Computer Programming I

 Instructor: Greg ShawPRIVATE

COP 2210

Some Class and Program Design Guidelines
I.
Strive for Cohesion
· A class represents a single concept.
· If the class interface (i.e., the public methods and constants) are all closely related to the concept the class represents, then the class is said to have good cohesion.
· If not, then we should rewrite the class as two or more separate classes.
For example, CH’s CashRegister class (Section 4.2) contains elements of two concepts: a cash register (collection of coins) and the individual coins themselves. These should be separate classes. That way, a CashRegister object could – without any modification - process purchases in the currency of any country, rather than be limited to just the currency declared in the CashRegister class.
II. Avoid Unnecessary Class Coupling
· A class “depends on” another class if it creates objects, uses constants, or calls static methods of that class.

· If multiple classes in a program depend on one another then we say that there is a high degree of coupling among the classes. The fewer the dependencies, the lower the degree of coupling.
Why is coupling to be avoided?

1. If it becomes necessary to modify a class, then all classes that depend on it may be affected and it may be necessary to modify them too.
2. If we wish to reuse a particular class in a program, and that class depends on other classes, then we are obliged to take those other classes along as well.

III. Avoid Side Effects
· Recall that a method’s implicit parameter is the object for which the method is called.
· A side effect is any behavior in a method – other than modifying the implicit parameter (i.e., what mutator methods do) - that can be observed outside the method.

· One example of a side effect is changing the value of an explicit parameter. This is not something we normally expect methods to do, and so may be surprising to programmers using the class.
· Example: The GradeBook method addStudents has an explicit parameter called studentNames, which is a list of names to be added to the GradeBook. The addStudents method has a side effect: as it adds the names to the GradeBook, it removes them from the studentNames list. This is an unexpected behavior and should be avoided.

public class GradeBook

{

.
 .
 .

/**

 Adds student names to the gradebook.

 @param studentNames a list of names to be added

*/

public void addStudents(ArrayList<String> studentNames)

{

 while (studentNames.size() > 0)

 {

String name = studentNames.remove(0) ; // bpp!

// add name to GradeBook

 }

 }

}

· Another side effect to be avoided is doing output! This is a bad idea because:

1. It assumes that the user of the program speaks English, and a majority of Earthlings does not.

2. It assumes that a standard output device is available. In the case of embedded systems (e.g., an ATM machine’s computer), this is not the case.
(Further, it increases coupling by making the class dependent on the System and PrintStream classes.)
· Instead of doing output, it is preferable to have a method simply return a value and let the user of the class decide what they want to do with it.

IV. Not All Side Effects Are Bad
Modifying a method’s explicit parameters is a side effect, but is not a bad programming practice if it is expected.

For example, consider the transferFunds method of the BankAccount class, which modifies both its implicit and explicit BankAccount parameters. Since a transfer of funds always involves modifying two account balances, this particular side effect is not at all unexpected.
public class BankAccount

{

 .
 .
 .
 /**

 Transfer funds from this account to another account
 @param amount the amount of money to be transferred

 @param another the account receiving the funds

 */

 public void transferFunds(double amount, BankAccount another)

 {

another.balance = another.balance + amount ;

this.balance = this.balance - amount ;

 }
}
