
1

AN INTRODUCTION TO LINEAR LINKED LIST

BY JOSLYN A. SMITH

Objective

To learn how to:

 Create a list

 Traverse a list

 Insert items in a list

 Remove items from a list.

Terminologies

Linked List • node • traverse • null

Introduction

Linked list is one of the fundamental data structures used in programming. A list is a finite sequence of

elements where insertion of elements occurs at any point and anytime in the list. Also, deletion of elements can

take place from any point in the list and at anytime. Linked list does not carry index like array or ArrayList. Hence,

whether it is inserting, deleting, or traversing the list, indexing of nodes is not a requirement.

Characteristics of Linked List

A linked list consists of a set of elements called nodes. Each node is connected to the next by address rather

than by index. The first node in a list is referenced by a variable described as the header address. The last node

connects to no succeeding node, so it is assigned the null address, indicating the end of the list. Figure 1 shows a

linked list of four nodes.

There are different forms of linked list, such as singly-list (called linear list), doubly-list, multiply linked list and

circular linked list. Only linear linked list will be discussed in this article.

null address

Figure 1 - A Linked List of four nodes.

header

 data data data data

2

In a linear list, a node is comprised of two components. One of the components stores the data, and the other

stores the address of its succeeding node. The component that stores the address is called the link field. See

Figure 2.

Figure 3 shows a list consisting of a single node. This node is referenced by the variable called list. The part that

stores the data we will call data for now. Later we will add meaning to it. The address part we will call next, any

other variable name is just as good. At this point the link field next contains the null address, signifying the end of

the list. To refer to the data component of the node we say list dot data, written as list•data; and to refer to the link

field, next, we say list dot next, written as list•next. The statement list•next = null assigns the null address to the

link field variable.

The statement list = null abandons the list, by disconnecting the header reference from the list. See Figure 4. In

this context there is no way of re-connecting the list with the header reference.

In a linked list data structure, the header reference and the link reference are of the same type. Hence, linked

list are referred to as self referencing data structure. This kind of data structure leads to more complex linked list

implementations such as stacks, queues, and binary trees.

next

 data

list

Figure 3 - A Linear Linked List containing one
node.

Figure 4 An abandoned list

next

 data

list

Figure 2 - A node

The data component

 data

 node

The address component

3

Representing Linked In List Java

Java defines a class called LinkedList, an implementation of the List interface. Its immediate super class is

AbstractSequentialList, which implements the interface. We will not use this class; instead we will design and

construct a linked list, in order to have a better understanding of it.

Let us design a node class called Node.java. This class will have two fields: the data field represented by a

string variable; and a link field represented by the variable next. See Listing 1. Figure 5 shows a pictorial

representation of the code.

Listing 2 shows how the constructor initializes each of the fields. Notice that the linked field, next, points to no

node. It is assigned the null address, as indicated by Line 9. Figure 6 shows a pictorial representation of the class.

We will now create an empty list. To create an empty list necessitates implementing a class that will be used to

create and maintain the list. Let us call this class LinkedNode. Listing 3 shows a partial definition of the class.

1. class Node
2. {
3. String data;
4. Node next;
5.
6. Node(String s)
7. {
8. data = s;
9. next = null;
10. }
11. }

Listing 2 - Constructor initializes the
fields

next

 The string value

Node

Figure 6 - Representation of the initialized

fields

next

 data

Node

Figure 5 – Representation of the class Node Listing 1 - The class Node

1. class Node
2. {
a. String data;
b. Node next;
3. }

Listing 3 - Partial definition of the class LinkedNode

1. class LinkedNode
2. {
3. Node list;
4.
5. LinkNode()
6. {
7. list = null;
8. }
9. }

4

Line 3 of the code declares a reference variable of type Node, called list. This variable will serve to point to

the beginning or head of the list. Figure 7 shows a pictorial representation of the variable.

The code in Line 7 creates an empty list. See Figure 8 shows a pictorial representation of the list. Next we

will define an accessor method that will serve to determine if the list is empty. See Listing 4, Line 9.

We now define a method called prepend, that adds a node at the beginning of the list. See Listing 5.

1. class LinkNode
2. {
3. Node list;
4.
5. LinkNode() { list = null; }
6.
7. boolean isEmpty()
8. {
9. return list == null;
10. }
11. }

Listing 4 boolean method isEmpty

1. class LinkNode
2. {
3. Node list;
4.
5. LinkNode()
6. {
7. list = null;
8. }
9.
10. boolean isEmpty()
11. {
12. return list == null;
13. }
14.
15. void prepend(String s)
16. {
17. Node temp = new Node(s);
18. temp.next = list;
19. list = temp;
20. }
21. }

Listing 5 - Includes the method prepend

list

Figure 7 - Reference variable list of type Node

Figure 8 - The variable list is assigned the null address

 list

5

To append a node to a list requires traversing the list, visiting every node, starting from the first to the last,

skipping none. That is, loop through the list and update the reference field for each node visited. When traversing

a linked list never use the original reference variable that points to the beginning of list; rather, get an auxiliary

reference variable to do that task. In this example we declare and initialize an auxiliary reference variable as

follows:

ListNode current = list;

Figures 10 thru 12 show the state of the list when a node is inserted at the front of the list

a) Line 7 creates an empty list , as shown in Figure 9

list

Figure 9 – An empty list

c) Line 18 points the link field of the recent node, to the reference variable list. See Figure 11.

temp

list

next

 the string value

Figure 11 – Link field points to the null address

d) Line 19 – The variable list points to the node being referenced by the variable temp, thereby

making the variable list pointing to the head of the list. See Figure 12

b) Line 17 creates a new node using the string value it gets, and sets the link field to null. See

Figure 10

temp

next

 the string value

Figure 10 - A new node created

Figure 12 – The variable list is pointing at the beginning of the list

list

temp

next

 the string value

6

Figure 13 shows the effect of this statement. That is, the variable current, points to the first node of the list.

In Figure 13, the address component of the first node (current.next) points to the second node in the list. In

order for the reference, current to visit the second node, it must point to the node to which current.next is

pointing. The required code for this statement is:

Figure 14 shows the effect of the above statement.

If we repeat the statement a second time, then the reference variable current will now be pointing to the third

node. In addition to traversing the list, you must determine when current.next is pointing to null. When it is

determined, divert current.next from pointing to null, and let it point to the new node that temp is pointing to. See

Figure 15.

temp
current

null address
header

 data data data data

 data

Figure 15 - New node temp is appended to the list

Figure 13 - Reference variable current points to the head of the
list.

current

null address

 data data data

data

header

current•next

Figure 14 - current = current.next;

null address
header

 data data data data

current

current•next

current = current.next;

7

In Listing 6, the method append places the new node, which is being pointing to by temp, at the end of the list.

As shown in Listing 6:

 The method accepts a string value as the string, and uses the string to create a new temporary node reference

by the variable temp. See Line 18.

 If the list is empty, then this new node will be the first in the list. See Lines 20 and 21.

 If the list is not empty, declare an auxiliary reference, and let this auxillary reference point to the beginning of

the list. See Line 24.

 Use the auxiliary reference to traverse the list, looking for when current.next points to the null address. See

Lines 27 and 28.

 As soon as we know when current.next is pointing to the null address, change its direction, and let it point to

the new node instead. See Line 34.

1. class LinkNode
2. {
3. Node list;
4.
5. LinkNode() { list = null; }
6.
7. boolean isEmpty() { return list == null; }
8.
9. void prepend(String s)
10. {
11. Node temp = new Node(s);
12. temp.next = list;
13. list = temp;
14. }
15.
16. void append(String s)
17. {
18. Node temp = new Node(s);
19.
20. if (isEmpty())
21. list = temp;
22. else
23. {
24. Node current = list;
25. try
26. {
27. while (current.next != null)
28. current = current.next;
29. }
30. catch(NullPointerException e)
31. {
32. e.printStackTrace();
33. }
34. current.next = temp;
35. }
36. }
37. }

Listing 6 - shows the code for appending a node to the list.

8

Traversing a linked list has the potential of encountering null pointer. Against this background, enclose this

portion of the code with the exception handler, NullPointerException.

You can insert a node anywhere in the list. Usually we use this method to maintain an ordered list. You can

also delete a node just about any point in the list. This property requires traversing the list, looking for a given

node. When the node is found, re-arrange the reference fields so as to eliminate that node. We will use an example

to illustrate these two situations.

Example

Librarians get books from time to time. Formally, when a librarian gets a book, the title would be recorded manually in

alphabetical order. This means frequent re-writing of the list. Write a program such that as a book is received, it is

automatically placed in the right sequence. From time to time books become obsolete. When a book becomes obsolete it is

removed the collection. The program must take this into consideration also.

Use the concept of linked list to implement this idea, by designing the following classes:

 Book - this class the holds the title of book.

 BookNode – this class creates the node of information and its link field.

 BookList – this class creates and maintains the linked list of book titles in alphabetically order, and.

 Library – this is the test class that co-ordinate the activities of the other classes.

Solution

The solution to this problem runs parallel to the properties of linked list outlined above. The data in this case is

referring to books. A book as we know has several attributes: title, ISBN, pages, price, author, etc. To keep things

relatively simple we define the class book with a single field, the title. In addition we provide an accessor method

to return the title of the book. See Listing 7.

The class BookNode is the most important of the four classes. It is used to store the data was well as the reference

to the succeeding node. The data field is an object of type Book, and the link field we will call next. Notice that

the link field is of the type BookNode. The book field is initialized the usual way; however, the link field is

assigned the null address. This makes this node potentially the last node in the list. See Listing 8

Listing 7 - class Book

1. class Book // This class contains the information
2. {
3. String title;
4.
5. Book(String t)
6. {
7. title = t;
8. }
9.
10. public String getTitle()
11. {
12. return title;
13. }
14. }

9

The problem requires that the titles are to be arranged alphabetically. This means finding the proper place to

insert the title. To search for the proper place requires traversing the list and comparing the title of the new book

with the title of each book visited in the list.

As before, traversal of the list requires an auxiliary reference. If the data in the new node is alphabetically rank

less than the data in the current node of the list, then the position is found. At this point, place the new node in

the list. See Figure 16. As can be seen, the value of temp.data is less than the value at current.data. So we have

found the right position to place the node. That is, the new node must fall between the node containing the letter

M and the node containing the letter P. This solution has one problem. We cannot reference the node containing

the letter M, since there is no reference pointing to it.

To fix this problem, a second auxiliary reference is required. This reference will be made to trail the reference,

current. When the position is found we re-arrange the references to include the new node. We will call this new

reference, back. This reference must be set to the node being pointed to by the reference current, before

advancing current to its successor node. That is:

1. Set back to point to current. The requisite code is, back = current, and

Listing 8 - The class BookNode

1. class BookNode // Creates book node objects
2. {
3. Book book;
4. BookNode next;
5.
6. BookNode(Book b)
7. {
8. book = b;
9. next = null;
10. }
11.
12. Book getBook() {return book;}
13.
14. BookNode getNextNode(){return next;}
15.
16. void setNode(BookNode b){ next = b;}

17. }

Figure 16 - Traversing the list to find proper place

current

header

 M B P Z

temp

 N

10

2. Advance current to point to its successor. That is, (current = current.next)

 See Figure 17.

Once we have these variables in place, it is only a matter of re-arranging them to accommodate the new node. The

two required actions are:

1. Set temp•next to to point to current. That is, temp•next = current, and

2. Set back.next to point to temp. That is, back•next = temp.

The bold arrows in Figure 18 show the re-arrangement of the references.

Initially the reference back must be set to null. If after traversing the list back is still null, then this new node

must be placed at the head of the list. On the other hand, if after the list is traversed you did not find a place to

insert it, and back is not null, then the new node must be placed at the end of the list.

The class BookList does the following:

1. Declares the reference variable list, of type BookNode. See Listing 9, Line 3.

2. The constructor creates an empty list, by initializing the reference to null. See Line 7.

This variable will be used to point to the beginning of the list at all times. If we need to traverse the list, use an

auxiliary reference to do so.

Figure 17 - Introduction of new reference variable back

header

 M B P Z

temp

 N

back

current

Figure 18 - Placing temp node in list

header

 M B P Z

back

current

temp

 N

11

Listing 10 shows the method insert that inserts a node in its proper position in the list. The method receives

the book object b, and uses it to create a book node object, that is referenced by the variable called temp.

In preparation to traverse the list we introduce the two auxiliary reference variables, one that will traverse the

list, and the other that will trail this current reference that is traversing the list. See Lines 16 and 17. Both variables

are necessary in order to position the new node in its proper place. In addition, we declare and initialize a Boolean

variable called found to false. This variable will alert us when we have found the position to place the node. See

Line 18.

Listing 9 - class BookList creates an empty
list

1. class BookList
2. {
3. private BookNode list;
4.
5. BookList()
6. {
7. list = null;
8. }
9. }

10. void insert(Book b)
11. {
12. try
13. {
14. BookNode temp = new BookNode(b);
15.
16. BookNode current = list; // Auxillary node points to the head of the list
17. BookNode back = null; // This reference will trail current
18. boolean found = false;
19.
20. while (current != null && !found)
21. if (temp.book.getTitle().compareTo(current.book.getTitle()) < 0)
22. found = true;
23. else
24. {
25. back = current; // Save the current position in the list
26. current = current.getNextNode(); // Advance to the next book node in the list
27. }
28.
29. temp.setNode(current);
30.
31. if (back == null)
32. list = temp;
33. else
34. back.setNode(temp);
35. }
36. catch(NullPointerException e){
37. e.printStackTrace();
38. }
39. }

Listing 10 - The method insert places a node in its proper position in the list

12

The heart of this method is the while loop. The condition to continue looping is that the list should not be

exhausted; neither should the position be found. This is represented by the conditional expression in Line 20.

The if statement on Line 21 compares both titles. As soon as the condition is true, the loop is terminated. If not,

set the reference back to the reference current, then move the reference current to the succeeding node pointed to

by current.next. See Lines 25 and 26.

When the while loop is exited re-organize the references. First, let the temp•next point to where current is

pointing. See Line 29. Now, depending on the state of back, we will know how to position the node. That is, if

back is still null, then it means that the new node must be at the front of list. If back is not null, then the new node

must fall between the two nodes – back and current. Hence we let back•next point to temp. See Lines 31 thru 34.

The problem requires us to be able to remove a node from the list at anytime. To remove a node, requires

knowing the title of the book. First we search for the title, using similar principle to the insert method. Once the

node is located, re-arrange the references so that the particular node is excluded. See Listing 11.

47. void remove(String title)
48. {
49. try
50. {
51. BookNode back = null,
52. current = list;
53. boolean found = false;
54.
55. while (current != null && !found)
56. if (current.book.getTitle().compareToIgnoreCase(title) == 0)
57. found = true;
58. else
59. {
60. back = current;
61. current = current.getNextNode(); //current = current.next;
62. }
63.
64. if (found)
65. {
66. back.setNode(current.getNextNode()); // back.next = current.next;
67. current.setNode(null); //current.next = null;
68. }
69. }
70. catch(NullPointerException e)
71. {
72. e.printStackTrace();
73. }
74. }

Listing 11 - The method removes a node from the list.

current != null && !found

13

As stated earlier, the remove method is similar to the insert method. The first change is the conditional

expression of the if statement. Instead of testing for the inequality less than (<) we test for the equality (==). That

is:

There are two actions that must be taken after exiting the loop:

1. The reference back.next must point where the reference of current.next is pointing. See Line 66.

2. The reference current.next must be assigned null, in order to drop the node from the list. See Line 67.

Figure 19 shows the re-arrangement of the nodes.

Finally, Listing 12 shows the definition of the toString method. This method traverses the list and extracts the title

from each node in the list. The titles are appended to the string called result. The string is returned for printing.

Listing 12 - Method that displays the list.

76. /*
77. * This method traverses the list and extracts the title from the
78. linked list of nodes. They are appended to a string.
79. The string is returned for printing.
80. */
81.
82. public String toString()
83. {
84. String result = "";
85.
86. BookNode current = list;
87.
88. while (current != null)
89. {
90. result += current.book.getTitle() + "\n";
91. current = current.next;
92. }
93. return result;

94. }

if (current.book.getTitle().compareToIgnoreCase(title) == 0

Figure 19 The node current is removed from list

header

 M B P Z

back

current

14

Listing 13 shows the test class called Library. This class creates an empty BookList object, and then adds four

book objects to the list. After displaying the list of books, it removes a book from the list and displays the list

again. In both cases this procedure maintains the book titles alphabetically.

Figure 20 shows the output generated from the program

SUMMARY

Linked list is one of the simplest but most commonly used data structures in programming. Linear linked list is

fundamental to other complex abstract data structures such as stacks, queues, circular list, and binary trees, and

multiply linked lists. Linked lists allow insertion and removal of nodes at any point in the list without disturbing

the data from its position. This is a major advantage over arrays and ArrayList.

Listing 13 - The test class Library

1. class Library
2. {
3. public static void main(String[] arg)
4. {
5. // Create a book list object.
6. BookList books = new BookList();
7.
8. // Create book nodes and add them to the list.
9. books.insert(new Book("Danger on the Waters"));
10. books.insert(new Book("Paradise Lost"));
11. books.insert(new Book("Building Bridges"));
12. books.insert(new Book("Hall Mark of Fame"));
13.
14. // Print the original list
15. System.out.println("\nOriginal List");
16. System.out.println(books);
17.
18. // Remove a book
19. books.remove("Hall Mark of Fame");
20.
21. // Print new list
22. System.out.println("\nNew List");
23. System.out.println(books);
24. }
25. }

Figure 20 – List of titles alphabetically

http://en.wikipedia.org/wiki/Array_data_structure

