Computer Programming I

 Instructor: Greg ShawPRIVATE

COP 2210

Intro to Objects, Classes, and Methods
I. Terms and Concepts

· A class is like a factory for creating similar yet different objects
· An object is an instance of a class

· Objects have characteristics or attributes (“things they know”) and behaviors (“things they can do”)

· Much of Java programming consists of creating objects and then manipulating them via the methods of the class

· A method is a sequence of instructions that implements one of the behaviors of an object

· In every Java program, the first statement executed is always the first statement in the main method of the programmer-defined class. All other methods are executed only when called
· We do not have to know - and usually do not know - any of the details of how a method does what it does in order to use it. All we have to know is what the method does and how to call it
· To call a method we need to know 3 things

1. The name of the method

2. The number and types of its arguments
3. Whether or not it returns a value, and, if so, what type of value it returns

· The best way to learn what methods are included in each class and how to call them is by looking at the Java API (“Application Programming Interface”) Documentation
II. Method Arguments
· A argument is a value we pass to a method when we call it. The argument is then used by the method
· Arguments make a method “general-purpose” by enabling it to process different data values. They are like inputs to the method

· Example

We call the square root method of a calculator by pressing the square root button. The argument to the square root method is the number on the display at the time the button is pushed (i.e., when the method is called)
III.
Methods that “Return a Value” vs. Those that Do Not
· “There are two kinds of methods in the world: those that return a value and those that do not”

· “Methods that return a value” operate like the square root method on a calculator. When you call one it does some computations and returns a result to you. This result is typically stored in a variable for further use in the program, or printed
· “Methods that do NOT return a value” do a job for you but do not hand you back a value. One example is the println method. When println is called, it simply writes its String argument to an output device. It does not give you back a value you can use further in the program
· Programmers must know whether a method returns a value or not because this determines how the method is called

IV. How to Call Methods that “Return a Value” and Those that Do Not
· To call a method for a particular object (i.e., the syntax of a method call) we use:

object-variable-name.method-name(argument(s))
· We specify the object for which the method is called by placing the object variable name to the left of the dot
· To the right of the dot goes the method name, followed by the arguments enclosed in parentheses
· If there is more than one argument, they are separated by commas
· Some methods have no arguments. If not, then the parentheses following the method name are empty
· The println method may be called with no arguments, e.g.

System.out.println() ;

In that case, only the newline character is printed and a new line of output is started

(The print method always requires one argument)
· For methods that do not return a value, the method call is a program statement by itself, as with print and println
· However, for methods that do return a value, this is not sufficient. Instead, we must use the method call in another Java statement
· See the next section for examples of methods that return a value and how to call them

V. String Class Methods replace() and length()
· The String class has a method called length() which takes no arguments and returns the number of characters in the string object for which it is called

string-obj-var.length()

String sport = “Basketball” ;

int length = sport.length() ;
 // int var length gets 10
· Since the length() method returns a value it must be called in a Java statement. Above, it is called in an assignment statement and assigns 10 to an int variable also named length (no relation to the length() method!) Since the value returned is an integer, we must assign it to an int variable

· Another String class method that returns a value is replace(). This method requires two explicit String arguments

string-obj-var.replace(target, replacement)

It returns a string consisting of the String object for which it was called with all occurrences of the first argument (target) replaced by the second (replacement). For example,

String sport = "basketball" ;

String anotherSport = sport.replace("basket","foot") ;

 // anotherSport gets “football”

· Note again how to call a method that returns a value! Since the value returned here is a string, we assign it to a String object variable, anotherSport
· See MethodCalls.java
VI. A Common Programming Error
Unfortunately, the compiler will not complain if you mistakenly call a method that returns a value the way you call one that does not, e.g.

sport.length() ;

// Uh-oh!

· This statement has no effect. Most likely, it constitutes a logic error because you are not using the value returned!
