Computer Programming I

 Instructor: Greg ShawPRIVATE

COP 2210

Implementing (i.e., Defining) Methods
(“Though this be madness, yet there is method to it”)
Recall that the users of a class (i.e. programmers) interact with the objects they create only through the public interface of the class, which is the set of methods of the class.

Each method implements one of the behaviors of an object - one of the things an object can do, or something we can do with an object.

E.g. the Balloon class has mutator method adjustAltitude that lets us change the altitude of a Balloon object, and accessor methods getName() and getAltitude() that enable a Balloon to tell us its name and current altitude.

I. Method Headings (aka: Method Declarations)
The first line of every method definition (not counting comments) is the method heading or declaration which has this syntax:
access-specifier return-type name(parameter-list)
· access-specifier determines who can call the method
For now, all of our methods will use keyword public as the access-specifier, which means anyone can call the method. Other access levels will be covered in Programming II.
· return-type is the type of value returned by the method - int, double, String, etc - and may be any primitive type or class

Methods that do not return a value must have keyword void as the return type, which explains why they are commonly called void methods
· name is the name we give to the method (we know the rules for valid names)

· parameter-list is essentially one or more variable declarations - a type followed by a name - separated by commas and enclosed in parentheses

Methods that take no parameters have empty parentheses
II. Examples of Method Headings

public int getAltitude()

From the Balloon class, a public accessor method that returns an int (the altitude) and takes no parameters

public void translate(int deltaX, int deltaY)
If we take a peek at the code for Java’s Rectangle class, the heading of the mutator method translate would look like this. Note the return type of void because translate does not return a value. The parameter list indicates that when we call translate we must pass two parameters of type int

public void ascendTo (int newAltitude)

A public mutator method from the Balloon class, ascendTo requires one parameter of type int when called

III. The Method Body

The method body follows the heading, contains all the statements of the method, and must be enclosed in braces {}
IV. The return Statement
· Methods that return a value must end with a return statement in this form:

return expression ;

where expression may be a literal, variable, or combination of literals, variables, and operators.

· When a return statement is executed:

1. “Control” is returned to the statement that called the method (i.e., execution of the method is terminated)

2. The expression is used in place of the method call in the statement
· If you forget the return statement in a method that returns a value, the compiler will complain (“missing return statement”)
· void methods may also have return statements but only in this form:

return ;

Since no value is returned, there can be no expression in the return statement. If a void method has no return statement, then control returns to the “calling method” automatically when all the statements in the method have been executed
· As we will see later (in the unit on decision-making), a method may have more than one return statement, but only one can be executed
· See Balloon.java and BankAccount.java for examples of accessor and mutator method definitions in their native habitats - the class definition

