Computer Programming I

 Instructor: Greg ShawPRIVATE

COP 2210

The if Statement
I.
Purpose
Java's if statement is used make decisions. That is, to allow a different sequence of statements to be executed depending on whether a condition is true or false.

II.
The Single-Alternative if Statement (“yes/no” decisions)

Syntax:

if (boolean expression)

{

statement(s)

}

where,

boolean expression = anything that evaluates to true or false. One kind of boolean expression is the relational expression, which compares two quantities for one of these 6 relationships: <, <=, >, >=, ==, and !=

statement(s) = any number of Java statements
Note: the parentheses are required, and there is no semi-colon after the closing parenthesis

Execution:

1. The boolean expression is evaluated.

2. If it is true, then the statement(s) are executed.

Otherwise (i.e. if it is false), the statement(s) are skipped.

For this reason, the single-alternative if statement is known as a “yes/no” decision.

Example: Due to a superstition dating back to medieval times, modern skyscrapers have no 13th floor. Well, of course they do, but it’s not numbered 13. Suppose the floor of a building – as shown on the elevator buttons - is stored in int variable buttonFloor. Below are two ways to compute the actual floor using the single-alternative if statement. Note the comments.

Note: Unlike most decisions, in this one there is no need to test the “boundary value” of 13, because the problem states that there is no elevator button marked 13.
1.

// assume buttonFloor is correct

int actualFloor = buttonFloor ;

if (buttonFloor > 13)

// buttonFloor not correct

{

actualFloor = buttonFloor – 1 ;
// actual floor is one less

}

2.

// assume buttonFloor is greater than 13

int actualFloor = buttonFloor - 1 ;
 // actual is one less

if (buttonfloor < 13)

 // if buttonFloor correct

{

actualFloor = buttonFloor ;
 // actual is the same

}

Another Example: see program PayMaster1.java

Note: You may be more comfortable solving these problems by using the two-alternative “if.” Read on.

III.
The Two-Alternative if Statement (“either/or” decisions)

Syntax:

if (boolean expression)

{

statement(s)

}

else

{

other statement(s)

}

Execution:

1. The boolean expression is evaluated.

2. If it is true, then the statement(s) in the “if” branch are executed, and the other statement(s) (i.e., the “else” branch) are skipped.

Otherwise (i.e., if it is false), then the statement(s) in the “if” branch are skipped, and the other statement(s) (i.e. the “else” branch) are executed.

For this reason, the two-alternative if statement is known as an “either/or” decision. Keyword else is computer-talk for “otherwise.”

Example: The skyscraper problem, revisited (see II., above)

1.

int actualFloor = 0 ;
// compiler requires initialization

if (buttonfloor > 13)
// buttonFloor is not actual floor

{

actualFloor = buttonFloor – 1 ;
// ...actual is one less

}

else

// buttonFloor is correct

{

 actualFloor = buttonFloor ;

}

2.

int actualFloor = 0 ;
// compiler requires initialization

if (buttonFloor < 13)

// buttonFloor is correct

{

actualFloor = buttonFloor ;

}

else

// buttonFloor is > 13

{

 actualFloor = buttonFloor – 1 ;
// actual floor is one less

}

Another Example: see PayMaster2.java
IV.
“Nested” if Statements
· A “nested if” statement is an if statement inside another if statement

· When the nested if is in the if branch, more complex conditions are produced
· When the nested if is in the else branch, a multiple-alternative (i.e., “one of several”) if statement is produced

· More complex conditions can also be produced using the boolean operators (see the document, “Boolean Operators and Expressions”)

· For examples of nested ifs, see the document “Nested Ifs”)

