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Abstract
Performing typical network tasks such as node scanning and path tracing can be difficult in large and dense
graphs. To alleviate this problem we use eye-tracking as an interactive input to detect tasks that users intend to
perform and then produce unobtrusive visual changes that support these tasks. First, we introduce a novel fovea
based filtering that dims out edges with endpoints far removed from a user’s view focus. Second, we highlight
edges that are being traced at any given moment or have been the focus of recent attention. Third, we track
recently viewed nodes and increase the saliency of their neighborhoods. All visual responses are unobtrusive and
easily ignored to avoid unintentional distraction and to account for the imprecise and low-resolution nature of eye-
tracking. We also introduce a novel gaze-correction approach that relies on knowledge about the network layout
to reduce eye-tracking error. Finally, we present results from a controlled user study showing that our methods
led to a statistically significant accuracy improvement in one of two network tasks and that our gaze-correction
algorithm enables more accurate eye-tracking interaction.

Keywords: Eye tracking, gaze contingent graph visualization.

1. Introduction

Network analysis plays an important part in domains such as
neuroscience [BS09], genomics and proteomics [CCNS08],
software engineering [GN00], or social sciences [BMBL09].
Interaction is instrumental in allowing users to weed through
the scale, complexity, and clutter inherent to visualizations
of real-life networks. Here we explore the use of eye tracking
as an interactive input to detect users’ intentions and support
them by slight changes in the visualization. The use of eye
tracking as an input has been explored in the human com-
puter interaction (HCI) community [Duc02], but there are
few results in the visualization domain.

Specifically, we introduce three types of interactions.
First, we reduce clutter by using a novel fovea-based filter-
ing that dims edges that pass through the user’s view focus
but have their endpoints far outside of the user’s fovea. Sec-
ond, we increase the saliency of edges that users are view-
ing or have recently viewed. Third, we keep track of nodes
that were recently viewed and increase the salience of their
neighborhood. All visual responses are gradual, incremental
rather than binary, and visually subtle.

Thus, by design, our interactions are gaze-
contingent [Duc02]. We use gaze coordinates to infer
users’ task intentions and to visually support these tasks as
unobtrusively as possible, so as to minimize distraction. This
approach also relates to attentive interfaces [Duc02, Sel04]
and multimodal interfaces [Ovi03] but contrasts with early
HCI efforts to use eye-tracking in ways analogue to manual
pointing and clicking. Merely connecting eye-tracking input
to otherwise conventional network interactions is limited by
particularities of eye-movements and eye-tracking technol-
ogy. Specifically, as noted by [ZMI99], the eyes are not a
control organ, eye-tracking input is generally low resolution
and inaccurate, and the absence of a trigger command is
difficult to compensate [Jac90].

We also contribute a gaze-correction algorithm that uses
knowledge of the visualization layout to reduce eye-tracking
error. Insufficient calibration sometimes leads to screen re-
gions in which gaze input is offset from the users’ real view-
ing point. Our algorithm relies on the known visual position-
ing of nodes on the screen to detect nodes that are likely to
be viewed.

We evaluated our gaze-enabled network visualization in a
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within-subject user study with twelve participants. First, we
asked participants to perform two types of tasks: (i) iden-
tify whether there is a direct connection between two nodes;
and (ii) identify the shortest path between two nodes. In a
third task designed to evaluate our gaze correction algorithm,
users selected as many nodes as possible in a given time by
looking at them. Our results showed a 30% improvement in
the direct connection task (p = 0.02), a 25% improvement in
the node selection task (p = 0.01), and were not significant
in the path task.

Given the unavoidable connection between eyes and data
visualization, the fact that people’s gazes are linked to tasks
they are performing [YR67, SCC13], and that eye-tracking
is on its way to becoming a component of regular work sta-
tions [Duc07, JK03], we hypothesize that visualization re-
search can benefit from exploring the use of eye-tracking as
an input channel.

2. Related Work

The fovea, a small area in the center of the retina, is responsi-
ble for our high resolution vision. The larger part of our field
of view (i.e. parafoveal and peripheral region) is low resolu-
tion. The illusion of full high definition vision is created by
an unconscious scanning process: the fovea performs quick
translations, called saccades between short moments of fo-
cus, called fixations. Eye-tracking technology allows us to
locate users’ points of gaze [WM87, Jac91].

Most often, gaze tracing is used for data collection in of-
fline, post hoc analyses of human visual perception [Duc07].
In data visualization, Huang et al. used eye tracking to in-
vestigate the cognitive processes involved in reading graph
visualization [HEH08], Pohl et al. used it to understand how
user performance is affected by network layout [PSD09],
Burch et al. investigated visual exploration behavior and task
solution strategies for hierarchical tree layouts [BAA∗13,
BKH∗11], and Tory et al. used eye tracking to analyze the ef-
fectiveness of visualization designs that combine 2D and 3D
views [TAK∗05]. In a different approach, Andrienko et al.
identified visual analytics methods applicable to eye track-
ing data analysis [AABW12], while Steichen et al. notes user
and task characteristics that can be inferred from eye track-
ing data [SCC13]. Unlike these works, we use eye tracking
data as an input source to change visualizations in real time.

The appeal of the eye’s speed led HCI researchers to ex-
plore gaze as an actuatory input in ways analogue to man-
ual input. This approach has met with limited success due
to several reasons. First, while very fast, gaze-input comes
with disadvantages such as low accuracy, jitter, drift, off-
sets, and calibration needs [Duc07, JK03, KPW07]. Second,
finding a gaze equivalent of a trigger command is not trivial
and leads to the “Midas touch” phenomenon - the inability
of the interface to reliably distinguish between looking and
controlling [Jac91]. Ultimately, the duration of a fixation, or

dwell time, has been established as the most effective way
to trigger commands [WM87, Jac91]. However, low dwell
thresholds amplify the Midas touch problem by triggering
commands inadvertently, while high dwell thresholds offset
the speed advantage of gaze input.

The current consensus is that eyes are not suited for in-
terface control [Jac91, JK03, ZMI99, Zha03]. Instead, Ja-
cob proposed that interfaces should use gaze as an indi-
cator of intention and should react with gradual, unobtru-
sive changes [Jac91, JK03], a view formalized by the con-
cept of attentive interfaces [ADS05, Ver02, VSCM06, VS08,
HMR05, RHN∗03]. The research described here aligns
with this paradigm and also draws inspiration from work
in gaze-contingent rendering [OHM∗04, DÇ07, ODH02],
where scenes are drawn in high resolution only in foveated
screen areas to reduce computational costs.

In the visualization domain the use of eye tracking as an
interactive input is minimal. Streit et al. [SLMS09] use gaze-
information to enlarge visualization regions of interest and to
navigate or manipulate 3D scenes. This work fits in the HCI
control paradigm. Our work differs through the adoption of
the attentive interface approach by which we produce un-
obtrusive visual responses that minimize distraction and are
complementary to traditional manual control. A further con-
tribution over previous work is the gaze correction method
described in the following section.

3. Implementation

Our implementation focuses on two issues: improving gaze
accuracy and providing interactive visual responses. The in-
teractive responses are: (i) a novel fovea based filtering that
dims out edges with endpoints far removed from a user’s
view focus; (ii) highlighting edges that are being traced at
any given moment or have been the focus of recent atten-
tion; (iii) tracking recently viewed nodes and increasing the
saliency of their neighborhoods. We detail these techniques
in the following sections.

3.1. Gaze-correction

Due to calibration limitations, gazes reported by eye-
tracking are sometimes offset from real gaze coordinates. We
alleviate this problem by leveraging the known network lay-
out. We use the eye-tracker API to compute fixations from
individual gaze samples. We match subsequent long fixa-
tions (200-300ms) to proximal nodes that have a relative
pairwise positioning similar to that of the fixations. We then
assume these nodes were likely the target of the user’s at-
tention and compute offsets between them and the fixations.
We aggregate these offsets over time, gradually constructing
and adjusting an offset map over the screen space. This offset
map is then used to correct the coordinates of all incoming
gaze-samples (Fig. 1).

The specific implementation is shown in Algorithm 1. For
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the last three fixations delivered by the eye-tracker API, we
find the closest three network nodes to each fixation and we
construct 27 possible combinations. We then find the com-
bination that minimizes a score that averages two compo-
nents: proximity of the gazes to their corresponding nodes;
and how well the relative positioning of the nodes matches
the relative positioning of the fixations. We consider that the
current three fixations map to those three nodes. We then in-
tegrate the offset vectors into the existing offset map. The
map is a partitioning of the screen space into cells of 10×10
pixels, where each cell contains a two-dimensional offset
vector that will be applied to gazes landing in that cell. Fig.
2 illustrates the results of the algorithm.
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Figure 1: Gaze correction: fixations f1..3 do not perfectly
overlap the nearest vertices v1..3 but their relative position-
ing matches that of the vertices. We conclude that f1..3 were
fixations on v1..3. We compute displacement offsets between
f and v and incorporate them into a grid of displacement
vectors that we apply to all gaze samples.

Figure 2: Gaze correction in our system. The blue circle rep-
resents the corrected gaze while the red one matches the raw
gaze sample. The magnitude of vectors in the offset map is
displayed as a red heatmap.

We also note that correction happens in screen space
rather than visualization space and as such the computed off-
set map is bounded in size. This means it can be computed

Algorithm 1 Correct Gaze
Require: f1..3, three most recent fixations

(w,h), size of display window
cells[w/10,h/10], grid over screen space
vi,1..3← closest three vertices to fi, i = 1..3

v← [] , minScore←∞
for ( j,k, l)| j = 1..3,k = 1..3, l = 1..3 do

score← avg(| f1− v1, j|, | f2− v2,k|, | f3− v3,l |)×
avg(|( f1− f2)− (v1, j− v2,k)|,

|( f1− f3)− (v1, j− v3,l)|,
|( f2− f3)− (v2,k− v3,l)|)

if score < minScore then
score← minScore , v← [v1, j,v2,k,v3,l ]

end if
end for
for i|i = 1..3 and score < threshold do

disp← v[i]− fi
(cx,cy)← cell of fi
for (x,y)|cx−5 < x < cx+5,cy−5 < cy+5 do

d← (|(cx,cy)− (x,y)|)
cell[x,y]← disp/(d +1)

end for
end for
STATE apply cell[x,y] to all gaze samples landing in that
cell
**all distance are computed in screen space

relatively quickly and then adjusted on the fly as users inter-
act with the visualization.

We note that our approach resembles work by Salvucci et
al. [SA00] who use Markov and Bayesian models to predict
gaze targets based on probable behavior, to that of MacKen-
zie and Zhang [MZ08] who use letter and word prediction to
improve their eye-typing system, and finally to work inter-
preting fixations as part of “gaze gestures” [DS07,DDLS07].

3.2. Gaze-enabled network interactions

We implemented three types of interactions. The next three
sub-sections describe a series of node and edge scores that
are computed from gaze data. The fourth sub-section de-
scribes how these scores are combined and used during ren-
dering to create visual responses. The last sub-section dis-
cusses a few implementation details that apply to all interac-
tions.

3.2.1. Gaze-enabled filtering

Gaze-enabled edge filtering dims edges that pass through the
user’s fovea but have both endpoints far removed from it.
To achieve this, given a current gaze point, we compute fil-
tering scores (Se f ) for all edges according to the diagram
in Figure 3 and using Formula 1. Specifically, if the edge’s
closest endpoint to the gaze is within the smaller circle then
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Figure 3: Edges running through users’ fovea but with both
endpoints far away from its center are filtered out.

the score will be 1 ( f (pd) = 1) and the edge visible. If the
edge runs through the user’s fovea (i.e., d is small) and the
closest endpoint is not within view (pd > R2, f (pd) = 0) the
score is null and the edge filtered. The two circles centered
at the user’s focus point create a gradual transition between
those two cases.

Current edge scores are combined with previous scores
to ensure gradual changes (1..2 seconds) in this measure. Fi-
nally, Se f is combined with other saliency measures and used
to render edges , as will be described in section 3.2.4.

Se f = f (pd)+(1− f (pd))×min(1,
d

R2
)

where f (pd) = max(0,min(1,1− pd−R1
R2−R1

)),

pd = |gaze− closest edge endpoint|
d = |gaze− edge|

(1)

3.2.2. Detecting viewed edges

We also aim to detect edges as users are visually tracing
them and increase their saliency. To this end we compute
edge viewing scores (Sev).

We first divide edges into segments of equal lengths.
A score is maintained for segment endpoints to indicate
whether recent gazes landed nearby. Each gaze sample land-
ing close to an edge segment endpoint will increase the end-
point’s score by a factor inversely proportional to the dis-
tance between the gaze and the endpoint. At the same time
all scores are gradually decreased each time a new gaze is
processed.

This essentially creates a “histogram” along edges. Fig-
ure 4 shows a segmented edge with histogram bars arranged
horizontally. To compute the edge viewing score, we sum
over the histogram, divide by a constant, in our case 500,
and cap the value to 1. This step ensures edge scores are
between 0 and 1 and gives preference to edges close to or
longer than 500 pixels.

An improvement was introduced to account for a be-

Figure 4: Viewing histograms along edges are computing by
dividing the edge in segments and monitoring gaze-count in
each segment.

havior observed during testing. People seemed to require
shorter fixations and longer saccades when tracing edges
that were fairly isolated or travelling through empty space,
but required longer fixations with shorter saccades between
them when tracing edges in dense areas. To account for this,
we compute a density score for each segment endpoint by
adding up the number of other endpoints that lie within a
certain distance from it. We use this density score to extend
longer bars from low density endpoints and shorter bars from
high density endpoints. This ensures that we easily detect
views of isolated edges yet at the same time reduce false
positives in dense areas where two random fixations could
easily match an edge.

Two types of edge viewing scores are computed using this
methodology. The first is a short-term score (Sev) that cap-
tures edges that are currently viewed. This score can change
between its minimum and maximum values within a few
hundred milliseconds. The second is a long-term score (S′ev)
that captures edges of interest, those that have been viewed
repeatedly in the last several seconds. We use the first score
to increase or decrease the value of the second score by a
constant that depends on the desired life-span of the second
score. The process of computing Sev and S′ev is formalized in
Formula 2.

Sege,k, segment k of edge e

Density(Sege,k) = count(Sege′,k′) where e′ != e and

|Sege′,k′ −Sege,k|< 100px

Score(Sege,k) =
1

|Gaze−Sege,k|

Sev(e) = sum(Score(Sege,k)×
1

Density(Sege,k)
)

S′ev(e) = S′ev(e)+(Sev(e)−0.5)/10,

S′ev capped to [0,1]

(2)

3.2.3. Detecting sub-networks of interest

We also increase the saliency of nodes of current interest and
their neighborhoods. To achieve this, we first compute an in-
terest score for each node in a way analogue to edge segment
endpoint scores. If a user’s gaze lingers close to a node, its
score will be increased by a factor inversely proportional to
the distance between the fixation and the node. As for edges,
we decay all node scores each time a new gaze is processed.
Once node scores are updated according to a new gaze, we
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Figure 5: Viewed edge highlighting. An edge visually traced
by the user is highlighted (red).

Figure 6: Highlighting a sub-network of interest. Recently
viewed nodes and edges between them become slightly high-
lighted. The effect is also diffused to their immediate neigh-
borhoods.

diffuse them across their neighborhood using the process il-
lustrated in Algorithm 2. Similar to edge scores, we keep
two scores for each node, a short term score Sv computed as
described above and a long term score S′v that is computed
from Sv. The process of computing Sv and S′v is formalized
in Formula 3.

Sv(n) =
1

|Gaze−n|
S′v(n) = S′v(n)+(Sv(n)−0.5)/10,

S′v capped to [0,1]
(3)

Algorithm 2 Diffuse node scores
do three times
for all edges e(s,d) do

score(s)← max(score(s),score(d)/4)
score(d)← max(score(d),score(s)/4)

end for

3.2.4. Rendering

On rendering, we combine the previously described scores
and link them to visual properties such as color and alpha
blending. In our implementation we have used the mapping
described below. However, other mappings can be explored
as long as they are gradual and unobtrusive.

First, node scores Sv and S′v are factored into the node
color and opacity using formula 4. The constants R,G,B,A
determine the base color for unviewed nodes, the saliency
for viewed nodes, and weight of each score into the visual
response. The values chosen in our evaluated implemen-
tation, given color components between 0 and 255, were
Rbase = 50, Gbase = 50, Bbase = 50, Abase = 50, RSv = 30,
RS′v = 90, ASv = 30, AS′v = 120.

RGB(v) = (Rbase +Sv×RSv +S′v×RS′v,

Gbase,Bbase)

Al pha(v) = Abase +Sv×ASv +S′v×AS′v

Rbase +RSv +RS′v ≤ 255

Abase +ASv +AS′v ≤ 255

(4)

Similarly, when drawing edges we also varied opacity
and the red color component to highlight interesting edges,
as shown in formula 5. Moreover, we rendered edges in
two layers: a short-term layer that highlights edges currently
viewed and a long-term layer to highlight edges that have
been of interest in the last several seconds or more.

RGB(u,v) = (Rbase +Sev×RSv +S′ev×RS′ev

+Send p×Rend p,Gbase,Bbase)

Alpha(u,v) = Se f × (Abase +Sev×ASev)

+(1−Se f )×Sev×ASev

Alpha′(u,v) = (Se f +(1−Se f )×Anote f )

×(S′ev×AS′ev +Send p×Aend p)

where Send p =
(S′u +S′v)

2

and Rbase +RSv +RS′ev +Rend p ≤ 255

Abase +ASev ≤ 255

AS′ev +Aend p ≤ 255

(5)

In the color computation, Rbase indicates the base compo-
nent of unviewed edges (125 in our implementation). RSv,
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RS′ev, and Rend p represent weights given to the three scores
they precede.

Blending edge filtering with edge interest scores is not
trivial. If edge filtering scores are simply multiplied to the
interest scores, then a user tracing a long edge may find that
the edge disappears while their gaze reaches the edge mid-
point. Thus, viewed edges should be “exempt” from filtering.

To achieve this, the computed alpha values combine two
components: what happens when edges are not filtered
(Se f = 1) and what happens when they are filtered (1−Se f =
1). Thus, for short term alphas (Alpha), in the case of non-
filtered edges, we combine a base component (Abase) with a
component determined by ( Sev). In the case of filtered edges
the score is determined by Sev. As such viewed edges will be
visible even when they are filtered to a degree determined by
ASev.

The long-term alpha (Al pha′) does not have a base com-
ponent since the highlighting created by Alpha′ is only vis-
ible for edge of interest. AS′ev and Aend p are weights of the
two scores they precede. Finally, analogue to ASev in the pre-
vious paragraph, Anote f indicate the degree to which filtered
out edges should be highlighted if they are of interest.

3.3. Implementation Notes

Our gaze correction relies on fixations provided by the eye-
tracking API. These fixations are computed by the API from
a stream of gaze-samples acquired at a frequency of 120Hz.
As such, they are a discretization of the actual data stream.
Conversely, the gaze interactions in section 3.2 work directly
with individual gaze samples. These small but frequent bits
of information are aggregated over different time scales to
indicate whether nodes and edges are being viewed. The ad-
vantage of this continuous approach is that responses can be
gradual rather than binary, that errors are smaller and less
noticeable, and that visual responses can be produced while
a fixation is in progress.

Distance thresholds involved in gaze-based interactions
are defined in screen space. When computations are done
in visualization space, these thresholds are adjusted by the
zoom level. For example, the 500 pixel threshold mentioned
in section 3.2.2 refers to lengths on the screen rather than
lengths in visualization space. Thus, since edge “histogram”
values are computed in model space, we adjust the 500 pixel
threshold by a factor proportional to the zoom level.

All data related to viewing scores are maintained in data
objects – nodes and edges. As such, interactions that change
the network layout or the viewpoint do not impact the gaze-
interaction in any way. The data objects will continue aggre-
gating viewing scores computed based on the new configu-
ration, and the visualization will evolve smoothly.

Finally, while computations may seem complex, they gen-
erally involve simple searches and run in linear time. Our

current implementation processes gaze coordinates at 120Hz
for the data described in section 4.1 without lag. More-
over, significant optimizations could be made to accommo-
date larger datasets. Since all computations are a function
of gaze coordinates, decomposing the visualization using a
quad-tree structure or even a simple grid would enable fast
retrieval of closest nodes, edges, and other network proper-
ties. Such structures would need updating upon interactions
that affect the graph layout but are likely to be feasible within
timeframes typical for manual input.

4. Evaluation

The study was designed with two goals in mind: (1) test the
potential of gaze interactions for improving network tasks
and (2) demonstrate the effectiveness of the gaze correction
algorithm. To this end we tested two hypotheses: (H1) net-
work data reading tasks are aided by gaze enabled interac-
tions in terms of speed and accuracy; (H2) the gaze correc-
tion algorithm increases the system’s accuracy in detecting
intended view-targets.

4.1. Study Design

We performed a within-subjects user study to evaluate our
gaze-enabled network visualization (eye tracking condition)
against the same visualization without gaze interaction (con-
trol condition). The study lasted approximately one hour and
involved 12 participants.

We first tested H1 by asking users to perform two tasks
in one condition and then again in the other condition. To
reduce learning effects, half of the participants started the
study in the eye-tracking condition while the other half
started with the control condition. A three minute break was
introduced between conditions. We then tested H2 by asking
users to perform a third task with and without eye-tracking
support. Again, the two conditions were alternated.

The actual study was preceded by a training session. First,
we familiarized subjects with the concepts of node-link dia-
grams and the tasks they were going to complete in a short
whiteboard presentation. They were then shown the visual-
ization, several instances of tasks with correct answers, and
were allowed to use the controls to provide answers and ad-
vance through the study. Users were also informed on how
the gaze-enabled visualization reacts to their view.

A questionnaire at the end of the study captured users’
preference between eye tracking and conventional visualiza-
tion, a 1−5 rating of eye tracking appeal (1=not-appealing,
5=very-appealing), a 1 − 5 rating of the helpfulness of
eye tracking (1=not-helpful, 5=very-helpful), and an indica-
tion of whether the visual responses were obtrusive or not
(yes/no).

The design of the study was informed by a smaller scale
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study described in [OAJ13] and a small pilot study with two
users that helped remove a few errors of implementation.

Participants: We recruited 12 participants, 9 male and 3
female, most of which were graduate students in our depart-
ment. Their ages ranged between 24 and 30 years. None of
the participants reported vision deficiencies or color blind-
ness. Reimbursement was set at $10 with an additional $5
awarded to the user with the best aggregated accuracy.

Apparatus and Calibration: We used a RED120HZ eye-
tracker from Sensory Motor Instruments (SMI). The eye
tracker was calibrated for each subject at the beginning of
the eye tracking condition using nine-point calibration. Cali-
bration was considered successful when differences between
reported location and view target was at most 0.5cm.

Stimuli: The dataset used for the study was a book recom-
mendation network dataset. The network had approximately
900 nodes and 2500 edges and had been drawn using the
neato algorithm [EGK∗02].

Tasks: To test H1, our participants solved two types of
network tasks. In edge tasks, users determined the existence
of direct connections between pairs of highlighted nodes.
Tasks were limited to 3 seconds after which the screen faded
out. Users answered the questions by pressing ‘Y’ or ‘N’
within the 3 seconds or anytime after the screen faded out.
An answer would also prompt the study to advance to the
next question. For each task, the view was centered at the
midpoint between the two nodes and users were not allowed
to use the mouse. We showed 175 instances of edge, the
same ones in both conditions.

In path tasks, users looked for shortest paths between
pairs of highlighted nodes. Tasks were limited to 35 seconds
after which the study would advance automatically. To pro-
vide answers, users had to click on the path nodes. Within
the last five seconds of each task, the screen faded slightly
indicating to users that time draws to an end and they should
provide an answer before the next question would replace
the current one. Tasks involved paths of length three or four.
Views were again centered between the two nodes and users
were allowed to pan but not zoom. We showed 20 such ques-
tions, the same ones in both conditions.

A third task, correction, was used to test H2. With eye-
tracking support enabled, users were shown a view of the
graph in which a randomly selected quarter of nodes ( 225)
were gray while all others were red. They were then asked to
turn as many nodes as possible from gray to red by looking at
them. They were allowed two minutes with gaze correction
active and two minutes with gaze correction inactive. In this
task users could pan but not zoom.

4.2. Results

Figure 8 summarizes the quantitative results of our user
study. First, a Shapiro-Wilk test removed the possibility that

the data was not normally distributed (all p > 0.1). We then
analyzed the data using a paired t-test and found statistically
significant accuracy improvements in the edge task of ap-
proximately 30% and in the correction task of approximately
25%. No difference was found for the path task. The full re-
sults are listed below:
edge: t(12) = 2.67, p = 0.021, mean-difference= 12.5, ef-
fect size (Cohen’s d) = 0.77;
path: t(12) = 0.74, p = 0.47, mean-difference= 0.58, effect
size (Cohen’s d) = 0.21;
correction: t(12) = 3.10, p= 0.01, mean-difference= 14.17,
effect size (Cohen’s d) = 0.89.

Qualitatively, all users preferred the eye-tracking enabled
system, rated it as helpful or very helpful, and most of them
rated it as appealing or very appealing (Figure 8). While not
listed, none of the users found eye-tracking to be obtrusive.

Several reasons may have contributed to the lack of mean-
ingful results for the path task. First, the high error rate indi-
cates that the task was difficult. This is likely to have intro-
duced a significant variability which our small user sample
size could not capture. Second, while striving to minimize
obtrusiveness we may have reduced the visual effect to the
point that it was no longer helpful. Third, the higher cost of
interaction over visual search may have washed out any per-
formance difference introduced by the eye-tracker. Finally,
the technique itself works better in some case than others.
For example, in highly connected networks, entire regions
“light up” around viewed nodes, thereby rendering any high-
lighting advantage void.

While gaze correction was shown to be working, the mag-
nitude of the improvement is dependent on factors such as
eye tracking calibration, lighting, or user particularities. In
ideal settings, when eye-tracking works well, the correction
effect would be negligible, such as in the case of two of our
users. In poor conditions however, the effect can be signif-
icant. For example, just two users performed better on the
edge task in the control condition. Those users also happen
to have two of the most significant improvements in the cor-
rection task, suggesting that the eye-tracking was not func-
tioning properly. Conversely, users that show only mild im-
provements in the correction task generally showed signifi-
cant improvements in the the edge task.

5. Discussion

Data visualization is a suited application area for gaze in-
teractions because of the inherent interplay between eyes
and displays and between people’s gazes and tasks they per-
form [YR67]. By interpreting users’ intentions from gaze
data, we can reduce perceptual overload and fit visualiza-
tions to users’ tasks and intentions, we can reduce the over-
head of manual interaction, and ultimately create visualiza-
tions that participate proactively in the analytic process.

While our results demonstrated the effectiveness of eye-
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Figure 7: Our quantitative results show that subjects using eye-tracking more accurately determined if two nodes are connected
(left, p = 0.02) but showed no improvement finding shortest edges between nodes (middle). Our gaze-correction algorithm
(section 3.1) increases the ability of eye-tracking users to fixate nodes (right, p = 0.01).

Figure 8: Our evaluation questionnaire showed that subjects preferred eye-tracking interaction to the control condition, thought
eye-tracking was helpful, and liked it.

tracking in supporting low level tasks, they failed to reveal
benefits in the more high-level task of path detection. We
believe this was in part due to the design of our methods but
also due to the difficulty of evaluating complex tasks quan-
titatively. However, given the reliability in detecting viewed
nodes and edges, the strong effects in the short perceptual
task, and the effectiveness of our gaze correction, we hypoth-
esize that our methods can be used as a foundation for further
exploration of high level interactive and analytic metaphors.

While we did not formally investigate the interplay be-
tween gaze interactions and network clutter, we noticed the
following. When network density is very low, gaze interac-
tion does not improve perception since users have little trou-
ble finishing tasks before the system can produce a response.
Moreover, with low densities users rely more on their periph-

eral view and do not always fixate objects even though they
register their presence. In cluttered displays the performance
of our system depends on the visual similarity of the traced
object to other objects around them. For example, the sys-
tem cannot differentiate between edges as long as they run
alongside each other. However, it excels at highlighting long
edges (i.e., 300+ pixels in screen space) running through re-
gions dense with edges dissimilar in size or orientation. If
we were to apply this technique to parallel coordinate views
our expectation is that we couldn’t visually select individual
poly-lines, but that we could highlight clusters of poly-lines
that run along our visual trajectory.

We also hypothesize that we can further improve on our
detection of visual targets and user tasks. In sections 3.1 and
3.2.2 we mentioned several assumptions about people’s gaze
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patterns: long fixations for nodes, shorter fixations for edge
(section 3.1); longer fixations in regions of high density,
shorter fixations in regions of low density (section 3.2.2).
These assumptions were made from informal observations
during design and do not rely on data or models of visual
perception. While such gaze models exist for specific areas
such as reading, they have not been generalized for visual
objects and layouts specific to our field. A better understand-
ing of how visual parameters correlate to gaze measures such
as fixation duration, saccade distance, or revisitation would
enable us to detect viewed object in a more principled way.

In a complete analysis system, additional information
could be leveraged. For instance, since eye-movement and
fixation precedes motor movement and action [Duc07],
mouse patterns can be used to confirm and adjust data
about fixations. Using our gaze-correction in an environment
with multiple views, one visualization could correct offsets
for another visualization that may occupy the same screen
space.

Modeling higher level analytic tasks specific to data vi-
sualization would allow us to detect and support tasks that
go beyond perception and data reading. We hypothesize that
gaze-support can be provided at multiple temporal scales,
across multiple visualizations and datasets, and across mul-
tiple users. For instance, current interest would help with
immediate perceptual tasks, recent interest could be used
to achieve a relevance filtering effect to unclutter visualiza-
tions, and historical interest could be used to restore ana-
lysts memory, perhaps in conjunction with visualization his-
tory methods. Interest in visualization elements immediately
translates to interest in data objects and can be transferred
across multiple visualizations that share overlapping subsets
of data. Moreover, interest harvested from groups of users
could be used to direct or inform analysis of other groups
of users with similar research interests. Such analysis could
prove useful in domains such as genomics or proteomics
were many users analyze overlapping subsets of the common
space of genes, proteins, and interactions between them.

Finally, our work doesn’t investigate the interplay be-
tween mouse interaction and gaze-interaction. Users may
outperform the eye-tracking enabled visualization if allowed
to select nodes and highlight their outgoing edges. One of
the reasons for limiting edge tasks to three seconds was our
desire to capture the effect of eye-tracking on short, percep-
tual tasks in which interaction is a significant overhead. We
hypothesize that there is a class of interactive queries that
would be cumbersome to specify deliberately but would be
easy to compute based on users’ gaze patterns. Path tasks
tried to capture such a query. Asking the user to provide
and continuously update information about nodes of interest
would be unfeasible. Using eye-tracking, the same process
could be done automatically.

6. Conclusion

We introduced techniques for using eye-tracking as interac-
tive input in network visualizations and demonstrated their
effectiveness in a controlled user study. Specifically, we
dimmed out edges with endpoints outside users’ view fo-
cus, we highlighted edges that were visually traced, and in-
creased the saliency of sub-networks around nodes viewed
often. We also described an algorithm that improved eye-
tracking accuracy by leveraging the known layout of the net-
work. In a user study with twelve participants, we showed
that these techniques allow users to more accurately deter-
mine whether two nodes are connected. We also demon-
strated the effectiveness of the gaze correction technique.
Given the reliability in detecting viewed nodes and edges,
the strong effects in the connectivity task, the success of the
gaze correction technique, and the privileged role of gaze in
data visualization, we hypothesize that further exploration of
gaze-enabled interactions for visualization will be valuable.
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