Computer Programming II


    
    Instructor: Greg ShawPRIVATE 

COP 3337





    


    

Introduction to Interfaces 

I.  Interfaces vs. Classes

An interface is similar to a class, but there are several important differences:

1. All methods in an interface are abstract.  That is, they have a name and a return type, and they may have parameters, but they have no implementation (i.e., no "body", not even an empty set of {}'s)
· As of Java 8, interfaces may also have static and default methods.  We will consider these later

2. All methods in an interface are automatically public.  The keyword public does not appear.

3. Interfaces have no have instance variables, because no objects of the interface type can be created!
4. Any variables declared in an interface are automatically public, static, and final (i.e. constants).  For that reason, these keywords should not appear in the declaration.
5. Interfaces cannot have a constructor.  Again, this is because no objects of the interface type can be created.
II. Why Use Interfaces?  
· Interfaces promote software “extensibility.” Once you have defined classes that implement an interface, you treat objects of those classes as objects of the interface type.  You can then add new classes to the system with no modification of existing software, because that software depends only on the interface type and not on any of the classes that implement it
· Interfaces are commonly used for classes that are essentially similar, but differ in the details.  For example, a screen manager needs to be able to draw and erase a variety of different shapes. We could define an interface called Shape with abstract methods draw and erase.  We could then have classes called Circle, Rectangle, Triangle, etc. that implement the Shape interface.  These classes would each have their own implementations of draw and erase.  Objects of these classes would be treated as objects of the interface type, i.e. pointed to by Shape object variables.  
· The screen manager depends only on the Shape interface and not on any of the implementing classes. So, if a new shape was added to the system, say a Pentagon, the screen manager would not have to be modified in any way because Pentagon objects would also be treated as Shape objects.
III.  Declaring an Interface

An interface declaration begins just like a class declaration except the keyword interface is used instead of class.  E.g.,

public interface Measurable

{

   /**

      Computes the measure of the object
      @return the measure

   */

   double getMeasure() ;

}


Note: abstract method getMeasure has no body and keyword public does not appear. All interface methods are automatically public
IV. Implementing (aka: “Realizing”) an Interface

A. Any class may implement an interface as long as 

1. an implements clause follows the class name in the declaration, and
2. the class provides an implementation for all the abstract methods declared in the interface.

public class Coin implements Measurable

{

   private double value ;

   private String name ;

   .

    .
(other Coin methods not shown here)
     .

   public double getMeasure() 

   {

      return value ;

   }

}

B. A class may implement multiple interfaces.  The names of the interfaces would appear after keyword implements, separated by commas.  Naturally, the class would then have to implement all the methods of all the interfaces listed


public class A implements B, C, D


