CEN 6612

Class Discussion & Agnostic Questions

Discussion:

· Discovery is not just a discovery but also a scheduling problem
· What is a programming model?

· A model that can be represented in many different forms e.g. a language, a library, an API or a tool with extensible functionality.

· Different available programming models might be related but not necessarily

· What are the different types of machines?

· Single Instruction Single Data e.g. Intel machines
· Multiple Instruction Multiple Data

· Tightly Coupled Hardware (Shared Memory, Multiprocessor)

· Loosely Coupled Hardware (Separate Memory, Multicomputers IBM Blue Gene)

· Single Instruction Multiple Data (Array Processor, Vector Processors e.g. Cray)

· Multiple Instruction Single Data
· In Blue Gene each processor has a separate Memory under same administration

· Multi-Computers can be cluster of workstations (COW). Google is an example of COW

· Grids are also multi-computers that can be under different administration

· Shared State Mode refers to processes sharing memory
· Linda is loosely coupled way of communicating as compared to MPI (Message Passing Interface). Linda uses tuples

· MPI belongs to multi-computers type.

· MPI-CH is a grid enabled implementation of MPI

· Can we use RPC for Multiprocessors?

· No, since multiprocessor share memory space where RPC concept is based on separate memory space.

· In GRIDs, we can use RPC

· JXTA-open generalized P2P protocol

· P2P e.g. bit torrent

· Advantages:

· No centralized control

· Can function even if a node fails

· Flexible

· Scalable

· Security in P2P can be delegated to some designated super nodes

· However, failure of such nodes can compromise security

· Do we need all the security methods like integrity checking etc?
· Not necessary for audio/video streaming

· Other applications might require higher level of security

· Tradeoff: performance vs. security

Question 1

The chapter discusses six essential properties or issues that need to be addressed for implementing a practical and effective grid programming model. Can you think of some other properties or issues that should be added to the set of properties to further ensure robustness, reliability, security, better discovery methodologies and fault tolerance?
Efficiency could be another property, however, it might conflict with other properties such as robustness as a model can be robust (resilient to failures) but highly inefficient (extremely low throughput).
Question 2

The Grid architecture itself provides security via the use of certificates. Do you think this level of security should be sufficient for a grid programming model or additional security provisions need to be embedded into the grid programming model(as mentioned by the authors)?

It was my understanding that the use of certificates within a trusted domain is enough. However, as the security needs vary from application to application, thus some level of security might be helpful. Moreover, security is

· Not necessary for audio/video streaming

· Some applications might require higher level of security while others require less or no security
· Tradeoff: performance vs. security

Question 3

Data driven techniques such as stream programming can incur excessive matching and scheduling overheads. Don’t you think such overheads coupled with the bandwidth constraints over the network have negative impacts on performance over a GRID?

While it is true that data driven techniques such as stream programming can incur excessive matching and scheduling overheads, it can provide a more loosely coupled execution. If the bandwidth is poor performance will drop for any technique but using coarse-grain form can realize significant net benefit but reducing the number of network transactions.

Question 4

The book chapter describes some implementations of GRID programming models. There are others as well such as GRID Superscalar. Do you know of any other models that have been proposed or developed since the publication of this book?
Distributed Threads (Alchemi, Grid Thread Programming Environment (GTPE))
Distributed Objects (ProActive)

Bag of Tasks (Nimrod-G, Gridbus Broker)

Question 5

The authors anticipated that considering the GRID programming models/tools, their requirements and due to practical reasons MPI (Message Passing Interface) has the maximum potential to be customized for GRIDs in the future as it would require minimal changes to the its API. However, most of the recent research focused on development and utilization of other approaches such as OGSA, GridRPC etc. What can be attributed to this transformation?

This transformation can be attributed to the tremendous commercial motivation for the development of web services. The potential for scientific and engineering computation. Another contributing factor could be politics.
Question 6

The authors advised the possible use of Peer-to-Peer models for GRID programming models. I found that Our Grid is one such implementation that uses JXTA and GRID resources. Do you know of any others? If yes, can you identify the major differences among Our Grid and other similar implementations?
Other implementations are:

· CoreGrid

· Vishwa

· GridOneD

· P2P-RPC
Question 7

Grid portal tool kits and development frameworks allow for the development of grid portals that can support a variety of application domains e.g. science portals, compute portals. etc. Some new tool kits and Grid portal development frameworks have been implemented recently (GridSphere, NSF NMI). Can you elaborate on the efficacy and usage of these frameworks?

The GridSphere portal framework provides an open-source portlet based Web portal. GridSphere enables developers to quickly develop and package third-party portlet web applications that can be run and administered within the GridSphere portlet container. The GridSphere portal framework seeks to address the limitations of other portals by providing a framework that will offer external developers a model for easily adding new functionality and hence increasing community collaboration.

The purpose of the NSF Middleware Initiative (NMI) is to develop, deploy and sustain a set of reusable and expandable middleware functions that benefit many science and engineering applications in a networked environment. Robust middleware services are especially important for enhancing scientific productivity and for facilitating research and education collaborations through sharing of data, instruments, and computing resources. The program encourages open source software development and distribution approaches, as well as the development of necessary middleware standards.
Question 8

As per the authors, Java RMI and MPJ can be utilized for the development of a Grid Programming model. Ibis is one such API that uses both JAVA RMI and MPJ. Can you think of possible issues with these due to their reliance on Java? Would it necessarily mean that the programs written by developers will also have to be written in Java as well before being able to use Ibis for running their code over a GRID infrastructure?
Some issues are listed below:

1) Inferior communication speed
2) May not have open-ended API
However, it would not necessarily mean that the programs utilizing the Ibis API have to be written in JAVA as well. As long as the API provides a transparent and well defined, widely applicable generalized interface supporting major programming language constructs and data types, the developers should be able to use the API without necessarily using JAVA.
Question 9

Were the authors correct in suggesting that programmers by nature will adapt their codes and programming style to accommodate the available infrastructure? Is it really happening that the infrastructure is driving the programmers’ style or the infrastructure designs are actually driven by the programmers’ styles and needs?

Yes, I believe that programmers by nature do and will adapt their codes and programming style to accommodate the available infrastructure.
Question 10

The authors indicated the use of one sided message passing for Grid programming models. However, it requires the use of an implicit receive operation listening for incoming messages. Can there be any potential fault tolerance issues with the use of such one sided asynchronous communication?
Fault tolerance issues might include:
1) Reliability not guaranteed - Possibility of message not being received (incorrect address, no confirmation, dropped connection. Etc)

Although one sided message passing can be implemented on top of two-sided communications example MPI-2 ensuring some level of reliability as mentioned in the paper.
