Paper: 
Enabling Peer-to-Peer Interactions for Scientific Applications on the Grid, V. Matossian and M. Parashar.


Presenter: Selim Kalayci; Antagonist: Srilakshmi Medam
Statement:
Section 1: “Pawn focuses on interaction services to support application monitoring and steering, collaboration, and application execution on the Grid.”

Question 1:
In what way is the focus on interaction services advantageous in a distributed environment? Are there services which would be equally important to focus on?


(a) Scalability, Flexibility, Robustness, No single point of failure.

(b) Other services may be: Data grid services

Statement:
Section 2: “IPARS simulation interacts with the Economic model to determine current revenues, and discovers and interacts with the VFSA service when it needs optimization. VFSA provides IPARS Factory with optimized well information, which then launches new UPARS simulations.”
Question 2:
It appears that the optimization of network processes and parameters is dependent on a feedback mechanism between IPARS and VFSA. How fast is IPARS? No results exhibit the advantages of using IPARS or dependence on its execution.


Main time-consuming task seems to be the VFSA component, which does the guesses for well placement based on data gathered. I am not sure, but the name (Very Fast) implies that it is not slow at least. The paper or other references does not mention about timing issue.

Statement:
Section 3: “Typical roles for a peer are client, application or rendezvous.”

Question 3:
Are these roles sufficient for a peer? They appear to be very broad roles. Can any comments be made on their roles being more specific and quantifiable? For example, “rendezvous” role appears specific and well-defined. However, “client” and “application” roles do not.

The combination of services implemented by a peer defines its role. Since services are generic, peers would be generic as well.


I don’t think making client and application peers more specific would do any good. It would complicate the design and damage the flexibility.

Statement:
Section 3.1: “In Pawn, network services are application-centric and provide the mechanisms to query…”
Question 4:
Why is it an advantage for services to be application-centric? Assume that this question is not confined to network services alone. To me it appears that application centric nature will actually make a system more centralized and prone to single points of failure, nullifying the very reason we use Grid and its services.


Defining network services to be application-centric specifies the granularity of the network services supported by Pawn. The purpose of Pawn is to have application-level interactions, so it suits the specification. 

Of course it does not mean, this is the finest granularity of services. For finer grain services, there has to be other middleware/framework dealing with them.

Statement:
Section 3.2: “Pawn implements application-level communication guarantees by combining stateful messages and a per-message acknowledgement table maintained at every peer.”
Question 5:
What is novel about Pawn’s statefulness at the application layer to provide communication guarantees?


State is maintained by making every message a self-sufficient and self-describing entity that carries enough information such that, in case of a link failure, it can be resent to its destination by an intermediary peer without the need to be recomposed by its original sender.
Question 6:
Is per-message acknowledgement fast? For a system with large number of peers exchanging messages, this procedure does not appear to be very efficient.

That’s true. In an environment with a lot of messages traveling around, this may be a significant overhead for the overall system.


An approach, where each message is given a sequence number and receiving peer looks at this sequence number and can detect if a message is missing or not. 

But it may be the case that communication is cut between two peers, so receiving end does not receive any messages and sending peer assumes that all messages are sent successfully. To solve this, we may require both ends to send acknowledgements of which packets are sent in a certain amount of time or per say 10 messages. If either ends does not receive an acknowledgement, we may assume that messages after the last successful acknowledgement are lost.
Statement:
Section 3.2: “Upon receiving an RPC message, a peer locally checks the credentials of the sender, and if the sender is authorized, the peer invokes…”

Question 7:
How is the credentials’ list generated? Is there a distributed mechanism to obtain this information?

Pawn framework is combined to the core services offered by the Grid infrastructure. So, I assume that, authorization task is delegated to those low-level services.
Statement:
Section 5, Figure 4: “Effectiveness of Message queuing.”

Question 8:
It does not appear that Pawn has any novel advantage compared to JXTA for message queuing. JXTA appears to use TCP for message queuing which by default has a small window size (typically 32), and is a best effort delivery mechanism. Pawn simply moves the responsibility of message delivery to the application layer, and increases the window size considerably. Isn’t this an unfair comparison with JXTA?

JXTA doesn’t guarantee application-level message guarantee. Pawn, leveraging the rendezvous peers and their storage guarantees message delivery. So, if your application needs to guarantee message delivery all the time, Pawn offers a good option.
In-class questions – June 28
Question 9:
What is meant by injunction? Is data injunction like injecting data in the pipe?

In context of JXTA, injunction refers to attachment of additional control data in the form of pipe information to the peer advertisement.
Question 10:
What is wrong with figure 1 (Autonomous optimization in IPARS using VFSA) in the paper?


Figure 1 depicts a distributed system; it is not a peer-to-peer topology.

Question 11:
What will you do if you were given this application?


There is no scale out in this application unlike in peer-to-peer systems. As a system developer, I would avoid clients and servers in a peer-to-peer scenario.
