Computer Programming I

 Instructor: Greg ShawPRIVATE

COP 2210

“Nested” if Statements
A “nested if” statement is an if statement inside another if statement.

When the nested if is in the if branch, more complex conditions are produced.
When the nested if is in the else branch, a multiple-alternative if statement is produced. Aka: a “one of several” decision.
I.
Testing More Complex Conditions, an Example
// Print a message indicating whether int variable age is
// between 18 and 35, inclusive, for army enlistment purposes.

if (age >= 18)

{

 if (age <= 35)
 {

 System.out.println(“Congratulations, soldier!”) ;

 }

 else
// age is > 35
 {

 System.out.println(“Sorry, Grampa! Try Wackenhut!”) ;

 }

}

else

// age is < 18

{

 System.out.println(“Sorry, Son! Try the Cub Scouts!”) ;

}

Note that the if branch contains an if statement with its own else branch. The rule is that each else “belongs to” the most recent “unmatched” if. We show this in the indentation used.

II.
Multiple-Alternative if Statements, an Example
// Print a message indicating whether a number is positive,

// negative, or zero.

if (num > 0)

{

 System.out.println(“Pository!”) ;

}

else

// num <= 0

{

 if (num == 0)

 {

 System.out.println(“Zero! Nada! Gornisht!”) ;

 }

 else
// must be < 0
 {

 System.out.println(“Negatory!”) ;

 }

}

Note that the else branch above contains an if statement with its own else branch, creating 3 alternatives. For more alternatives, nest another 2-alternative if statement in the last else branch, as shown below:
III.
 Another Multiple-Alternative Example
// Convert an integer numeric grade in the range 0..100 to a

// string (“F”..“A”) and store it in String variable letter

if (grade >= 90)

{

 letter = “A” ;
}

else
// less than 90

{
 if (grade >= 80)
 {

 letter = “B” ;

 }

 else // less than 80
 {
 if (grade >= 70)

 {

 letter = “C” ;

 }

 else
 // less than 70
 {

 if (grade >= 60)

 {

 letter = “D” ;

 }

 else // less than 60
 {

 letter = “F” ;

 }

 }

 }
}

Above we have a 2-alternative if statement with another 2-alternative if in its else branch. The inner (“nested”) if also has another 2-alternative if in its else branch, etc.

This gives us a 5-alternative if statement. However, in its current form it is hard to work with because of the many levels of indentation - given enough alternatives, we may run off the screen to the right! - and the difficulty of matching up all the closing braces at the end.

Fortunately, there is an easier way to write multiple alternative if statements. Read on.

IV.
 “Cascaded” ifs – Some “Syntactic Sugar”

Syntactic sugar refers to code that looks like a new statement but actually is just a familiar statement written in a “sweeter” way.

For example, we may improve the manageability of multiple-alternative if statements by taking advantage of two rules of Java syntax:
1. If an if branch or else branch contains only one statement, then the braces may be omitted. (In the above example, each else branch contains exactly one statement, which is a 2-alternative if statement)

2. Indentation and spacing mean nothing to Java

Therefore, what we do is remove the braces around each else branch, and move each if up to the same line as the previous else, as shown here:

if (grade >= 90)

{

 letter = “A” ;

}

else if (grade >= 80)

{

 letter = “B” ;

}
else if (grade >= 70)

{

 letter = “C” ;

}

else if (grade >= 60)

{

 letter = “D” ;

}

else
// grade is less than 60

{

 letter = “F” ;

}
This improved form is sometimes referred to as a “cascaded” if statement. “Cascaded ifs” are easier to work with because each alternative begins in the same column and there are fewer sets of braces.

(In reality, however, it’s still just a 2-alt if with another 2-alt if in its else branch, with another 2-alt if in its else branch, etc, etc.)
Another advantage is that we can easily describe the execution of the “cascaded” if statement:

1. Java finds the first true condition and executes the associated statements

2. All other conditions and statements are skipped
3. If none of the conditions are true, then the else branch is executed, if there is an else branch. (The else branch is always optional)

V.
“Mutually Exclusive” Conditions
Conditions are said to be mutually exclusive if at most only one may be true.

This is important to programmers because

“When conditions are not mutually exclusive then the order in which you test them becomes very important!”

(If the conditions are mutually exclusive, then the order in which you test them generally does not matter.)

Question: Are the conditions tested in II. and IV., above, mutually exclusive, or not? (Think before you answer)

VI.
“Exhaustive” Conditions
Conditions are said to be exhaustive if every possibility is accounted for.

This is important to programmers because

“When conditions are exhaustive, there is no need to test every one – just use else for the last one”

We can use this to our advantage. Suppose there are exactly 3 alternatives and two are easy to code but the third is more difficult. Since the conditions are exhaustive (only 3) we can code the two easier ones and catch the more difficult one in the else branch.

Question: Are the conditions tested in II. and IV., above, exhaustive, or not?
