Computer Programming I

 Instructor: Greg ShawPRIVATE

COP 2210

More About the String Class
Creating String Objects, and the indexOf
and substring methods of the String Class
I. Creating String Objects (see Hello2.java)

When we create an object, we must also have an object-variable to reference it.

In Java, we never access objects directly, only via the object-variables that reference (or “point to”) them.

· Think of an object as a TV and the object variable that references it as the remote control for the TV.

To declare a String object-variable, we use:

String identifier ;

where identifier is the name we give to the object-variable

For example:

String message ;

Here we declare a String object-variable called message, which can reference (“point to”) a String, but does not yet do so.

Now, to create a String object and point message to it, we might do:

message = “Programming is fun!” ;

Then, when the following statement is executed:

System.out.println(message) ;

The string “Programming is fun!” will appear on the screen (without the quotations).

Optionally, we can also declare the object-variable, create the object, and point the variable to it all at once, as in:

String message = “Programming is fun!” ;

This one statement (above) has the exact same effect as these two:

String message ;

message = “Programming is fun!” ;

Either way, if we want to change the message, we would do something like:

message = “Not all fun things are easy!” ;

Now, what would be printed by this statement:

System.out.println(message) ;

Correct! Note that the original String object, “Programming is fun!” has been destroyed (ouch!) and replaced by the second one.

To keep multiple objects around, we must have multiple object-variables, as in:

String one = “That’s enough for now!” ;

String two = “We’ll have lots more to say about objects and ” +

 “object variables later!” ;

VI. Substrings

A substring is any contiguous portion of a string. For example, here are some substrings of the string “Florida”:

Flo lori or ida Florid r Florida rid

These are not substrings:
flo rolF Fo Lori OR

VII. The indexOf Method (a Substring Locator)

Syntax:

string-object.indexOf(expression)

where expression is a string or character expression

Returns:
“the starting position of the first occurrence of expression in the object for which the method is called”

· Note that the first character of a string occupies position number zero (not position number one)

Examples:

String magic = "Abracadabra!" ;

int pos = magic.indexOf("A") ;
// int variable pos gets 0

pos = magic.indexOf("Abra") ;
// 0 again

pos = magic.indexOf("abra") ;
// pos gets 7

pos = magic.indexOf('b') ;

// pos gets 1

 // (note char argument)

pos = magic.indexOf(magic) ;
// 0 (every string is a substring

// of itself)

String word = "ada" ;

pos = magic.indexOf(word) ;

// pos gets 5

pos = word.indexOf(magic) ;

// pos gets -1
· As shown in the last example, if the expression is not a substring of the object, then -1 is returned

There is an overloaded version of indexOf that takes two arguments. The first is the string or character to be located and the second is an integer that specifies the position at which to begin the search.

Example:
pos = magic.indexOf(‘a’,4) ;
// pos gets 5

Here we begin the search in position 4 (the 5th character), so the first ‘a’ found is in position 5 (the 6th character). Note that the position returned is always relative to the beginning of the string, no matter where we begin searching.

VII. The substring Method (a Substring Builder)

Syntax:

string-object.substring(start, pastEnd)

where start and pastEnd are integer expressions, and

start = the position of the first character of the substring

pastEnd = one greater than the position of the last character

Returns:
“A substring of the object beginning with the character in position start and ending with the character in position pastEnd-1.”

Examples:

String magic = "Abracadabra!" ;

String sub = magic.substring(0,4) ;

// sub gets "Abra"

sub = magic.substring(0,1) ;

// "A"

sub = magic.substring(4,7) ;

// "cad"

sub = magic.substring(0,magic.length()) ;
// "Abracadabra!"

String word = "ada" ;

sub = magic.substring(magic.indexOf(word),11) ;
// "adabra"

Special cases:

1. If start is negative, a StringIndexOutOfBoundsException is thrown.

2. If start is equal to the number of characters in the string (i.e., exactly 1 greater than the position of the last character), the null string is returned.

3. If start is greater than the number of characters in the string (i.e., at least 2 greater than the position of the last character), a StringIndexOutOfBoundsException is thrown.

4. If pastEnd is equal to start, the null string is returned.

5. If pastEnd is less than start, a StringIndexOutOfBounds-Exception is thrown.

6. If pastEnd is greater than the number of characters in the string (i.e., at least 2 greater than the position of the last character), StringIndexOutOfBoundsException is thrown.

There is an overloaded version of the substring method that takes only one argument, the position of the first character, and returns a substring consisting of all the characters from that position to the end of the string.

Examples:

String magic = "Abracadabra!" ;

String sub = magic.substring(7) ;

 // sub gets "abra!"

sub = magic.substring(0) ;

 // "Abracadabra!"

sub = magic.substring(magic.length()-1) ; // "!"

