In case of FTP service, there could be an option of

selecting multiple files and compress them onto a single file

for better network utilization. At the same time, file can be

encrypted, so that multiple files can be transferred in a

secured way between XCs.

Another possible implementation is calendar system,

another collaborative tool. This feature is popular in web-

based systems such as Yahoo or MSN. The idea is to

incorporate this feature in a P2P level using XC. Having

proper calendar data entry, users may collaborate for

scheduling conversations or other related resource

exchange.

The XC supports conferencing capabilities, but to some

extent. Multiple user may connect to a single XC with

audio-visual data streams, but all participating users do not

have each other’s data stream except for the originating

XC’s in consideration. The other version of XC, Oghma

supports conferencing and do not have this problem.

However, a more efficient implementation can be achieved

using minimum data stream cloning and redirecting the

stream to participating users. Where each user may support

this feature, and stream can be distributed efficiently. If

stream compression technique is applied then we can

achieve higher QoS.

More information may be obtained from

http://rocksteady.cs.fiu.edu/voip

http://rocksteady.cs.fiu.edu/ssa/oghma/

6. Acknowledgements

 This material is based upon work supported by the

National Science Foundation under grant No. HRD-

0317692.

7. References

275

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on September 1, 2009 at 17:44 from IEEE Xplore. Restrictions apply.

[1] Henning Schulzrinne and Elin Wedlund “Application-Layer

Mobility using SIP” Mobile Computing and Communications

Review (MC2R), Volume 4, Number 3, July 2000.

[2] Phelim O'Doherty “Identify the specifications to the Session

Initiation Protocol (SIP) defined through the Java Community

Process (JCP)" Sun Microsystems, SIP Specifications and the

Java Platforms White paper. http://www.cs.columbia.edu/sip/Java-

SIP-Specifications.pdf

[3] RADVision “What is SIP” RADVision white paper.

http://www.radvision.com/ResourceLibrary/WhitePapers/

[4]Network Working Group “SIP RFC”

http://www.faqs.org/rfcs/rfc3261.html Internet

RFC/STD/FYI/BCP Archives

[5]http://www.newport-networks.com/whitepapers/nat-

traversal.html

[6]Network Working Group “NAT RFC”

http://www.faqs.org/rfcs/rfc1631.html, Internet

RFC/STD/FYI/BCP Archives

[7] Xiaotao Wu, Henning Schulzrinne “SIPC, a multi-function

SIP user agent”, Columbia University, Department of Computer

Science

[8] Sun Microsystems “JMF API guide” available from

http://www.sun.com

[9] http://snad.ncsl.nist.gov/proj/iptel/

[10] Network Working Group IETF “STUN RFC”,

http://www.faqs.org/rfcs/rfc3489.html, Internet

RFC/STD/FYI/BCP Archives

[11] Henning Schulzrinne, Jonathan Rosenberg “The Session

Initiation Protocol: Internet-Centric Signaling”

[12] M. Handley and V. Jacobson “SDP RFC (RFC2327)”

http://www.faqs.org/rfcs/rfc2327.html

276

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on September 1, 2009 at 17:44 from IEEE Xplore. Restrictions apply.

