Java Programming Classes

 Instructor: Greg ShawPRIVATE

COP 2210 and 3337

Internal Program Documentation
“Internal” documentation refers to comments that appear inside your methods and classes.

I. Internal Program Documentation vs. Java “Documentation Comments”
As we have seen, Java documentation comments are used to generate HTML “help” pages for a class and its methods.
These pages describe everything a programmer needs to know to use the class – how to create objects, what methods are available, and how to call each method.
However, they provide no insight as to how the methods do what they do. No problema, because users of a class do not have to know anything about how the methods work, just what they do and how to call them. We use objects effectively every day without having to know anything about how they work! For example, consider your home entertainment system. Each button on the controller calls a method. We don’t need to know how those methods do what they do, just which buttons to push.
In the real world, however, programmers are sometimes called upon to modify or debug programs written by someone else. For this reason, it is very important to write programs that are easy to understand.

Two keys to writing understandable programs are:

1.
Resist the temptation to use overly clever code in favor of a "plain vanilla" style, and

2.
Include thorough internal documentation in every program

Proper documentation will also help you understand your own programs, especially if you need to modify one you haven't looked at for a while. Believe it or not, proper documentation can even help you debug a program!

II. Multi-line Comment Blocks and Inline Comments
Java has two kinds of comments used for internal documentation:
1. A multi-line comment (aka: "comment block") is anything appearing between the opening symbol /* and the closing symbol */, no matter how many lines.

2. For inline comments, the symbol // turns the remainder of the current line only into a comment. This allows us to have a comment immediately following the statement it describes, on the same line.
III. Required Internal Documentation for Our Programs
1. Introductory Comments

Each class should begin with a comment block containing the programmer's name, file name, and the required affirmation/disclaimer (see the “Class Rules” doc online).
This is separate from the Javadoc comment preceding the class declaration.

2. Explanation of Variables

a. An in-line comment should appear to the right of each instance variable and local variable declaration, explaining how the variable is used in the class or method.

b. Each variable declaration should appear on a line by itself.
c. You should also make your program self-documenting by using meaningful, descriptive names for classes, methods, variables, and defined constants.

3. Method Documentation

a. Before each individual task or action taken, say what is about to be done. This comment should occupy a line or lines by itself, and be preceded and followed by a blank line.

(Generally, a method should be concise enough to fit on a single screen – roughly 30 lines or so, not counting the introductory “Javadoc” comments, blank lines, and lines containing just an opening or closing brace. If longer, it should be “refined” into two or more shorter methods).
b. Inline comments should be used generously to explain what is accomplished by each program statement (unless the meaning is obvious, like an input or output statement).
Avoid simply restating the operation in English. Instead, say what is accomplished.

E.g., consider this statement:
 salary = 1.05 * salary ;

Bad comment:
// multiply salary by 1.05 and store in salary

Good comment:
// increase salary by 5%

IV. Summary

There is an art to writing comments and, as with anything else, you improve with practice. Although it is possible to over-document a program, it's better to have too much documentation than too little.

Try to write your comments as if your intention is to explain your program to a friend who is NOT a programmer. You should be able to read just the documentation and get a good idea of what the program does and how!
V. Grading Consideration

The equivalent of one letter grade (approximately 15% of each assignment grade) will be based on documentation, both Javadoc and internal. This is simply a matter of following directions and taking pride in your work.

