Computer Programming I

 Instructor: Greg ShawPRIVATE

COP 2210

 Class Notes

Superclasses, Subclasses, and the Object Class

I. Class Hierarchies and the “Cosmic Superclass” Object
· One of the key concepts of object-oriented programming is reuse of existing components.

· One way that existing classes are reused is by deriving new classes from them. The existing class is known as the superclass and the new class derived from it is called the subclass.

· A subclass represents a “new kind of” the superclass. For example, we could derive a new class called Submarine from an existing class Ship. A Submarine is a new kind of Ship.

· Objects of a subclass are automatically also objects of its superclass (e.g., every submarine is a ship) and inherit all of the superclass' instance variables and methods. (We will learn lots more about inheritance next semester)

· All Java classes – those that come with the language and those created by users of the language - are ultimately derived from a common superclass, Object.

II. Upcasting
“Treating a subclass object as an object of its superclass”

· Upcasting is always a safe operation because every subclass object is also an object of its superclass (e.g., every submarine is a ship)

· Since upcasting is always safe, Java will do it implicitly (similar to implicit conversion of a primitive int to a double, or any other “widening” conversion).

· An example of implicit upcasting occurs when we pass an argument of any class to a method that takes a parameter of class Object. The argument will be implicitly converted to the Object class. This makes the method more general purpose by allowing us to pass it an argument of any class. (We will see examples of this next semester)
· Another example of implicit upcasting occurs when we store an argument of any class in an ArrayList - a data structure for storing a list of related objects.

· The ArrayList class is designed to implement a list of Objects. Since all classes are subclasses of Object, objects of any class may be treated as objects of the Object class and stored in an ArrayList. This makes Java’s ArrayList a “generic” data structure – able to store objects of any class.
III. Downcasting

“Converting a superclass object back into an object of a subclass”
(By “superclass object” we mean an object of a subclass that is being treated as an object of a superclass)
· This is not a safe operation because the object being treated as the superclass object may not actually be an object of the subclass to which we wish to convert it!
· Since this operation is not always safe, an explicit type-cast is always required (similar to converting a double to an int, or an other “narrowing” conversion). By explicitly converting the type, we tell the compiler that we are aware of the danger and take full responsibility.
· If the superclass object is not actually an object of the class to which we are attempting to downcast it, a ClassCastException will be thrown.
IV. Why This is Important
· When stored in an ArrayList, all objects – no matter what class – are implicitly upcast to class Object.
· However, to process the objects stored in an ArrayList, it is often necessary to downcast them back to their natural subclass, so that we may call methods of that class.
· For examples of upcasting and downcasting, see any of our sample programs from the upcoming ArrayList unit.
