Computer Programming II

 Instructor: Greg ShawPRIVATE

COP 3337

Sets
I. Definition
A set is an unordered collection of unique objects
· Unordered means that the order in which items are retrieved from a set does not depend on the order in which they were added to the set (unlike an array or linked list)
· Unique means that a set contains no duplicates. An attempt to add an item to a set that is already in the set is ignored
II. Set Operations

1. Adding an object to a set – the add() method
2. Removing an object from a set – the remove() method
3. Testing whether a given object is in a set – boolean method contains()
4. Listing all the objects in a set (in arbitrary order)

III. Set Iterators

· To list each object in a set, we create an Iterator object and use Iterator methods hasNext() and next(), just as with a List
(The enhanced for (aka: “for each”) can also be used to iterate through a set.)

· Unlike a List iterator, a Set iterator has no add method to add an object at the current iterator position. Since a set is unordered, you cannot add an object in a specific position. So objects are added to the set itself and not to the iterator

· Also unlike a List iterator, a Set iterator has no previous() and hasPrevious() methods. Again, since a set is unordered, it is not meaningful to traverse it in a particular direction

IV. The Set Interface
· Java provides two classes – HashSet and TreeSet - that implement the Set interface
· When you create a HashSet or TreeSet object, you should store the reference in a Set variable. E.g.,

Set names = new HashSet() ;

That way, the implementation can be changed just by changing a single statement

Set names = new TreeSet() ;

· For the same reason, when HashSet or TreeSet objects are passed to a method, the parameters should be declared to be of interface type Set
· See SetTest.java
