Computer Programming I

 Instructor: Greg ShawPRIVATE

COP 2210

Intro to the Java Array for ArrayList Users
I.
 Dueling Definitions

array:
a fixed-size data structure that stores related values of a given primitive type or Java class

ArrayList:

a Java class that implements an abstract, object-oriented, user-friendly, variable-sized list. Although the implementation of the ArrayList class is an array, ArrayList users may not know this and do not need to know this. This is an excellent example of the OOP principle of information hiding

array “elements”:

Same as ArrayList elements, the individual memory locations of the array. Each element is accessed by its index – a familiar concept from math/science:

math/science:
x0, x1, x2, ..., xn

Java:

x[0], x[1], x[2], ..., x[n]

· Unlike ArrayLists, arrays of primitives store the
actual primitive value, and not a pointer to a “wrapper”
class object

· Like ArrayLists, arrays of objects store pointers to
the actual object
array index:
Just like an ArrayList index: an integer expression that tells you which element. Aka: an array subscript

· In Java arrays, index expressions must be enclosed in
square
brackets (see above)

· As with ArrayLists, the index of the first element is
always 0
II. Why the ArrayList Class Was Invented
That’s an easy one – so that programmers would not have to deal with arrays!

III. Advantages of Arrays vs. ArrayLists

·
Easier to implement multi-dimensional arrays (tables, etc) than multi-dimensional ArrayLists (We will consider these in Programming II)

·
If maximum speed is an absolute requirement, arrays are more efficient than ArrayLists because there is no time wasted calling methods and executing the returns
IV. Disdvantages of Arrays (vs. ArrayLists)
1. There are no methods to call! No add(object), no add(index,object), no set(index,object), no size(), no nothing! You want to do something, you have to write the code yourself!

2. Arrays are fixed-size, so may become full. Although they may be resized easily, this is not done automatically as with ArrayLists
3. Arrays may be partially filled (i.e. not all the elements declared may actually be used). This requires the programmer to maintain a count of the number of elements used. I.e. there is no size() method or equivalent
· This is why the instance variables of the ArrayList class are an array and an int counter of the number of elements used (i.e. the number of values stored)

4. More cumbersome insertions
When a new value is to be stored in an array, you must first check to see that the array is not full. If it is, you must resize it. Then, all values at indices greater than or equal to the index where the new value will go must be “moved down” to make room for it. And don’t forget to increment the counter!

· This is exactly what is done in ArrayList method add(i,object)
5. More cumbersome deletions
When a value is removed from an array, all values at greater indices must be “moved up” one index to fill the hole. And don’t forget to decrement the counter!
· This is exactly what is done in ArrayList methods remove(index) and remove(object)
·
Question: If arrays have only those two meager advantages and all those fearsome disadvantages, then why bother studying them?

Answer: Because every serious computer language in this quadrant of the galaxy has arrays and they all work the same way. But not all have a user-friendly, object- oriented, abstract list class like Java’s ArrayList!
V. Declaring Array Object Variables and Creating Array Objects

Syntax of the array declaration:

type [] name = new type[number-of-elements] ;

1. type is the type of data stored in the array (may be any primitive type or class)

2. name is the name we give to the array object variable

3. number-of-elements is an integer expression indicating the array's capacity (i.e., number of elements).

Examples:

int [] scores = new int[35] ;

// holds up to 35 primitive ints

boolean [] seatAvailable = new boolean[size] ;

// holds up to size booleans (size is an int expression)

Date [] dates = new Date[number] ;

// holds up to number Dates (number is an int expression)

Java Arrays are objects and, as with objects of any class, the object variable declaration and the creation of the actual array object may be done separately. E.g.,

BankAccount [] accounts ;

.

 .

accounts = new BankAccount[1000] ;

· If you do not know the exact number of values to be stored in an array, you must make an “educated guess” as to the number of elements required when declaring it

· It is a good programming practice to use defined constants for the number of elements in array declarations (makes the code easier to modify)
VI. The length Instance Variable vs. the size() Method
· Every array object has an instance variable named length that stores the declared size (the capacity) of the array

·
Do not confuse length with ArrayList method size()
1. It’s a variable, not a method

2. It doesn’t tell you anything about the number of values stored in the array, only its capacity

·
length is typically used in a loop when you want to access every element of an array (see VII. below)
VII. Accessing the Individual Elements of an Array

We access an element of an array via its index. E.g.,

ArrayList method calls:

var = list.get(index) ;

list.set(index,object);

Equivalent array operations:

var = list[index] ;

list[index] = expression ;

Here is a typical loop to process every element of the array list. Note use of length as the upper bound.

for (int current = 0 ; current < list.length ; current++)

{

// do something here with array[current]

}

VIII. The Dreaded ArrayIndexOutOfBoundsException
·
An attempt to access an array element that does not exist - an index expression less than 0 or greater than length–1
·
Same as the IndexOutOfBoundsException for ArrayList
IX. Alternate Notation for Array Declarations

Another way to declare an array is to specify the initial values stored instead of the size. Java infers the size from the number of “initializers” provided.
Examples:

int [] lotto = { 14, 21, 28, 35, 42, 49 } ;

String [] colors = { “Yellow”, “Magenta”, “Cyan” } ;

BankAccount [] accounts =
 { new BankAccount(“1111111”, 15000),

 new BankAccount(“2222222”, 20000),
 new BankAccount(“3333333”, 12500),

 new BankAccount(“4444444”, 37000) } ;

These arrays have 6, 3, and 4 elements, respectively
X. Online Examples

ArrayIntro.java

Declaring an array, using for statements to populate it and process the values stored, and the length instance variable
 ArrayDataSet.java
Array-oriented version of the DataSet class from the ArrayList unit. Shows a class with an instance variable that is an array

Bank.java

Array-oriented version of our old friend the Bank class from previous units. Shows how to use a counter when the exact number of objects to be stored is not known in advance. Note that the a Bank can store up to 100 BankAccount objects
XI. More Advanced Examples - For Overachievers Only!
It’s way beyond the scope of Programming I and will be covered in detail (of course) in my Programming II classes, but if you simply can’t wait for next semester and are a true overachiever, you might want to check out PartiallyFilled.java and OrderedList.java in the Arrays unit of my Programming II web site. (continued on next page)
These classes show:

1. How to use a counter when the exact number of objects to be stored is not known in advance. I.e. when an array may be only partially filled
2. How to resize an array if it becomes full
· This is exactly what is done “automatically” (ha-ha!) in ArrayList methods add(object) and add(index,object) if necessary

3. The grim details of how to remove an object from an array and how to insert a new object into an array

· This is exactly what is done “automatically” (ha-ha-ha-ha-ha!) in ArrayList methods remove(index), remove(object), and add(index,object)
