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Abstract

This paper proposes the use of programming language constructs to sup-
port adaptive self-monitoring and self-reporting software. The methods are
particularly well-suited to wireless mobile devices, where limited resources
may constrain the use of certain software audits. An adaptive software ar-
chitecture is described that supports run-time transformations on software
components, enabling them to report internal details on how they are be-
ing used to other parts of the system. Effectively, any component of the
system can be turned into an “informer” at run time, and the nature of
the reported information can be adapted dynamically based on changing
conditions or directives from another authority, such as an intrusion detec-
tion system. A prototype implementation is described. The operation of
the system is demonstrated through an experiment in which it detects and
responds to a malicious host that multicasts “noise” packets to a wireless
iPAQ handheld computer.

1 Introduction

Designing a highly trusted component-based software system requires that
every component, in its turn, satisfies the security policy defined for the

entire system. A good security framework needs to adapt to changing
policies as well as respond to changing environmental conditions, including
perceived threats to the system. To help ensure correct and consistent
operation of the system, these changes should be reflected in the behavior
of individual software components. A key part of any trusted system is the
audit mechanism, which enables information to be collected for analysis,
including both off-line post mortem processing as well as run-time checks
that produce an immediate response from the system. In many cases, the
information gleaned is fairly low-level, and its acquisition requires assistance
of the operating system and possibly network components. In other cases,
the nature of the threat may be specific to the application domain, and
hence only the application (or a middleware layer working on its behalf)
can recognize and report the errant behavior. In this paper we focus on the
latter.

The traditional approach to solving the application-level auditing prob-
lem is applied at the time of development and inserts the security-related
code directly in those software components deemed relevant. Obvious draw-
backs to this method include: (1) the security policy and requirements need
to be known at development time, and (2) maintaining application code
that is tangled with dynamic security concerns is a non-trivial task. Re-
cently, the research community has started to address this issue in a variety
of ways, including the use of agent hierarchies [3], mobile agents [6,15,16],
and compile-time weaving of security code into applications using aspect-
oriented programming languages [19]. We contend that a system should
also be able to insert security-related code into components at run time,
thus enabling not only the monitoring of any part of the system on demand,
but also the collection of information not necessarily anticipated at the time
of development. The ability to reconfigure the security aspects of compo-
nents at run time is especially relevant to mobile computing environments.
In handheld and wearable systems, constant monitoring of all parameters of
interest may be too expensive in terms of computing resources and memory
requirements. Rather, certain security checks associated with a component
should be loaded only as needed.



Our interest in adaptable security mechanisms arises from our work on
RAPIDware, an ONR-sponsored research project that addresses the design
and use of adaptive middleware for protection of critical infrastructures,
such as command and control networks, electric power grids, and nuclear
facilities. The RAPIDware project focuses on developing unified software
technologies, based on rigorous software engineering principles, to support
different dimensions of adaptability while preserving functional properties
of the code. One of the target domains of the project is support for in-
teractive collaboration in highly dynamic and heterogeneous environments,
where users interact using handheld or wearable computers and wireless
networks.

In this paper, we propose an adaptive software architecture that supports
dynamic transformation of software components, enabling them to expose
or report internal details on how they are being used to other parts of the
system. Effectively, any component of an application can be turned into an
“informer” at run time, and the nature of the reported information can be
adapted dynamically based on changing conditions or directives from an-
other authority, such as an intrusion detection system. The code that acts
as the informer need not have been compiled into the component at the
time of development. Indeed, it may have been developed later in response
to a new type of attack or potential failure mode. The proposed methods
enable such audit code to be loaded across the network and dynamically
inserted into the running application. We envision that the ability to adapt
the audit-related parts of a system at run time may be particularly help-
ful to the developers of intrusion detection systems for mobile computing
environments.

The remainder of the paper is organized as follows. In Section 2, we re-
view the main features of the Adaptive Java programming language, an
extension to Java that is used in this study. Section 3 describes how Adap-
tive Java can be used to create an informer from any regular Java object,
and how the informer can interact with other system components. Sec-
tion 4 presents an example where we created an informer from a normal
Java MulticastSocket and used it to detect anomalous behavior on the au-

dio connection of an iPAQ handheld computer. Section 6 presents our
conclusions and discusses future directions.

2 Adaptive Java and MetaSockets

In an earlier paper [7], we introduced Adaptive Java, an extension to Java
that supports dynamic reconfiguration of software components. A com-
piler, ajc, converts Adaptive Java code into pure Java code. Adaptive Java
programs are built using regular Java classes as well as components, which
can be thought of as adaptable classes. The key programming concept in
Adaptive Java is that each component offers three interfaces: one for per-
forming normal imperative operations on the object (computation), one for
observing internal behavior (introspection), and one for changing internal
behavior (intercession). Operations in the computation dimension are re-
ferred to as inwvocations. Operations in the introspection dimension are
called refractions: they offer only a partial view of internal structure and
behavior and are not allowed to change the state or behavior of the compo-
nent. Operations in the intercession dimension are called transmutations:
they are used to modify the computational behavior of the component.
An existing Java class is converted into an adaptable component in two
steps, as shown in Figure 1. First a base-level Adaptive Java component
is constructed from the Java class through an operation called absorption,
which uses the absorbs keyword. As part of the absorption process, mu-
table methods called invocations are created on the base-level component
to expose the functionality of the absorbed class. For example, we might
create a base-level socket component by absorbing a Java socket class. The
base-level socket component might provide a customized interface for an
application-specific service, such as audio or video streaming. Moreover,
unneeded methods of the base class are occluded at this level. In the sec-
ond step, metafication enables the creation of refractions and transmuta-
tions that operate on the base component. Meta components are defined
using the metafy keyword. Refractions and transmutations embody adap-
tive logic, but are intended for defining how the base level can be inspected



and changed. The logic defining why and when these operations should
be used is provided at other meta levels or by other components entirely.
Continuing our socket example, the meta level enables us to define stream-
specific refractions and transmutations for error control, fault tolerance,
and security management.
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Figure 1: Component absorption and metafication in Adaptive Java.

We have used Adaptive Java to develop several adaptable components,
including MetaSockets, which are constructed from the regular Java Multi-
castSocket class. The behavior of MetaSockets can be modified at run time
in response to external conditions. For example, we used MetaSockets to en-
hance the quality of wireless connections by dynamically inserting code for
forward error correction (FEC) coding and decoding. Figure 2 depicts the
structure of a MetaSocket component that has been configured to perform
two types of preprocessing, or filtering, on a data stream before it is actu-
ally sent using the internal Java Socket. The base-level component, called
SendSocket, was created by absorbing the existing Java MulticastSocket
class. Certain public members and methods are made accessible through
invocations on SendSocket. This particular instantiation is intended to
be used only for sending data, so the only invocations available to other
components are send() and close(). Hence, the application code using

the computational interface of a metamorphic socket looks similar to code
that uses a regular socket. The SendSocket was metafied to create a meta-
level component called MetaSocket. GetStatus() is a refraction that is
used to obtain the current configuration of filters. InsertFilter() and
RemoveFilter () are transmutations that are used to modify the set of fil-
ters that operate on the data stream.
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Figure 2: Structure of a MetaSocket implemented with Adaptive Java.

In the RAPIDware project, we are using Adaptive Java and MetaSockets
for several purposes, including managing the quality-of-service of network
connections, enhancing the fault tolerance of the system, and reducing the
energy consumption of battery-powered devices. In this paper, we show how
Adaptive Java can be used to support a security framework by dynamically
turning arbitrary components into informer components.



3 An Informer-Based Architecture

In this section, we introduce the architecture of the proposed framework
by way of a general example; a specific example and associated experi-
ments are discussed in Section 4. Figure 3 illustrates the major parts of an
adaptive, self-auditing software system written in Adaptive Java. In this
example, most of the system executes on an iPAQ handheld computer. One
program, called a Trader, executes on a desktop workstation. The two sys-
tems communicate via a wireless local area network. In Adaptive Java, each
address space consists of one or more components, each of which in turn
comprises several interacting components. The program running on the
iPAQ in Figure 3 comprises six components: a Decision Maker (DM), an
Information Event Mediator (IEM), a Component Loader (CL), and three
application components, labeled simply A, B, and C. Components A and
C are metafied composite components with a single level of composition,
while component B has two levels of composition.

The system shown in Figure 3 contains three informer components that
gather information of interest and make it available to other components.
Any component developed in Adaptive Java can be transformed into an
informer at run time, and no special consideration is needed when the
component is initially defined. To do so, an Adaptive Java component that
has been created through absorption is encapsulated with a meta-object
protocol (MOP). The MOP provides refractions and transmutations that
provide access to the internal state of the component. Other components
can collect this information synchronously via refractions, or they can be
notified asynchronously via events.

The creation of an informer is usually carried out by a decision maker
(DM), an optional subcomponent within each component. According to
a set of rules applied to the current situation, a DM controls all of the
nonfunctional behavior of the the subcomponents of its container compo-
nent. DMs are arranged hierarchically, and a DM inherits rules from a
higher-level DM and might provide rules to lower-level DMs. In the ex-
ample, the main component on the iPAQ contains a DM, called the root

DM. Component A contains a DM, and component B contains two DMs
one for each level of composition. When a DM is created, either upon sys-
tem initialization or later during run time, it is instantiated with a default
set of rules, some of which may later be overridden, removed, or modified
by a higher-level DM. Depending on the rules and the current situation
within its subsystem, a DM might decide to transform a particular compo-
nent into an informer by metafying the component with a security-oriented
MOP. A DM rule provides either a syntactic or semantic description of the
MOP component, so the MOP need not reside on the system a priori. In-
stead, the DM contacts the component loader (one per address space) and
requests the needed component. If the component loader does not find
the component in its cache, it sends a request to a Trader. A Trader is a
server, possibly running within the wired network, that returns a compo-
nent implementation corresponding to a syntactic or semantic component
request. The ability to dynamically load MOPs is especially important for
mobile devices, where resources might be limited and overhead should be
minimized.

A DM can invoke transmutations on an informer to start the logging of
any part of the internal state of the component. Using this polling-based
approach, however, an informer can only report information when explic-
itly requested to do so via a refraction. On the other hand, a self-informer
component is an active component that, in addition to gathering informa-
tion and making it available via refractions, also fires information events to
notify the interested components called listeners. Self-informer components
are needed when a situation demands immediate action. This paradigm,
called event-based information propagation, is more efficient than polling
when events are relatively infrequent but need to be handled immediately.

An information event mediator (IEM) is a unique component in the ad-
dress space that decouples self-informers from the listeners. A listener can
register its interests to specific information events with the TEM. All self-
informers notify the IEM of any information event they observe by firing
the corresponding event. The IEM, in its turn, notifies all the listeners
interested to the events that just fired. Listeners handle the events appro-
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Figure 3: Example of self-monitoring mobile software system constructed with Adaptive Java.

priately afterwards. Typically, one of the listeners associated with events
fired by informers will be a component of an intrusion detection system
(IDS). The IDS component may contact other IDS components within the
wired network for more intensive analysis, or may provide direct feedback
to the DM based on local processing.

4 Example: Auditing Packet Stream Behavior

As described earlier, a MetaSocket is an adaptable component created from
a Java MulticastSocket, by providing it with refractions and transmuta-
tions. Given the ubiquity of sockets in distributed applications and mid-
dleware systems, we use MetaSockets heavily in our studies of adaptable
distributed systems. In particular, we explore how run-time adaptabil-
ity of MetaSockets can be used to address different cross-cutting concerns,



such as quality-of-service, energy consumption, fault tolerance, and secu-
rity. In this section, we describe the transformation of a MetaSocket into
an informer that is used to detect anomalies in packet streams to mobile
devices. Specifically, we investigated the use of informer sockets to monitor
the behavior of wireless audio channels at run time.

Figure 4 shows the physical configuration of our experiments, where live
audio is sent from a workstation to multiple iPAQ handheld computers
running Windows CE. The audio stream is transmitted over a 100 Mbps
Ethernet LAN to a wireless access point, where it is multicast on an 11
Mbps 802.11b wireless LAN. The audio streaming code comprises two main
parts. On the sending station, the Recorder uses the javax.sound package
to read audio data from a system’s microphone and multicast it on the
network. On the receiving station, the Player receives the audio data and
plays it using javax.sound. Both applications were written in Adaptive
Java and converted into pure Java using the ajc compiler described earlier.

They communicate using MetaSockets instead of regular Java sockets.
The audio encoding uses a single channel with 8-bit samples. Relatively
small packets are necessary for delivering audio data, in order to reduce
jitter and minimize losses [13]. Hence, each packet contains 128 bytes, or
16 msec of audio. This interpacket delay at the sender (and implicitly, the
delay between packets arriving at the receivers) stabilizes soon after the
channel is established. Hence, any significant changes in this rate indicates
either a malfunction or possible malicious behavior. In our experiment, we
started a second source of packets to the multicast address used by the
iPAQs, as shown in Figure 4, and used MetaSockets to detect and negate
the effects of this source.

When the application begins execution, the DM for the MetaSocket at
the receiver first calculates the initial expected rate of arriving packets,
based on input parameters to the application. The DM then metafies
the MetaSocket as an informer, creating a filter pipeline similar to that
shown in Figure 2. The DM then inserts two filters at the receiving
MetaSocket: the NetArrivalRateMonitor and AppArrivalRateMonitor
are two self-informer filters that log the packet arrivals from the points of
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Figure 4: Physical experimental configuration.

view of the network and the application, respectively. These self-informer
filters provide two MOPs. The first MOP is a refractive MOP that pro-
vides isActive(), getExpectedInterArrivalTime(), getThreshold(),
and getArrivalTimeVector () methods. Respectively, these methods en-
able the DM to check if the self-informing option of the filter is active,
retrieve the expected packet interarrival time set in the filter, retrieve
the threshold percentage around which the packet interarrival time can
vary and still be considered acceptable, and obtain the arrival time of
the packet. The second MOP is a transmutative MOP that provides
setActive(), setExpectedInterArrivalTime(), setThresold(), and
setArrivalTimeVector () methods. Similarly, these methods can be used
by the DM to activate or deactivate event generation by the filter, set the ex-
pected packet interarrival time, set the threshold percentage, and reset the
packet arrival time. When initially inserted, the NetArrivalRateMonitor
filter is deactivated and the AppArrivalRateMonitor is activated. Hence,
the AppArrivalRateMonitor calculates the packet arrival rate while pro-
cessing incoming packets and compares the current arrival rate against
the ExpectedArrivalRate. If the current rate is higher than the
threshold percentage over the ExpectedArrivalRate, then the filter fires
a HighArrivalRateEvent event.

At a time 23 seconds into the experiment, we started the malicious source,
which transmits a second audio stream (effectively noise packets) to the



receiver. Figure 5 shows the packet arrival rate from the network point
of view calculated by the NetArrivalRateMonitor. After the malicious
source starts (at point 23), the arrival rate goes from 60 packets per second
to 120 packets per second.
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Figure 5: Trace of packet arrival rate per second from network point of
view. A malicious source starts after 23 seconds and stops after 73 seconds.

Figure 6 shows the packet arrival rate observed by the application.
The AppArrivalRateMonitor detects the high arrival rate and fires a
HighArrivalRateEvent event. This event is handled by the DM by send-
ing a request to the sending side’s DM to insert a DigestGen filter, which
is inserted at the first position in the sending side filter pipeline. The
DigestGen filter calculates a digest for each outgoing packet using a secret
key that is negotiated over the control channel between the sender and re-
ceiver using their public and private keys. Its peer, a DigestVer filter, will
be automatically inserted at the receiving side filter pipeline after the ar-
rival of the first packet wrapped by a header of DigestVerID type. This

filter drops any packets that do not contain the proper digest. As shown
in Figure 6, the MetaSockets and DMs respond very quickly in order to
prevent the noise packets from being delivered to the application.
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Figure 6: Trace of packet arrival rate per second from application point of
view. The application sees only a single spike in the arrival rate at time 23,
as subsequent noise packets are dropped.

Once the high arrival rate is detected by the AppArrivalRateMonitor
filter, the DM deactivates this filter to prevent the generation of redundant
high arrival rate events. The AppArrivalRateMonitor will continue log-
ging the packet arrivals in an informer mode (as opposed to a self-informer
mode). At the same time, the DM activates the NetArrivalRateMonitor,
which operates similarly to the AppArrivalRateMonitor, except that it
detects the return to a normal arrival rate.

As shown in Figure 5, the malicious source stop transmitting at time
73. The NetArrivalRateMonitor filter detects a normal arrival rate at
this point and fires a NormalArrivalRateEvent. The DM will handle this



event by sending a request to the sender side to remove the DigestGen filter.
After the DigestGen filter is removed from the sending side, the DigestVer
filter will be automatically removed from the receiving side when the first
packet without a DigestVer header arrives.

Figures 7 and 8 show the number of packet arrivals at the network and
application over the course of our experiment. Figure 7 shows that the
network at the receiving side of the application receives both the original
packet and the noise packet. Figure 8, on the other hand, shows that the
application receives packets at a constant rate, since the additional noise
packets have been dropped by the digest filters.
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Figure 7: Trace of packet arrivals per second from network point of view.

The reader might wonder why a developer would write MetaSocket code
that could deliver packets out of order to the application. Moreover, why
do we need such a complicated framework simply to filter noise packets
from a data channel that exhibits well-defined properties? Actually, these
questions highlight precisely the advantages of an adaptive run-time audit-
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Figure 8: Trace of packet arrivals per second from application point of view.

ing framework. Prior to metafication, the base-level socket component is
simply responsible for receiving packets and delivering them to the appli-
cation. It does not, and should not, care about application-level semantics,
including sequence numbers. Moreover, the original developer might not
have anticipated all possible audits on that component. In aspect-oriented
programming terminology [8], the cross-cutting security code has been “de-
tangled” from the code that implements the functional behavior of the
component. When the MetaSocket is created through metafication, some
basic checks are inserted into the component, specific to its use for audio
streaming. However, to further inspect the data in the packet, including
the application-level header, is not necessarily warranted and would likely
waste computing resources. The proposed techniques enable all auditing
functionality to be completely tailorable to current conditions and added
only as needed.



5 Related Work

In recent years, numerous research groups have addressed the issue of adap-
tive middleware frameworks that can accommodate dynamic, heteroge-
neous infrastructures. Examples include MOST [5], TAO [10], dynamic-
TAO [9], Odyssey [14], MCF [11], and QuO [18]. In addition, many of
these projects, as well as other middleware projects [16,17,20] provide
support for adaptive security management, including auditing operations.
Like RAPIDware, several of these frameworks involve computational re-
flection [12], which refers to the ability of a computational process to rea-
son about (and possibly alter) its own behavior. However, most of these
approaches operate above the programming language level, for example,
in CORBA contexts. To our knowledge, none supports the capability de-
scribed in this paper, namely, the run-time transformation of language-level
components into informers. To provide this functionality, we take advan-
tage of Adaptive Java’s support for run-time adaptation. In this sense, our
work complements many of the projects above: implementing parts of those
systems in Adaptive Java would provide an additional level of adaptability
in areas such as auditing. Moreover, these techniques facilitate the run-time
adaptation of the system in ways not anticipated during the original devel-
opment. While other researchers are investigating the use of programming
language constructs to realize adaptable behavior [1,2,4], to our knowledge,
those approaches have not been applied to the adaptive auditing problem.

6 Conclusions

In this study, we investigated the use of the Adaptive Java programming
language to support run time adaptation of security-oriented audits. By
providing mechanisms that enable monitoring and reporting code to be in-
serted into running components, any component can become an informer as
needed, and the operation of the informer can be adapted to changing con-
ditions and situations. While our prototype and the experiments conducted
are relatively simple, they serve as a proof-of-concept that it is possible to

insert auditing code into arbitrary components at run time so as to detect
and respond to events of interest. We emphasize that this method can be
applied to any part of the system, not only communication primitives.

We believe that this approach may be particularly useful in mobile com-
puting environments, where constant monitoring of all parameters of in-
terest may be too expensive in terms of computing resources and memory
requirements. More importantly, how the system responds to a potential
security threat may depend on several factors, such as available battery
power and current network channel conditions. Indeed, a major goal of the
RAPIDware project is to explore software mechanisms that enable coordi-
nated adaptation to changing conditions in multiple cross-cutting concerns:
security, energy consumption, fault tolerance, and quality of service. Cur-
rently, we are conducting subprojects in the use of Adaptive Java to address
other key areas where software adaptability is needed in mobile devices: dy-
namically changing the fault tolerance properties of components; adaptive
quality-of-service for audio, video, and data; mitigation of the heterogene-
ity of system display characteristics; and energy management strategies for
battery-powered devices.

Further Information. Related papers of the Software Engineering
and Network Systems Laboratory can be found at the following URL:
http://www.cse.msu.edu/sens. The RAPIDware project homepage is
http://www.cse.msu.edu/rapidware.
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