Computer Programming II

Instructor: Greg ShawPRIVATE

COP 3337

More on Exception-Handling

I. Checked vs. Unchecked Exceptions

A. All Java exceptions fall into two categories: checked or unchecked
B. If a method may throw a checked exception, the method must either handle the exception or at least acknowledge the possibility and take responsibility for it by specifying the class of exception in a "throw list" (i.e., exception specification). Otherwise, the compiler will complain.

C. The compiler does not require you to take any action regarding the possibility of an unchecked exception.

D. In general, checked exceptions arise from situations beyond the control of the programmer, for example, if a file is not found or an unexpected EOF is encountered.

· Class IOException and all exception classes that extend it are checked exceptions
E. Unchecked exceptions, on the other hand, can arise anywhere and generally comprise situations that well-written code would prevent. E.g., nullPointerException, IndexOutOfBoundsException, ArithmeticException(integer division by 0), etc
“Exceptions" to this rule include InputMismatchException and NumberFormatException, which are unchecked despite the fact that the programmer has no control over user input.
· Class RuntimeException and all exception classes that extend it are unchecked
· Slide #44 in the PowerPoint for Ch. 11 of BJ6 (Big Java - 6th ed.) shows the hierarchy of exception classes. This also appears on page 541, of BJ6.
II. Creating Your Own Exception Classes

If you feel that none of Java's standard exception classes is appropriate for a particular error condition in a class of yours, you may design your own exception class by extending an existing one.

· If you want your class to throw unchecked exceptions, have it extend superclass RuntimeException
· For checked exceptions, extend superclass Exception
III.
 Exception Class Constructors
A. It is customary to provide two constructors for new exception classes, a default or "no argument" constructor and a constructor that takes one String argument that describes the exception
B. In the string-argument constructor, the string is passed to the superclass constructor and printed when methods getMessage() or toString() are called for the exception object in a catch block
C. An example from the textbook

/**
 * This class reports bad input data

 */
public class BadDataException extends Exception
{
 public BadDataException()

{}

 public BadDataException(String message)

 {

 super(message) ;

 }
 }
IV.
 Exception Class Methods
Recall the syntax of a catch block declaration:

catch (exception-class exception-parameter)

E.g.
 catch (IOException e)

When an exception is thrown, control is transferred to the catch block for that class of exception and the parameter contains information about the exception. Some of the more useful methods commonly called for the parameter are:

getMessage() – returns the string passed to the exception

constructor

toString() -
returns the class name and the string passed to the

constructor

printStackTrace() –
prints the series of method calls that led to

the exception, with line numbers, in reverse

order all the way back to main()
V. The finally Clause
Sometimes, you need to do something whether an exception is thrown or not. For example, data files must be closed when you are done with them, but what if an IOException is thrown after the file is opened that prevents control from reaching the close statement?

· Java's finally clause provides a solution to this and similar problems because it is guaranteed to be executed always
· If a finally block is not reached by the normal flow of control, it will still be executed just before the block containing it is exited for any reason
Example: In the code segment below, the finally block will be executed in each of the three possible scenarios
1. If control returns normally from method readFile
2. if an exception is thrown in method readFile
3. if the first statement in the try block throws a FileNotFoundException and readFile is not called

Scanner in = null ;

try

{

// next statement could throw FileNotFoundException

in = new Scanner (new File (filename)) ;

readFile(in) ;

// programmer-defined method that reads the

// file and processes the data read

}

finally

{

if (in != null)

// if file was successfully opened…

 in.close() ;

// … close it

}

In the finally clause, the file is closed only if it was successfully opened. On the other hand, if a FileNotFoundException is thrown, then Scanner object in retains its initial value of null and no attempt is made to close the file
It is also common to place a finally clause after one or more catch blocks. The finally clause will be executed no matter how control exits the try block:
1. If all statements in the try are executed, control passes normally to the finally
2. If an exception is thrown in the try and handled in one of the catch blocks, the finally is executed after the catch

3. If an exception is thrown in the try and not handled in the method containing the try, the finally is executed before control is passed to the calling method in search of a handler
· As of Java 7, finally has been largely obsoleted by the try-with-resources block (see next section)
VI.
try With Resources
· The “try-with-resources” is a try statement that declares one or more resources

· A resource is an object that must be closed after the program is finished with it, such as a file
· The try-with-resources statement ensures that each resource is closed when control exits the try block
· V., above, shows how to use a finally clause to provisionally close a file if it was opened successfully in a try. Since Java 7, we can do the same thing using a “try-with-resources”:

 try (Scanner in = new Scanner(new File(filename)))
 {

 readFile(in) ; // programmer-defined method that reads

 // the file and processes the data read

 }

VII.
Catching Multiple Exceptions Classes in the Same Catch Block (Requires Java 7 or newer)

· Sometimes we may want to do the same thing(s) for different classes of exceptions

· Prior to Java 7, this required us to have a separate catch block for each class of exception, with the same statements in each block
· Now, however, we can handle exceptions of different classes in a single catch block simply by separating the exception class names with the pipe character:

 catch (exception-class1 | exception-class2

 | exception-class3 e)
 {
 // handle the exception here using parameter e
 }
