Computer Programming I

 Instructor: Greg ShawPRIVATE

COP 2210

Intro to Objects, Classes, and Methods
(And String Class Method length())
I. Terms and Concepts

· A class is like a factory for creating similar yet different objects
· Objects have characteristics or attributes (“things they know”) and behaviors (“things they can do”)

· A method is a sequence of instructions that implements one of the behaviors of an object

· Much of Java programming consists of creating objects and then manipulating them by calling the methods of the class

· In every Java program, the first statement executed is always the first statement in the main method of the programmer-defined class. All other methods are executed only when called
· We do not have to know - and usually do not know - any of the details of how a method does what it does in order to use it. All we have to know is what the method does and how to call it
· To call a method we need to know 3 things

1. The name of the method

2. The number and types of its parameters
3. Whether or not it returns a value, and, if so, what type of value it returns

· The best way to learn what methods are included in each class and how to call them is by looking at the Java API (“Application Programming Interface”) Documentation
II. Method Parameters (aka: Arguments)
· A parameter is a value we pass to a method when we call it. The parameter is then used by the method
· Different methods require different numbers and types of parameters

· Parameters make a method “general-purpose” by enabling it to process different data values. They are like inputs to the method

· Example: We call the square root method of a calculator by pressing the square root button. The parameter to the square root method is the number on the display at the time the method is called
III.
Methods that “Return a Value” vs. Those that Do Not
· “There are two kinds of methods in the world: those that return a value and those that do not”

· “Methods that return a value” operate like the square root method on a calculator. When you call one it does some computations and returns a result to you. This result is typically stored in a variable for further use in the program, or printed
· “Methods that do NOT return a value” do a job for you but do not hand you back a value. One example is the println method. When println is called, it simply writes its String parameter to the screen It does not give you back a value you can use further in the program
· Programmers must know whether a method returns a value or not because this determines how the method is called (see examples, below)
IV. Syntax (“Grammar”) of a Method Call

To call a method for a particular object, we use:

object-variable-name.method-name(parameters)
· We specify the object for which the method is called by placing the object variable name to the left of the dot
· To the right of the dot goes the method name, followed by the parameters enclosed in parentheses
· If there is more than one parameter, they are separated by commas

Example:
System.out.println("Hi Mom!") ;

Object variable name:
System.out

Method name:

println

Parameter:

"Hi Mom! "
· Some methods require no parameters (i.e. need no additional information). In that case the parentheses following the method name are empty

Example: There is a version of println that takes no parameters

System.out.println() ;

(only the newline character is printed. I.e. starts a new
line of output)
V. Calling Methods that Return a Value (e.g. the length() method of the String Class)

To call a method that returns a value, we must use the method call - object-variable-name.method-name(parameters) - in a Java statement. E.g. in an assignment statement or output statement

Example: String method length() takes no parameters and returns an int – the number of characters in the String object for which it is called

The following code snippet shows two ways to call length()

int numberOfChars ;
 // declares an int variable with no initial value

String greeting = "Hello" ;
// creates a String object

// call the length() method in an assignment statement. The value

// returned is stored in the variable to the left

numberOfChars = greeting.length() ;

System.out.println("The string \"" + greeting + "\" has " +

 numberOfChars + " characters.") ;

// QUESTION 1: What exactly is printed by the above statement?

greeting = greeting + ", World!" ;
// concatenation

// call the length() method in a println() statement. The value

// returned is concatenated to the output string

System.out.println("The string \"" + greeting + "\" has " +

 greeting.length() + " characters.") ;

// QUESTION 2: What exactly is printed?

// ANSWER 1: The string "Hello" has 5 characters.

// ANSWER 2: The string "Hello, World!" has 13 characters.

VI. Calling Methods that Do Not Return a Value (aka: “Void” Methods) - e.g. print() or println()
To call a method that does not return a value, the method call - object-variable-name.method-name(parameters) - is a valid statement all by itself. Just slap a semi-colon on it and we’re done!

Examples: See the two calls to println, above!
· All String class methods return values, but we will soon see other methods that do not return values
· See MethodCalls.java
VI. A Common Logic Error
Unfortunately, the compiler will not complain if you mistakenly call a method that returns a value the way you call one that does not, e.g.

greeting.length() ;
// Uh-oh!

· This statement has no effect. Most likely, it constitutes a logic error because you are not using the value returned!
