Computer Programming II

 Instructor: Greg ShawPRIVATE

COP 3337

The Comparator "Strategy Interface"

I. You Can't Always Use the Comparable Interface

We have seen how Java makes it easy to compare objects - just have your class implement the Comparable interface, and in your implementation of the compareTo method, specify the natural ordering of the objects.

However, if you don't own the class, you can't make it implement Comparable. Also, what if you do own the class and have already implemented Comparable, but now you want to specify one or more alternate ways to order the objects?

In either of these cases, you need to define a class that implements the "strategy interface" Comparator.

· To review strategy interfaces, see Measurer.java, DataSet2.java, and DataSetTest2.java
II. Java’s Comparator Interface

public interface Comparator

{

int compare(Object firstObject, Object secondObject) ;

}

If comp is a Comparator object variable (i.e., an object variable of a class that implements Comparator), then the method call

comp.compare(a, b)

Like method compareTo of the Comparable interface, method compare must return:

· a negative int if object a should come before object b
· zero if a and b are equal

· a positive int if object a should come after object b
As in method compareTo, you must specify a total ordering for all objects. I.e., an ordering that follows the Antisymmetry, Reflexivity, and Transitivity properties. Also, if the class to which a and b belong overrides the equals method, then you must use the same exact test for equality in your implementation of compare. (See "Implementing the Comparable Interface")

III. Example

Here is a Comparator class for Rectangles, which orders them by area.

public class RectangleComparator implements Comparator

{

public int compare(Object firstObject, Object secondObject)

{

Rectangle r1 = (Rectangle)firstObject ;

double area1 = r1.getWidth() * r1.getHeight() ;

Rectangle r2= (Rectangle)secondObject ;

double area2 = r2.getWidth() * r2.getHeight() ;

if (area1 < area2)

return -1 ;

if (area1 == area2)

return 0 ;

return 1 ;

}

}

Now, if comp is a RectangleComparator object variable and r1 and r2 are two Rectangles, we can test:

if (comp.compare(r1,r2) < 0)
// r1 is smaller than r2

...

else if (comp.compare(r1,r2) > 0)
// r1 is greater than r2

...

else

// r1 and r2 are equal

...
IV. Array Searching and Sorting

In program RationalSortAndSearch.java, we saw how Arrays class methods sort and binarySearch can be used with arrays of objects of any class that implements the Comparable interface.

The Arrays class also has overloaded sort and binarySearch methods that operate on arrays of objects of classes for which the ordering is specified by a Comparator strategy interface.

The overloaded versions of sort and binarySearch each take one additional parameter - an object variable of a class that implements Comparator.

· See program ComparatorTest.java
