Computer Programming II

 Instructor: Greg ShawPRIVATE

COP 3337

Multi-Dimensional Arrays
I.
 Concepts
In Java, a Two-Dimensional array is implemented as a One-Dimensional array of One-Dimensional arrays. I.e., a list where each element points to another list.
We can visualize a 2D array as a table, with rows and columns. I.e. an “m by n” 2D array can be seen as a table with m rows and n columns. But it’s really a 1D array of m elements where each element points to a 1D array of n elements.
For example, here is how we see a “3 by 5” 2D array:
	0
	
	
	
	
	

	1
	
	
	x
	
	

	2
	
	
	
	
	

	
	0
	1
	2
	3
	4

And here is what it really is:

	
	
	
	
	

	0
	1
	2
	3
	4

	0
	

	1
	

	2
	

	
	
	x
	
	

	0
	1
	2
	3
	4

	
	
	
	
	

	0
	1
	2
	3
	4

A Three-Dimensional array is a One-Dimensional array of Two-Dimensional arrays, etc. We can visualize it as a book, where each page contains a table.
II. Declaring 2D Arrays
type [][] name = new type[rows][cols] ;

1. type is the type of data stored in the array (any primitive type or class)

2. name is the name of the array object variable

3. rows is an integer expression indicating the number of rows

4. cols is an integer expression indicating the number of columns

Example:

int [][] matrix = new int [5][4] ;

(creates a 2D array of 5 rows and 4 columns pointed to by matrix)

Naturally, the declaration of the object-variable and the creation of the object may be done separately:

int [][] matrix ;

.

 .

 .

matrix = new int [5][4] ;
III. Accessing the Individual Elements of a 2D Array

This is similar to accessing the elements of a 1D array, but each element requires two indices (aka: subscripts)

name[row][col]

· name is the name of the array object variable

· row is an integer expression that tells you which row (i.e. the index of the element of the 1D array that points to the other arrays)

· col is an integer expression that tells you which column (i.e. the index of the element in the array pointed to by row)

· The first subscript is always the “row” subscript

Example: to access the 3rd column of the 2nd row of the array table, use table[1][2] (since the first row and first column have index 0)
In the diagrams in I., above, this is the element marked “x”
IV. The length Instance Variable

Every array object has an instance variable called length which stores the size (i.e., number of elements) of the array

Since a 2D array is a 1D array of 1D arrays, each array has its own length

int table [][] = new int[4][5] ;
// 4 rows by 5 columns

int numRows = table.length ;

// numRows gets 4

int numCols = table[0].length ;
// numCols gets 5
In the above example, the length of the first dimension is 4 and the length of each array “pointed to” is 5

V. Alternate Notation for 2D Array Declarations

As with 1D arrays, we may declare 2D arrays by specifying the initial values instead of the size
Java will infer the number of rows and columns from the initial values provided, as shown in this example:

// create a 3 by 4 array containing the ints 1 thru 12

int [][] table = {{1,2,3,4},

// 1st row (table[0])

 {5,6,7,8},

// 2nd row (table[1])

 {9,10,11,12}} ; // 3rd row (table[2])

 table
	0
	1
	2
	3
	4

	1
	5
	6
	7
	8

	2
	9
	10
	11
	12

	
	0
	1
	2
	3

VI. Traversing a 2D Array

To traverse, or “visit” each element of a 2D array, nested for statements are commonly used.
To traverse by rows, the outer loop variable is used as the row index and the inner loop variable as the column index.

E.g. suppose array matrix has been declared as shown here

 int [][] matrix = new int[4][3] ;
// 4 rows by 3 cols

The following code stores the ints 1 thru 12 in matrix, by rows, as shown below:

 int count = 1 ;

 // for each row...

 for (int row = 0 ; row < matrix.length ; row++)

 {

// visit each column...

for (int col = 0 ; col < matrix[0].length ; col++)

{

 matrix[row][col] = count++ ;

}

 }

 matrix

	
0
	1
	2
	3

	1
	4
	5
	6

	2
	7
	8
	9

	3
	10
	11
	12

	
	0
	1
	2

To traverse by columns, the outer loop variable is used as the column index and the inner loop variable as the row index.

// store the ints 1 thru 12 in matrix, by columns

 count = 1 ;

 // for each column...

 for (int col = 0 ; col < matrix[0].length ; col++)

 {

// visit each row...

for (int row = 0 ; row < matrix.length ; row++)

{

 matrix[row][col] = count++ ;

}

 }

 matrix

	
0
	1
	5
	9

	1
	2
	6
	10

	2
	3
	7
	11

	3
	4
	8
	12

	
	0
	1
	2

VII. Accessing An Entire Row of a 2D Array

Consider the 2D array table, as initialized in V., above, and the following statements:

// declare a 1D array object-variable pointing to the first

 // row of table

int [] firstRow = table[0] ;

// now create a deep copy of the first row of table

int [] copy = Arrays.copyOf(table[0], table[0].length) ;

The array object-variable firstRow contains a reference to the first row of table (i.e. it is a “pointer” to the array table[0]). So if these statements were executed:

firstRow[1] = 37 ;

System.out.println(table[0][1]) ;

the output would be 37, because firstRow[1] and table[0][1] both refer to the same memory location.

However, this statement:

System.out.println(copy[1]) ;

Will print the original value, 2, because the array copy is a duplicate of the array table[0] and was not modified
VIII. Sample Programs

See VoteCounterTest.java and Irregular2D.java, online
