Chapter 19 Review Exercise Solutions

R19.1

Streams access sequences of bytes. Readers and writers access sequences of characters.

R19.2

You need to open a RandomAccessFile to open a file for both reading and writing. For example,

RandomAccessFile f = new RandomAccessFile("bank.dat", "rw");

R19.3

If you write to a file reader, there will be a compile-time error because input files don't support output operations such as print. If you write to a random access file that was opened for reading only, there will be an exception.

R19.4

To break the Caesar cipher, you can try all 25 keys (b...z) to decrypt the message. Look at the decryptions and see which one of them corresponds to English text.

R19.5

If you try to save an object to a object stream and the object is not serializable, an exception is thrown.

R19.6

java.lang.Boolean

java.lang.Character

java.lang.Double

java.lang.Integer

java.lang.String

java.lang.Throwable and its subclasses, i.e., all exceptions

java.io.File

R19.7

If you simply save the entire ArrayList, you do not have to save the number of elements. If you saved a collection manually, you'd first have to write out the length, then all entries. When reading the collection back in, you'd have to read in the length, then allocate sufficient storage, and then read and store all entries. It is much simpler to just write and read the ArrayList and let the serialization mechanism worry about saving and restoring the length and the entries.

R19.8

Sequential access forces you to read all bytes in a file in order, starting from the first byte and progressing through the last byte. Once a byte has been read, it cannot be read again, except by closing and reopening the file. With random access, you can repeatedly select any position in the file for reading or writing.

R19.9

The file pointer denotes the current position in a random access file for reading and writing. You move it with the seek method of the RandomAccessFile class. You get the current position with the getFilePointer method. This is the number of bytes from the beginning of the file, as a long integer, because files can be longer than 2GB (the longest length representable with an int).

R19.10

f.seek(0);

f.seek(f.length() - 1);

f.seek(f.length() / 2);

R19.11

It is legal to move the file pointer past the end of the file. If you write to that location, the file will be enlarged. If you read from that location, an exception is thrown. You can’t move the file pointer on System.in. It is not a RandomAccessFile, therefore a call to the seek method is a compile-time error.

