Computer Programming II

 Instructor: Greg ShawPRIVATE

COP 3337

Converting Between Types

I. “Upcasting” - Converting From a Class Type to an Interface Type

Consider the heading of the add method of the DataSet class:

public void add(Measurable x)

The method has one parameter of type Measurable.

Now look at two calls to this method from the class DataSetTest:

bankData.add(new BankAccount(10000)) ;

coinData.add(new Coin(0.25, "quarter")) ;

The first call creates a BankAccount object with a balance of $10000 and passes it to the add method. The second passes a Coin object with value 0.25 and name "quarter."

Why does add accept arguments of class BankAccount and Coin when its declaration calls for a parameter of class Measurable?

· Java will implicitly convert an object of a given class to the type of an interface that the class implements.

This is always allowed because, by definition, every method of the interface is also present in the implementing class. So there is no possibility of calling a method that is not defined for the class to which the object actually belongs.

II. “Downcasting” - Converting from an Interface Type to the Native Class Type

What happens if you want to convert back from an interface type to the type of a class that realizes the interface? Recall:

DataSet coinData = new DataSet() ;

coinData.add(new Coin(0.25, "quarter")) ;

coinData.add(new Coin(0.1, "dime")) ;

coinData.add(new Coin(0.05, "nickel")) ;

Measurable max = coinData.getMaximum();

System.out.println("Highest coin value = " + max.getMeasure()) ;

The getMaximum method of the DataSet class returns a reference to a Measurable object, which here is stored in Measurable object variable max. The only method of the Measureable interface, getMeasure is then called for the object pointed to by max. (Again, this is safe because no matter whether max is actually pointing to a Coin object or a BankAccount object, getMeasure is defined for both).

(See the document on “Polymorphism”)

Now suppose we want to print the name of the coin pointed to by max? The following will not compile:

System.out.println("The largest coin is a " + max.getName()) ;

We know that max is actually pointing to a Coin object, but the compiler sees it only as a Measurable! And the Measurable interface does not have a getName method (although the Coin class does).

However, if you are absolutely sure that max is pointing to a Coin object, you can convert max back to a Coin object variable with an explicit type cast:

Coin maxCoin = (Coin)max ;
 // note explicit cast

System.out.println("Largest coin is a " + maxCoin.getName()) ;

or,

System.out.println("The largest coin is a " +

 ((Coin)max).getName()) ;

· Parentheses are required around the cast, (Coin)max, because the "dot" operator has higher precedence than the cast
· However, if interface variable max is not actually pointing to a Coin object, a ClassCastException will be thrown
By using an explicit type cast, you are telling the compiler that you are aware that casting from an interface type to a class type is a dangerous operation that may throw an exception, and you accept the responsibility.

· The terms upcasting and downcasting come from the way interfaces and their implementing classes customarily appear in UML diagrams – the interface is shown above its implementing classes

III. The instanceof Operator

The instanceof operator provides a way to determine whether a class cast will succeed before attempting it and risking an exception.

The syntax is:

object-var instanceof class-name

The expression returns true if the variable on the left is pointing to an object of the class type on the right, and false if it is not.

In the preceding example, a safe cast can be performed like this:

if (max instanceof Coin)

{

Coin maxCoin = (Coin)max ;

}

· Warning! Do NOT use instanceof in place of polymorphic method calls. That defeats the purpose of interfaces as the code would have to be modified if a new class were added to the system.

