Computer Programming
 I

 Instructor: Greg Shaw

COP 2210

 Class NotesPRIVATE

Major String Class Methods

I. The length() Method (review)

This method takes no arguments and returns an int, the number of characters in the string object for which the method is called.

Examples:

String word = “Basket” ;

int len = word.length() ;
// len gets 6

word = word + “ball” ;

len = word.length() ;

// len gets 10

word = "" ;

// the empty string (aka: “null” string)
len = word.length() ;

// len gets 0 (ain’t no characters!)
II. Substrings

A substring is any contiguous portion of a string. For example, here are some substrings of the string “Florida”:

Flo lori or ida Florid r Florida rid

These are not substrings:
flo rolF Fo Lori OR

III. The indexOf Method (a Substring Locator)

Syntax:

string-object.indexOf(expression)

where expression is a string or char expression

Returns:

“the starting position of the first occurrence of expression in the string for which it is called”

· Note that the first character of a string occupies position number zero, and not position one
· Another word for position is index, hence the method name
Examples:

String magic = "Abracadabra!" ;

int pos = magic.indexOf("A") ;
// pos gets 0

pos = magic.indexOf("Abra") ;
// pos gets 0

pos = magic.indexOf("abra") ;
// pos gets 7

pos = magic.indexOf("b") ;

// pos gets 1 (note char argument)

pos = magic.indexOf(magic) ;
// 0 (every string is a substring

// of itself)

String word = "ada" ;

pos = magic.indexOf(word) ;

// pos gets 5

pos = word.indexOf(magic) ;

// pos gets -1

· As shown in the last example, if the argument is not a substring of the object for which indexOf is called, -1 is returned

IV. The substring Method (a Substring Builder)

Syntax:

string-object.substring(start, pastEnd)

where start and pastEnd are int expressions, and

start = the index of the first character of the substring

pastEnd = one greater than the position of the last character

Returns:

A substring of the object beginning with the character in position start and ending with the character in position pastEnd-1 (i.e. one less than pastEnd)
Examples:

String magic = "Abracadabra!" ;

String sub = magic.substring(0,4) ;

// sub gets "Abra"

sub = magic.substring(0,1) ;

// sub gets "A"

sub = magic.substring(4,7) ;

// sub gets "cad"

sub = magic.substring(0,magic.length()) ;
// "Abracadabra!"
· Note 1: start and pastEnd can be int expressions:

int index = 2 ;

sub = magic.substring(index, index+3) ;
// "rac" (not "raca")
· Note 2: If start and pastEnd are equal, the empty string is returned:

sub = magic.substring(index, index) ;
// sub gets ""
· Note 3: As shown above, the arguments to substring are int expressions, i.e. anything that evaluates to an int. This includes methods that return an int

String word = "ada" ;

sub = magic.substring(magic.indexOf(word),11) ;

Self-check question: What exactly will be assigned to sub?

V. Throwing a StringIndexOutOfBoundsException
Review
· A run-time error is an error that occurs while a program is executing
· Run-time errors occur when you instruct the computer to do the impossible or the meaningless (e.g. dividing by 0)
· If a run-time error occurs, the program crashes (i.e. terminates abruptly, does not run to a normal completion)

· In Java, run-time errors are called exceptions
· When a exception occurs, we say that it was thrown
When calling substring, a StringIndexOutOfBoundsException will be thrown if:
1. start is negative
2. pastEnd is less than start
3. pastEnd is greater than the number of characters in the string (i.e., at least 2 greater than the position of the last character)

4. start is greater than the number of characters in the string (i.e., at least 2 greater than the position of the last character)
5. start is equal to the number of characters in the string (i.e. one greater than the index of the last) and pastEnd is not equal to start. If they are equal, the empty string ("") is returned; otherwise, bye-bye.
VI. The toUpperCase and toLowerCase Methods

Syntax:

string-object.toUpperCase()

Returns:

an all UPPERCASE version of string-object
· all lowercase letters will be CAPITALIZED. Other characters will not be affected

Example:
 String cut = "AbcDe57!x" ;

 String uppercut = cut.toUpperCase() ; // "ABCDE57!X"
Syntax:

string-object.toLowerCase()

Returns:

an all lowercase version of string-object
· all uppercase letters will be “decapitated.” Other characters will not be affected
Example:
String daBoom = "AbCDe37X!z" ;

String lowerDaBoom = cut.toLowerCase() ; // "abcde37x!z"

VII. The charAt Method

Syntax:

string-object.charAt(index)
Returns:

“the character at position index in the object, but as a char, not as a String
Note:

1.
char is a primitive type (like int and double) that can store single characters only

2.
char literals (fka: “constants”) are enclosed in single quotes

char letter = 'X' ;

System.out.println(letter + " marks the spot!") ;

prints “X marks the spot!” (without the quotes)

String magic = "Abracadabra!" ;

char letter = magic.charAt(0) ;

// letter gets 'A'

letter = magic.charAt(magic.length() - 1) ;
// letter gets '!'

letter = magic.charAt(magic.length()) ;
// exception!

VIII. Overloaded substring and indexOf Methods

· More about this later, but for now know that overloaded methods are two or more methods of the same class with the same name but different “signatures”
· A method’s signature is its parameter list (the number and types of parameters it takes)

· So, overloaded methods have the same name but different numbers or types of parameters or both

· Java knows which one is being called by the number and types of the arguments passed when the method is called

A. Overloaded substring Method

There is an overloaded version of substring that has only one int parameter - the index of the first character of the substring. It returns a substring consisting of all characters from that index to the end of the string

String magic = "Abracadabra!" ;

String sub = magic.substring(9) ;

// sub gets "ra!"

sub = magic.substring(0) ;

// "Abracadabra!"

sub = magic.substring(magic.length()-1) ;
// "!"

B. Overloaded indexOf Method

There is an overloaded version of indexOf that has two parameters. The first is the string (or char) to be located and the second is an int that specifies the index at which to begin the search

String magic = "Abracadabra!" ;

int pos = magic.indexOf("a",4) ;

// pos gets 5

Here we begin the search at index 4 (the 5th character), so the first “a” found is at index 5 (the 6th character). Java does not “see” the “a” at index 3. Note that the position returned is always relative to the beginning of the string, no matter where we begin the search

Note that none of the methods of the String class modify the string object for which they are called. String objects are immutable. I.e. once created, they may be destroyed but never modified. (More about this later).
