Computer Programming II




 Instructor: Greg ShawPRIVATE 

COP 3337






 

More on Inheritance

I. Java Access Specifiers

	Type of Access
	Keyword Used
	Accessibility

	public
	public
	Accessible to everyone

	“friendly”

aka: “package”
	(none)
	Accessible to all 
classes in the same package and all subclasses. Off limits
to everyone else

	protected
	protected
	Accessible to all subclasses. Off limits
to everyone else

	private
	private
	Accessible only within the class containing 

the declaration, and nowhere else


II. Protected Access

· Protected access is an intermediate level of access control between public and private

· Instance variables and methods designated as protected (via keyword protected) may be freely accessed by methods of the class containing the declaration and its subclasses but can not be accessed by other classes

· Some programmers like protected access because it enables methods of subclasses to freely access inherited instance variables. However, this is regarded as a bad idea for two reasons:

1. The author of the superclass has no control over authors of subclasses, so any subclass methods can corrupt the superclass data. I.e. protected access breaks encapsulation 
2. Classes with protected instance variables are hard to modify. If the author of the superclass wants to change the implementation, she cannot, because some subclasses may have methods that directly access those protected instance variables 
(For the same reasons, package (“friendly”) access should never be used for instance variables, although it is OK for methods)

· Recall that in CH's BankAccount hierarchy, instance variable balance was declared private in superclass BankAccount, rather than protected.  When subclass objects needed to access their balance, they did so via inherited superclass methods getBalance, withdraw, deposit, and transfer
II.
Overridden Methods May Not Be Made "More Private"
· If a superclass method is public, it must be overridden as public in subclasses and cannot be overridden as private or protected or use package access. Similarly, superclass methods declared protected or using package access may not be overridden with "more private" access.

· The reason the compiler enforces this is because the apparent added security is just an illusion, since subclasses can still call the superclass version of the method

· It is a common error is to forget the public specifier on overridden methods, thereby accidentally using package access
III. Final Classes

· When a class is declared final, it can't be "subclassed" (inherited from)

· To declare a class to be final, use the keyword final in the class declaration, as shown by the declaration of Java's String class:

public final class String

(All String objects are immutable.  That is, they cannot be changed by any of the String class methods.  Since nobody can create subclasses of the String class, we know that all String references can be copied without the possibility of mutation.)

IV. Final Methods

· Like classes, methods may also be declared final
· There are two reasons why we might want to declare a method to be final:

1. Security - as shown in this example:
public final boolean checkPassword (String password)

  (Since the method is final, nobody can override it with a subclass method that simply returns true)
2. Efficiency
If a method cannot be overridden, it cannot be called polymorphically. Then, since there is no possibility of late binding, the compiler can generate more efficient code. 
It does this by making an "inline" method call. I.e., copying the method's code right into the compiled .class file, avoiding the overhead of method calls and returns
· If a class is final, all of its methods are implicitly final (i.e., the keyword final does not need to appear in the method declaration). After all, if you can't create a subclass, then  you can't override the superclass methods
V. Final Method Parameters
This has nothing to do with inheritance, but since we're on the subject of things final...
· Parameters declared final become "read-only" (i.e., even the copy passed to the method cannot be modified in it)
· For object parameters, this means that the parameter cannot be made to “point to” a different object, but the “object pointed to” may still be modified!


public void doSomething (final Object anObject)
