Computer Programming I

Instructor: Greg Shaw

COP 2210

The Binary Search

The linear search algorithm we recently studied is easy to understand, but not very efficient:

· On average, a linear search of “N” elements will examine N/2 elements before finding a value that is in the list.

· A linear search must examine all N elements to determine that the key is not in the list.

If the list to be searched is not sorted, however, then the linear search is the best we can do.

If, however, the list is sorted, then we can use the much more efficient binary search. The binary search figures which half of the list would contain the key (if it is in the list), and eliminates the other half from further consideration. This process is repeated until either the key is found, or the entire list has been eliminated (indicating that the key is not there).

Since half of the remaining elements are eliminated on each try, a binary search of N elements requires only log2N tries to either find the key or determine that it is not in the array.

	
	Linear Search
	Binary Search

	List Size

(Number of Elements)

	One

Thousand
	One

Million

	One

Thousand
	One

Million

	Average number of elements searched

to find a value

	500

	500,000

	10
	20

	Number of elements searched if value

is not in the list

	1000
	1,000,000
	10
	20

Here is a method that performs a binary search. We assume that the method belongs to a class that has an “ArrayList of Integer” instance variable called list, and that list is sorted in ascending order.
/**

 * Binary search of “ArrayList of Integer” instance variable, list.

 * @param key the int value we are searching for
 * @return the index of the element containing key, or -1 if key not in list

 */

public int binarySearch (int key)

{

int low,

// These 3 are the indices of the lowest,

 high,

// highest, and “middle” elements in that part

 mid ;

// of the list not yet eliminated.

// initially, all elements from first to last are in play

low = 0 ;

high = list.size() - 1 ;

do

{

// compute index of "middle" element

mid = (low + high) / 2 ;

if (list.get(mid) == key)
// key found in middle element...

{

return mid ;

// ...return that index

}

else if (list.get(mid) > key)
// key is in lower half of array...

{

high = mid - 1 ;

// ...eliminate upper half

}

else

// key is in upper half of array

{

low = mid + 1 ;

// ...eliminate lower half

}

}

while (low <= high) ;

// loop until low > high

// loop postcondition: low > high (indicates key not found)

return -1 ;

}
