Chapter 22: Elementary Graph Algorithms

Today’s topic is elementary graph algorithms.

Hey, master! I’ve already seen them in 172 and 173. Why do I have to learn it again?

Okay!

Let me ask you.

What is a strongly connected component of a directed graph?
Representations

1. **Adjacency-List Representation** A list of adjacent nodes per node. Encoding size $= \Theta(E + V)$. Suitable for **sparse graphs**.

2. **Adjacency-Matrix Representation** The $|V| \times |V|$ matrix that represents connection between nodes. Encoding size $= \Theta(V^2)$. Suitable for **dense graphs**.
Adjacency-List Representation

1 : [2, 6]
2 : [3, 5]
3 : []
4 : [1, 3]
5 : [4, 6]
6 : [2]

Adjacency-Matrix Representation

\[
\begin{pmatrix}
0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0
\end{pmatrix}
\]
Traversal of Nodes

The problem of visiting all the nodes of a given graph G starting from a specific node s.

1. **Breadth-First Search**
 Mark all the unmarked adjacent nodes. Then recursively visit each of the adjacent nodes.

2. **Depth-First Search**
 If there are unmarked adjacent nodes visit one of them.

Connectivity in Undirected Graphs
Nodes u and v are **connected** if there is a path between them. A graph G is **connected** if every pair of nodes is connected.

So, when search is finished check whether any node is yet to be visited. If so, start the search from any such one.
Breadth-First Search

Depth-First Search
Computing the Minimum Distance from s with BFS

$\delta(v) \overset{\text{def}}{=} \text{the minimum distance of } v \text{ from } s$

- $\delta(v) = 0$ if and only if $v = s$.
- For all $i \geq 1$, $\delta(v) = i$ if and only if $\delta(v) \not\in \{0, 1, \ldots, i-1\}$ and there is a node u such that $\delta(u) = i-1$ and $(u, v) \in E$.

Use a queue Q. Initially, we set $Q = \{s\}$, $d(s) = 0$, and for all $v \neq s$, set $d[v] = +\infty$. Then while $Q \neq \emptyset$, do the following:

- Pop the top element u from Q.
- For each v such that $(u, v) \in E$, if $d(v) \neq +\infty$ do nothing; otherwise, set $d[v] = d[u] + 1$ and push v into Q.
Correctness Proof

Theorem A For each vertex v, $d[v] = \delta(v)$ at the end.

Proof Suppose that G is connected. Then every node is put in the queue at least once. Also,

- At any point of the algorithm if $Q = [v_1, \ldots, v_m]$ then $d[v_1] \leq \cdots \leq d[v_m] \leq d[v_1] + 1$.
- For all v, once $d[v]$ is set to a finite value $d[v]$ is unchanged to another finite value unless $d[v]$ becomes $+\infty$ again.

These imply that the value assigned to $d[v]$ after initialization never exceeds $n - 1$, which implies that a node is never put in the queue twice. So, every node is put in the queue exactly once.
Now we use induction on the value of $d[v]$ to show the correctness: for all $t \geq 0$ and for all v, $d[v] = t$ if and only if $\delta(v) = t$.

The base case is when $t = 0$. The proof is trivial for this case.
This is because there is only one node whose d-value is 0.

The unique node is s.

The value of $d[s]$ is set to 0.

That’s correct.
For the induction step, let $t > 0$ and suppose that the claim holds for all values of t less than the current one. Let v be such that $d[v] = t$. By our induction hypothesis $\delta(v) \geq t$. There is a node u such that $d[u] = t - 1$ and the algorithm sets $d[v]$ to t by identifying (u, v). By our induction hypothesis $\delta(u) = d[u]$. So, $\delta(v) \leq t$. Thus, $\delta(v) = t$.

Constructing a Tree from BFS

Suppose that for all nodes \(v \) we record its “predecessor,” i.e. the node from which \(v \) is touched, as \(\pi[v] \). Then the edge set \(\{(\pi[v], v) \mid v \in V - \{s\}\} \) defines a tree. We call it the BFS tree of \(G \).

The complexity of BFS

- A node is placed in a queue just once
- An edge is examined twice
<table>
<thead>
<tr>
<th>node</th>
<th>π</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>w, x</td>
<td>s</td>
</tr>
<tr>
<td>v</td>
<td>w</td>
</tr>
<tr>
<td>t, y</td>
<td>x</td>
</tr>
<tr>
<td>u</td>
<td>t</td>
</tr>
</tbody>
</table>
DFS

Use recursive calls to a subroutine Visit. Use a global clock, initially set to 0. The clock is incremented by one when Visit is called and when a call to Visit is finished.

The main-loop:

- For all \(u \), set \(d[u] = \infty \), \(\pi[u] = \text{nil} \), and \(clock = 0 \).
- For each \(u \), if \(d[u] = \infty \) then call Visit\((u)\).

Visit\((u)\):

1. Add 1 to \(clock \) and set \(d[u] = clock \).
2. For each \(v \in Adj[u] \), if \(d[v] = \infty \) then set \(\pi[v] = u \) and call Visit\((v)\).
3. Add 1 to \(clock \) and set \(f[u] = clock \).
Running Time Analysis

• A call of \textit{Visit} with respect to a node is exactly once.

• Each edge is examined exactly twice.

So, what's the running time?

Use the π field to construct a tree, called the \textbf{DFS tree}.

\begin{center}
\begin{tabular}{c|c}
\hline
node & π \\
\hline
u & \\
v, x & u \\
w & z \\
y & v \\
z & y \\
\hline
\end{tabular}
\end{center}
The Parenthesis Structure of DFS

For each u, let $I[u] = (d[u], f[u])$. Then, for all u and v, exactly one of the following three holds for $I[u]$ and $I[v]$,

- $I[u] \cap I[v] = \emptyset$. This is the case when u and v are not on the same path from s.
- $I[u] \subseteq I[v]$. This is the case when u is a descendant of v on a path from s.
- $I[v] \subseteq I[u]$. This is the case when v is a descendant of u on a path from s.

This is called the parenthesis structure of DFS.
Classification of edges

1. **The Tree Edges**: The edges on the tree.
2. **The Back Edges**: The non-tree edges connecting descendants to ancestors (including self-loops).
3. **The Forward Edges**: The non-tree edges connecting ancestors to descendants.
4. **The Cross Edges**: The rest.

In DFS, when $e = (u, v)$ is first explored:

- $d[v] = \infty \Rightarrow e$ is a tree edge,
- $d[v] < f[v] = \infty \Rightarrow e$ is a back edge, and
- $f[v] < \infty \Rightarrow e$ is a forward or cross edge.

Theorem B Every edge is either a tree edge or a back edge for an undirected graph.
Topological sort

Let G be a DAG (directed acyclic graph). **Topological sorting** of the nodes of G is a linear ordering of the nodes such that for all u and v if there is an arc from u to v (i.e., $(u,v) \in E$) then u precedes v in the ordering.
What is a topological sort of these nodes?
An Algorithm for Topological Sort

Call $\text{DFS}(G)$ to compute f-values. While doing this, each time a node, say v, is done, insert v as the top element of the list.

The running time is $O(E + V)$.
Strongly Connected Components

Let G be a directed graph. For all nodes u and v, write $u \sim v$ if there is a directed path from u to v in G.

Two vertices u and v of a directed graph G are strongly connected if $u \sim v$ and $v \sim u$. A strongly connected component of G is a maximal set S of vertices in G in which every two nodes are strongly connected.
Algorithms for Computing Strongly Connected Components

A trivial algorithm would be to compute for each \(u \) the set, \(W_u \), defined by \(\{ v \mid u \sim v \} \), and then to check for all \(u \) and \(v \) whether it holds that \(u \in W_v \) and \(v \in W_u \).

How efficiently can this algorithm be implemented?
An $O(E + V)$-Step Method

Define G^T to be the graph G in which the direction of each edge is reversed. We do the following:

1. **Call DFS(G) to compute $f[u]$ for all u.**
2. Compute $H = G^T$ where the nodes are enumerated in order of decreasing f.
3. **Call DFS(H), in which whenever the paths have been exhausted, find the next node that is not visited yet in the above ordering.**
4. Output the vertices of each DFS-tree of H as a separate strongly connected component.
The f-values:

The DFS-trees of H: