Computer Programming I

 Instructor: Greg ShawPRIVATE

COP 2210

Reading User Input

(Using the Java 1.5 Scanner Class for Interactive Input)

I. Background
· There are several different ways to do input in Java, but the new Scanner class is the easiest to use.

· The term “interactive input” means that the user of a program enters the data while the program is running (e.g. at an ATM).
· When an input statement is executed, the program is interrupted – execution is suspended until the user enters the data required.
· Data entered by the user is stored in a temporary memory area known as the input buffer.

· The Scanner class has methods that “read” (i.e., remove) data from the input buffer and store it in program variables.

· Data in the input buffer that is not read by a given method call remains in the buffer to be read by future method calls.

· This allows the user to enter multiple data values – separated by whitespace – at the same time
· This document explains how to use the Scanner class for interactive input. Later, we will see how Scanner also makes it easy to read data from files.

II. Import the Class, Create an Object

· The Scanner class is in Java’s “utilities” package, so use this import statement:

import java.util.Scanner ;

· To create a Scanner object and associate it with the standard system input device (the keyboard), use:

Scanner obj-var-name = new Scanner(System.in) ;

Ex: Scanner scan = new Scanner(System.in) ;

III. Scanner Class Methods
Assume we have created a Scanner object pointed to by scan (see above). Below are some typical method calls and their effects
· The term “token” means a whitespace-delimited string. Whitespace characters are spaces, tabs, and newlines.

· Scanner methods skip over any leading whitespace characters, and then extract all consecutive non-whitespace characters, stopping when the next whitespace character is found.
· aString = scan.next() ;
Removes the next token and returns it as a String (assumes aString is a String object variable)

· aString = scan.nextLine() ;

Removes all remaining data – including whitespace - on the current line (i.e. up to the next newline character), and returns it as a String. The newline character is also removed but is discarded (not stored in the String returned)

· anInt = scan.nextInt() ;

Removes the next token and returns it as an int (assumes anInt is an int variable)

· aDouble = scan.nextDouble() ;

Removes the next token and returns it as a double (assumes aDouble is a double variable)

· Regarding nextInt and nextDouble: If the next token is not a valid int or double literal, respectively, then an InputMismatchException is thrown.

· Examples: See ChangeMakerTester.java and InputDemo.java

V. The “Golden Rule” of Interactive Input

Never confront the user with an unexplained input prompt – always use a print() or println() statement to tell the user exactly what data is required!

An example from ChangeMakerTester:

System.out.print("Enter the amount due: ") ;

amountDue = scan.nextDouble() ;

System.out.print("\nEnter the amount paid: ") ;

amountPaid = scan.nextDouble() ;

Without the explicit “prompts” (the print() statements) all the user would see is a blinking cursor!
