Chapter 5 Review Exercise Solutions

R5.1

- if quarters > 0 then System.out.println(quarters + " quarters");

Missing parentheses (quarters > 0) and illegal keyword then

- if (1 + x > Math.pow(x, Math.sqrt(2)) y = y + x;

Unbalanced parentheses around condition, use:

if (1 + x > Math.pow(x, Math.sqrt(2))) y = y + x;

- if (x = 1) y++; else if (x = 2) y = y + 2;

(x = 1) and (x = 2) are assignments, not comparisons, use (x == 1)

and (x == 2) instead.

- if (x && y == 0) { x =1; y =1; }

Incompatible variable types: If x, y are integer variables, logical operations like && cannot be performed on them. If x, y are Boolean variables, they can't be compared to 0. Use the following instead:

if (x == 0 && y == 0) . . .;

-if (1 <= x <= 10)
 System.out.println(x);

Invalid condition, use if(1 <= x && x <= 10) instead.

- if (!s.equals("nickels") || !s.equals("pennies")

 || !s.equals("dimes") || !s.equals("quarters"))

 System.out.print("Input error!");

The condition is always true. If s must be one of the choices, use the following instead:

if (!s.equals("nickels") && !s.equals("pennies")

 && !s.equals("dimes") && !s.equals("quarters"))

 System.out.print("Input error!");

- if (input.equalsIgnoreCase("N") || "NO")

 return;

Invalid compund condition, use the following instead:

if (input.equalsIgnoreCase("N") || input.equalsIgnoreCase("NO"))

 . . .

- int x = Integer.parseInt(input);
 if (x != null) y = y + x;

The integer value x can never be null. Use

if (input != null) y = y + Integer.parseInt(input);

- language = "English";

if (country.equals("US"))

 if (state.equals("PR")) language = "Spanish";

else if (country.equals("China"))

 language = "Chinese";

The indentation levels give the wrong impression: the else actually pairs with the closest if. Use braces:

language = "English"

if (country.equals("US"))

{

 if (state.equals("PR")) language = "Spanish";

}

else if (country.equals("China"))

 language = "Chinese";

R5.2

· An expression is made up of constants, variables, method calls and operators, and evaluates to a single value. For example:

· x + Math.sin(Math.PI / 2)

· A condition is an expression that evaluates to a Boolean value

x == 0

· A statement is a simple statement, a compound statement or a block statement.

· A simple statement is a unit that can be executed. In Java, every simple statement must end with a semicolon (;)

· System.out.println();

· A compound statement is a statement that starts with a keyword such as if or while, then is followed by other syntactical constructs depending on that keyword

· if (x == 0)

· y = z;

· else

· z = y;

· A block statement groups several statements together. Braces are used to group statements into a block.

· {

· double root = Math.sqrt(r);

· p1 = new Point2D.Double(root, b);

· p2 = new Point2D.Double(-root, b);

· }

R5.3

In Java if/else if /else statements are used to express a multiple alternative, in which exactly one from a mutually exclusive set of choices is selected to be executed. Nested if statements are used to express a selection from multiple alternatives when there are multiple conditions for each selection.

/* value of integer choice used to select one of four possible values

for x */

if (choice == 1) x = n;

else if (choice == 2) x = n * n;

else if (choice == 3) x = n * n * n;

else x = -2;

/* value of integer choice and value of boolean available

used to select one of four possible values for x */

if (choice == 1)

{

 if (x > 0)

 x = n;

 else

 x = n * n;

}

else

{

 if (x > 0)

 x = n * n * n;

 else

 x = -2;

}

R5.4

/* Order doesn't matter */

if (choice == 1) x = n;

else if (choice == 2) x = n * n;

else if (choice == 3) x = n * n * n;

else x = 0;

/* Order matters */

if (choice < 1) x = n;

else if (choice < 2) x = n * n;

else if (choice < 3) x = n * n * n;

else x = 0;

R5.5

	First
	Second

	Dick
	Tom

	Tom
	Tomato

	Churchill
	church

	car manufacturer
	carburetor

	Harry
	hairy

	C++
	car

	Tom
	Tom

	Car
	Carl

	bar
	car

	101
	11

	1.01
	10.1

R5.6

	p
	q
	r
	(p && q) || !r
	!(p && (q || !r))

	false
	false
	false
	true
	true

	false
	false
	true
	false
	true

	false
	true
	false
	true
	true

	false
	true
	true
	false
	true

	true
	false
	false
	true
	false

	true
	false
	true
	false
	true

	true
	true
	false
	true
	false

	true
	true
	true
	true
	false

R5.7

Suppose each partner makes $40,000. If each of them paid the single rate, they would each pay $8411.5, or a combined tax of $16,823. But with the married rate on $80,000 combined income, the tax is 17746.0.

However, if one partner makes $80,000 and the other makes $0, then the married rate is more favorable than the single rate.

From a tax perspective, it does not pay to get married when both partners have roughly equal incomes. But it does pay if one of them has no income.

R5.8

If either condition has a side effect, then you cannot swap A and B. If neither condition has a side effect, you can swap them. In other words, if evaluating A or B affects the expected result of evaluating the other (B or A), then you cannot swap A and B without changing the expected result. For example, these two conditions would lead to different results:
if (n > 5 || (n = Integer.parseInt(input)) > 0) . . . // will use n with its old value first
if ((n = Integer.parseInt(input)) > 0 || n > 5) . . . // will first assign n a new value and then use it
The statements above are confusing and you should avoid this type of programming.

Another case in which you cannot swap the order is when you are depending on a lazy evaluation (expressions are evaluated from left to right, and evaluation stops as soon as the truth value is determined) to obtain a particular behavior. For example,
if (rectangle != null && rectangle.equals(box)) . . . // would work fine
if (rectangle.equals(box) && rectangle != null) . . . // yields an error if rectangle is null (equals needs an object to work on)
R5.9

In the first block, the conditions are evaluated sequentially, so s could be incremented twice. In the second block, the conditional statements are mutually exclusive, so, s cannot be incremented more than once.

R5.10

	Original
	De Morgan

	!(x > 0 && y > 0)
	x <= 0 || y <= 0

	!(x != 0 || y != 0)
	x == 0 && y == 0

	!(country.equals("US") && !state.equals("HI") && !state.equals("AK"))
	!country.equals("US") || state.equals("HI") || state.equals("AK"))

	!(x % 4 != 0 || !(x % 100 == 0 && x % 400 == 0))
	x % 4 == 0 && x % 100 == 0 && x % 400 == 0
Of course, this condition can now be simplified to x % 400 == 0

R5.11

status = "GOOD";

if (GPA >= 1.5)

 if (GPA < 2.0)

 status = "PROBATION";

else

 status = "FAILING";

Should be:

status = "GOOD";

if (GPA >= 1.5)

{

 if (GPA < 2.0)

 status = "PROBATION";

}

else

 status = "FAILING";

or better:

if (GPA >= 2.0)

 status = "GOOD";

else if (GPA >= 1.5)

 status = "PROBATION";

else

 status = "FAILING";

R5.12

s == t

tests whether s and t are references to the identical String object.

s.equals(t)

tests whether s and t are strings with the same contents.

R5.13

r == s

tests whether r and s are references to the identical Rectangle object.

r.equals(s)

tests whether r and s are rectangles with the same coordinates.

R5.14

To test whether a reference is the null reference, use ==:

if (r == null)

You cannot call equals on a null reference because it is not referencing any object. If the code is run, and r is null, the program will end with an exception:

Exception in thread "main" java.lang.NullPointerException

 at Test.main(Test.java:32)

R5.15

For the lexicographic comparison, upper- and lowercase are distinguished. Also, "filler characters" such as . - and space are used in the comparison, whereas they would be ignored in the phonebook.

Lexicographic ordering is like a dictionary alphabetic ordering, but some of the characters have different values which results in their being sorted into a different position. Specifically, all white space (space, horizontal tab, vertical tab, carriage return and line feed) precede digits (0-9) which precede uppercase letters (A-Z) which precede lowercase letters(a-z). The sort order of punctuation and other printing characters is less intuitive.

R5.16

 if ((a.getP1().equals(b.getP1()) && a.getP2().equals(b.getP2())) ||

 (a.getP1().equals(b.getP2()) && a.getP2().equals(b.getP1())))

R5.17

You have to be careful when comparing floating-point numbers, in order to cope with roundoff errors. When comparing floating-point numbers, donï¿½t test for equality. Instead, check whether they are close enough.

To test if an integer equals ten use:

 if (n == 10) . . .

To test if a floating point number equals ten use:

 final double EPSILON = 1E-14;

 if (Math.abs(d - 10) <= EPSILON)

 // d is approximately equal to 10

R5.18

boolean xInside = r.getX() <= p.getX() && p.getX() <= r.getX() + r.getWidth());

boolean yInside = r.getY() <= p.getY() && p.getY() <= r.getY() + r.getHeight());

if (xInside && yInside)

. . .

R5.19

One possible set is 8.5, 7.5, 6.5, 5, 4, 2, –1.

R5.20

	Marital Status
	Income
	Tax

	S
	–1
	none

	S
	0
	none

	S
	21000
	3150.00

	S
	25000
	21450 (15 + (25000 – 21450) (28 =
3217.00 + 994.00 =
4211.00

	S
	60000
	21450 (15 + (51900 – 21450) (28 + (60000 – 51900 (31 =
3217.00 + 994.00 + 2511.00 =
6722.00

	M
	–1
	none

	M
	0
	none

	M
	35000
	5250.00

	M
	57000
	35800 (15 + (57000 – 35800) (28 =
5370.00 + 5936.00 =
11306.00

	M
	90000
	35800 (15 + (86500 – 35800) (28 + (90000 – 86500) (31 =
5370.00 + 14196.00 + 1085.00 =
20651.00

R5.21

If the income is 0, a tax of 0 is expected.

