Computer Programming
II

 Instructor: Greg ShawPRIVATE

COP 3337

Polymorphism

I.

Definition of Polymorphism

“The ability of objects of different classes to respond differently to the same method call.”

The same method -- called for objects of different classes -- takes on “many forms,” hence the term polymorphism.

· Note that the term "different classes" here means different classes that all implement the same interface. (Or, as we will soon see when we study inheritance, different classes in the same class hierarchy).

Don't confuse polymorphism with method overloading. Overloaded methods are methods in the same class having the same name but different signatures. In polymorphism, methods with identical signatures are called for objects of related classes.

II.
How Polymorphism Promotes Software “Extensibility”

A. We treat all objects of different classes that implement the same interface as objects of the interface type.

(Or, as we will soon see, we treat all objects in a class hierarchy as objects of the superclass).

B. New classes can then be added later with no modification of the existing software, because their objects are also treated as objects of the same interface (or superclass) type.

III. "Early Binding"

· Early binding occurs when it is possible for the compiler to determine exactly which method to call. The compiler then generates code to call that method. This is done at compile time, hence the term “early”

· Non-OOP compilers use early binding exclusively

· OOP compilers, however, only use early binding when static methods are called (Recall that static methods – such as Math.sqrt - are called for a class, not for an object)
· Why can’t OOP compilers use early binding with methods that are called for objects? In other words, when an instance method is called, why is it that the compiler can’t figure out exactly which method is being called????

And the answer is: “Because we want to be able to call methods polymorphically!” Read on...
IV. "Late Binding" and Polymorphism

· Late binding means that the compiler does not make a decision as to which method is being called. That decision is deferred until run-time, and made by the Java "virtual machine."

· For example, consider again the add method of the DataSet class, from CH’s example of interfaces:
 public void add(Measurable x)

 {

 sum = sum + x.getMeasure();

 .

 .

 .
 }
Look at method call x.getMeasure(). x is a pointer to a Measurable object. But there really are no Measurable objects, because Measurable is not a class, but an interface. When add is called, x will actually be pointing to a Coin object or a BankAccount object, or an object of some other class that implements the Measurable interface, all of which have their own implementation of the getMeasure method
Since x can be pointing to objects of different classes, it is not possible for the compiler to know the actual class of the object x will be pointing to when the program runs. Therefore, it cannot know which class’ version of getMeasure to call! That can only be determined at run-time, when the add method is called
· At run-time, when the actual class of the object pointed to by x becomes known, the method defined in that class is called. This "late binding" is what enables polymorphism
· In Java, all instance methods (i.e., non-static methods) are polymorphic (i.e., use late binding)
