
1

VIAF: Verification-based Integrity Assurance Framework for MapReduce

Yongzhi Wang

Florida International University

Miami, FL, USA

ywang032@cs.fiu.edu

Jinpeng Wei

Florida International University

Miami, FL, USA

weijp@cs.fiu.edu

Abstract—MapReduce, a cloud computing paradigm, is

gaining popularity. However, like all open distributed

computing frameworks, MapReduce suffers from the integrity

assurance vulnerability: it takes merely one malicious worker

to render the overall computation result useless. Existing

solutions are effective in defeating the malicious behavior of

non-collusive workers, but are futile in detecting collusive

workers. In this paper, we focus on the mappers, which

typically constitute the majority of workers, and propose the

Verification-based Integrity Assurance Framework (VIAF) to

detect both non-collusive and collusive mappers. The basic idea

of VIAF is to combine task replication with non-deterministic

verification, in which consistent but malicious results from

collusive mappers can be detected by a trusted verifier. We

have implemented VIAF in Hadoop, an open source

MapReduce implementation. Our theoretical analysis and

experimental result show that VIAF can achieve high task

accuracy while imposing acceptable overhead.

Keywords- MapReduce; Result Verification; Collusion

detection; Hadoop

I. INTRODUCTION

Ever since the genesis of cloud computing, discussion

about its security has never stopped. On one hand, as the

evolution outcome of web application, cloud computing, by

nature inherited existing threats such as phishing [1],

downtime [2], data loss [3], password weaknesses [4], and

compromised hosts running botnets [5]. On the other hand,

with unique characteristic, it brings new challenges such as

unexpected side channels and covert channels [6]. Of all the

issues threatening cloud computing, computation integrity is

one of the most critical that needs attention. Due to the

distributed architecture and open environment, some

participants can be subverters that pretend to be good but

actually perpetrate cybercrime or other cyber attacks [7].

In our research, we found MapReduce, a popular cloud

computing framework, to a great extent, suffers from such

integrity vulnerability. Since computation job is carried out

via the collaboration of a number of computing nodes,

which may not be trusted in an open environment, merely

one corrupt result may render the overall result useless. In

MapReduce, reducers normally constitute the minority of

workers, so they can be deployed on trusted nodes to

achieve high computation accuracy. However, it is often

infeasible to deploy mappers on trusted nodes due to their

large quantity. Hence, ensuring mappers’ computation

integrity is of great importance and is in urgent need of a

solution.

Several existing techniques such as replication, sampling,

and checkpoint-based solution have been proposed in the

hope of addressing such issue in many distributed

environments such as P2P Systems, Grid Computing and

Cloud Computing [8-15]. However, since the cloud

computing normally is applied to process critical data such

as scientific computation and commercial data mining,

above methods either requires too much overhead in order

to guarantee high accuracy or can only deal with naïve

attackers such as non-collusive attackers. For example,

SecureMR [15] is purely based on replication, thus it cannot

detect collusive workers that can cooperate to hide their

attacks, i.e., returning consistent but bad results. For the

quiz-based idea proposed in [9] used for P2P grid, when the

percentage of malicious hosts increases from 5% to 50%,

the overhead increases quickly from 2 to 4.5. Moreover, the

idea proposed in [9] is to insert quizzes into a computation

package, which cannot be directly applied to MapReduce.

Based on the idea of replication-based and quiz-based

method, we propose VIAF (Verification-based Integrity

Assurance Framework), a MapReduce framework that can

detect both collusive and non-collusive mappers and thus

guarantee high computation accuracy. In VIAF, we replicate

each mapping task to detect non-collusive mappers. In

addition, we add limited number of trusted computation

nodes called verifier to verify a small portion of consistent

results in a random manner and thereby detect collusive

mappers. We call passing one verification as passing one

quiz. We accumulate the number of passed quizzes for each

computation node. If a node passes certain amount of

quizzes, we believe that this node is not a malicious one and

accept its result. Once a node fails any quiz, we confirm that

it is a malicious node and add it to a blacklist.

We perform theoretical analysis about VIAF and

implement it on top of Apache Hadoop MapReduce[16].

Both theoretical analysis and experimental result

demonstrate that VIAF can achieve high accuracy while

incurring acceptable overhead.

The rest of the paper is organized as follows.

Background knowledge and the system model are presented

in Section II. System design and theoretical analysis is

described in Section III. System implementation,

experiment result and analysis are discussed in Section IV.

Section V discusses related work. Finally, Section VI gives

the conclusion and future work.

2

II. BACKGROUD AND SYSTEM MODEL

A. MapReduce

MapReduce [17] is a framework of performing data-

intensive computations in parallel on commodity computers.

In MapReduce, each computation request issued by the user

is called a job. Each job is usually broken down into several

tasks. Once all the tasks are finished, the job is completed.

The traditional architecture of MapReduce consists of one

master and a number of workers. The master is responsible

for controlling the computation, such as job management,

task scheduling, and load balance. Workers are hosts that

contribute computation resources to execute tasks assigned

by the master. In addition to the master and workers, the

Distributed File System (DFS) is also an important

component of MapReduce for data storage. At the beginning

of computation, input data will be retrieved from the DFS

and the result data will be stored to the DFS after the job is

finished.

An ordinary MapReduce computation process can be

divided into two phases: map and reduce. In the map phase,

input data from the DFS are divided into several chunks.

Each data chunk will be assigned to one worker as a task

input to compute independently. And the computation result

will be written to the worker’s storage temporarily for future

use. In this phase, the task that each worker is performing is

called a mapping task. Those workers are called mappers.

The map phase is followed by the reduce phase. In the

reduce phase, one or several workers aggregate the

intermediate result into a complete result according to some

function and write the result into the DFS. Similarly, the

task being executed is called a reducing task and the

workers are called reducer.

B. System model and Assumptions

The MapReduce system discussed in this paper is

implemented to run in an open system, where entities (DFS,

master, workers) may come from different trust domains.

Hence not all entities are trusted. In our system model, we

assume the master and the DFS are trusted, where workers

are not. Our goal in this paper is trying to ensure high

accuracy of computing using untrusted workers. In this

paper, we introduce a new type of worker called verifier,

which is responsible for verifying mapper’s computation

result in order to guarantee the overall computation

accuracy. Therefore, our system has three types of workers:

mapper, reducer and verifier. Since reducers and verifiers

typically take the minority portion among workers, we

assume they are running on the trusted nodes. Therefore, the

only untrusted nodes are mappers, which, however, take the

majority portion. We assume the number of benign mappers

in the cloud environment is dominating the number of

malicious mappers. Also, since our framework asks each

mapper to report its intermediate result (in the form of hash

code) to the masters but keep the real result data in its local

storage for the future reduce, we assume the result reported

to the master is consistent with the local storage. This can

be guaranteed by a commitment-based protocol such as

SecureMR[15]. Based on the above assumption, the rest of

our discussion only focuses on the accuracy of the map

phase.

In addition, we only focus the information integrity on

whether the computation node could provide correct

calculation result, without considering the integrity

vulnerability on the network. In other words, we assume the

network facility is trusted.

C. Attack Model

The attackers in this system model are actually the

malicious workers that try to generate bad result in order to

sabotage the job output. They can be categorized into two

types: Non-collusive malicious worker and Collusive

malicious worker. (In the rest of this paper, we simply call

them non-collusive worker and collusive worker,

respectively.) A non-collusive worker normally returns bad

result without consulting other malicious workers. In this

case, if the same task is assigned to two workers and at least

one of them is non-collusive, the cheat behavior can be

easily detected by comparing the returns. In contrast,

collusive workers can communicate with each other before

cheating. When a collusive worker is assigned a task, it

normally consults its collusive partner to see if they are

assigned the same task. If yes, they will return consistently

bad result; otherwise, they just return correct result. Since

collusive workers try their best to minimize the

inconsistency of their returns, they are much harder to detect

than non-collusive workers.

III. SYSTEM DESIGN AND ANALYSIS

A. System Design

The basic idea of VIAF is a combination of task
replication and non-deterministic result verification. In VIAF,
each task is assigned to two workers, and the results are
required to return. The consistency of two workers’ returns
will be checked in order to detect non-collusive workers. In
addition, we add a type of trusted worker, the verifier, to the
VIAF to verify the correctness of consistent returns, in order
to detect collusive workers. Each worker has to accumulate
its credit by passing enough verification. Task results are
first stored locally by each worker. When a worker
accumulated enough credits, all its stored results will be
accepted by the master. By using replication and result
verification, we can efficiently defeat both non-collusive
workers and collusive workers. Fig. 1 depicts the data flow
of the VIAF. In Fig. 1, the Task Queue, History Caches for
each worker and the Result Buffer are maintained in the
master. w1 and w2 are any two workers performing the same
map task. The Verifier and the Reducer, as mentioned in
Section II.B, are trusted entities. With Fig. 1, we can easily
describe the control flow of the VIAF.

Whenever the Task Queue is not empty, the master will
pick one task from it and send it to any two workers, shown
in step 1 of Fig. 1. After calculation, both workers will return

3

Figure 1. Data flow of VIAF

their results (in the form of hash code) to the master. If the
returns are different, the master will reschedule the task to
two new workers. (In this case, the master realizes that at
least one worker is a non-collusive worker, but it is hard to
tell which one is. So it has to reschedule the task to two
different workers in the hope that the newly assigned
workers are not malicious.) If the returns are the same, the
master caches the two workers’ result and task information
to their History Caches respectively (step 2). Those cached
information are called history. After that, the master might
ask the verifier to verify this consistent result (step 3). Due to
the limited resource of the verifier, verification will be
launched in a non-deterministic manner (with certain
probability). If the verification fails (the verifier returns a
different result), the master is confirmed that the two workers
are collusive workers. They will be added to a black list. All
the results in their History Caches are untrusted and all the
tasks in their History Caches will be rescheduled. On the
contrary, if the verification succeeds (the verifier returns the
same result as the workers), we say each of the two workers
has passed one quiz or accumulated one credit. Their credit
will be incremented respectively (step 4). Each worker, after
accumulating adequate credits, will obtain the master’s trust,
and all the results cached in its History Cache will be
released to the Result Buffer (step 5.a and 5.b). Since the
credit of each worker is accumulated independently, the
release of Cache History for each worker happens
independently. Since the two workers are chosen in a non-
deterministic manner (the master only guarantees that
replicate tasks are not assigned to the same worker), it is very
likely that when one verification successfully increases two
workers’ credit, one has accumulated enough credit and can
release its History Cache to the Result Buffer, whereas the
other still hasn’t accumulated enough credit. After releasing
the result, the worker’s credit is reset to 0 and its History
Cache is cleared. Since our strategy is to release the result to
the reducer only when both workers executing the task are
trusted, the Result Buffer is therefore designed to buffer the
result of the replicate tasks. Only when two results of one
task are received by the Result Buffer, can the master release
it to the reducer (step 6). In other words, the result received

by the reducer is issued by two workers, both of which have
passed adequate quizzes and obtained the master’s trust. If
one worker fails to pass a quiz, not only will the tasks in its
History Cache be rescheduled, but also the relevant replicate
tasks already received by the Result Buffer will be
rescheduled. The algorithm can be expressed as Fig. 2.

In the algorithm of VIAF, we declare the number of
credits a worker needs to accumulate in order to earn the
master’s trust as quiz_threshold. Each worker’s History
Cache and credit are initialized in the function Initialization().
After initialization, the function Task_scheduler() keeps on
monitoring the Task Queue to schedule the task and
accumulate the credit for each worker. When a worker has
accumulated enough credit, the master will release its
History Cache to the Result Buffer. Meanwhile, the function
ResultBuffer_monitor() keeps on monitoring the Result
Buffer and release the result to the reducer once both results
of replicate tasks are received by the Result Buffer.

Although the algorithm depicted in Fig. 2 is
straightforward, some details are skipped for clarity. For
example, when a task is released or rescheduled, the
corresponding task information in its History Cache should
be cleared. Since verification result is trustworthy, it can be
directly released to the reducer without being added to the
History Cache. Since each task is replicated, releasing results
to the reducer should avoid passing the duplicate results. To
achieve randomized verification effect, each time when the
consistent duplicate results are received by the master, the
master will verify the result with certain probability. We call
such probability the verification probability. Apparently, the
verification probability dictates the workload of verifiers.
Finally, although verification is launched in a randomized
way, it is also necessary to guarantee the verification is
balanced across all the workers. Otherwise, some workers
may cache too many results before releasing them.

For the non-collusive workers, since their bad returns
will always be detected, their task will always be rescheduled.
Therefore, non-collusive worker will not undermine the
accuracy of job result. For the collusive workers, since the
verification is invoked in a random way, they cannot predict
whether their return will be verified. The only way to avoid
detection is to return correct result. For those collusive
workers who try to take a risk to evade verification, the
probability to pass a series of quizzes turns to be very low.
Passing more quizzes makes the worker to be more trusted,
but it requires more space to buffer the intermediate result
and delay the overall computation time. Therefore, choosing
a proper quiz threshold (the number of quizzes that a worker
has to pass in order to obtain trust) becomes critical. The
analysis below indicates the relationship between quiz
threshold and accuracy requirement.

B. Theoretical Analysis

Our analysis model assumes a cloud environment that
contains a large number of workers, specifically, mappers.
Suppose the environment contains N workers, and M out of
which are malicious, we define malicious node ratio m =
M/N. For simplicity, we assume that m stays constant
throughout the job execution. That is, even though some

4

Figure 2. The algorithm of VIAF

malicious nodes are detected and black-listed during job
execution, m decreases very little given the large values of N
and M.

We also assume M malicious nodes include both workers:
collusive and non-collusive workers. We define c as the
portion of collusive worker out of M malicious workers.
Similarly, we also assume c as a constant parameter due to
the large value of M. Even though a task is assigned to two
collusive workers, collusion can happen only when they are
in the same collusion group (in some environment, there may

exists several groups of collusive workers, collusion can only
happen within a group) and they are executing the task
simultaneously (for example, collusion cannot happen if the
two workers fall out of sync in processing the same task).
Due to the uncertainty of temporal sequence, we define p as
the probability that one collusive worker can find its partner
executing the same task and be able to commit a cheat.
When the collusive workers find each other, they can cheat
in a non-deterministic way in the hope of not been
discovered very soon. We define q as the probability that the
collusive partners decide to commit a cheat. Similarly, we
define r as the cheat probability of non-collusive workers. As
mentioned in Section III.A, verification is launched with a
certain probability, called the verification probability. We
denoted it as v. Also, we denote the quiz threshold as k.

With the model defined above, we are about to analyze
the following measurement metrics:

Definition III.1 (Survival Chance) The Survival Chance
of a collusive worker is the probability that it passes all the k
quizzes and earns trust of master so that the result of its
History Cache can be released to the Result Buffer. It is
denoted as ∆.

Definition III.2 (Cheat Probability) The Cheat
Probability of a task is the probability that the master accepts
a bad result and releases it to the reducer, denoted as CP.

Definition III.3 (Accuracy) The Accuracy of a task is the
probability that the master accepts a good result and releases
it to the reducer, denoted as AC. Apparently, AC = 1-CP.

Definition III.4 (Overhead) The Overhead of a task is
the average number of execution launched by the worker
before its result is released to the reducer. It includes task
replication and task reschedule. It is denoted as OH.

Definition III.5 (Verification Overhead) The
Verification Overhead of a task is the average number of
execution launched by the verifier before its result is released
to the reducer. It only includes task verification. It is denoted
as VO.

The model parameter and measurement metrics are
summarized in TABLE I.

Let’s start with the analysis of survival chance ∆. In our
analysis model, we don’t eliminate non-collusive workers
because they cannot affect the correctness of job result, due
to the existence of replication. So the survival chance of non-
collusive workers is 1. For benign workers, the survival
chance is always 1, since they never return bad result. Now,
let’s consider the survival chance ∆ of each collusive worker.
For a collusive worker, passing one quiz must happen in one
of the four scenarios below:
a. The replicate task is also assigned to another collusive

worker (with probability m*c), they are able to collude
(with probability p), but they determine not to (with
probability 1-q). So the probability in this case is A =
mcp(1-q);

b. The replicate task is assigned to another collusive
worker (with probability m*c), but they cannot collude
either because they belong to different collusive group
or they are not executed simultaneously (with
probability 1-p). The probability in this case is B =
mc(1-p);

const quiz_threshold;

Initialization(){
 for each worker(w){
 //tasks executed but not released by w
 w.tasks = {};
 //results generated but not released by w
 w.results = {};
 //quizzes w has passed
 w.credit = 0;
 }
}

Task_Scheduler(){
 while (task queue Q is not empty){
 select a task t from task queue;
 assign t to any 2 workers w1 and w2;
 receive result R1,R2 from w1,w2;
 if(R1 != R2) // inconsistent result
 put t back to Q; //reschedule
 else{ // consistent result
 add t to w1.tasks and w2.tasks;
 add R1 to w1.results and w2.results;
 with probability (p){
 verify t and receive result Rv;
 if(Rv== R1){
 w1.credit++;
 w2.credit++;
 if(w1.credit>quiz_threshold){
 release w1.results to resultBuffer;
 reset w1.tasks,w1.results, w1.credit;
 }
 if(w2.credit>quiz_threshold){
 release w2.results to resultBuffer;
 reset w2.tasks,w2.results, w2.credit;
 }
 }

else{
 add w1, w2 to the black list;
 put w1.tasks, w2.tasks back to Q;
 find the replicate tasks of w1.tasks and
w2.tasks that are released to the resultBuffer,
remove their results from resultBuffer and
reschedule them;
 }
 } // end with probability p
 } // end consistent result
 } // end while
}

ResultBuffer_monitor(){
 for each task t in resultBuffer{
 if(two results are released from workers)

 release the result to reducer;
 }
}

5

TABLE I. NOTATION FOR THEORETICAL ANALYSIS MODEL

Symbol Explanation

m Malicious worker ratio out of all workers

c Collusive worker ratio out of malicious workers

p

When a task is assigned to two collusive workers, the

probability that two workers are in one collusive group
and can discover each other, which is to say, they are

able to commit a cheat.

q
The probability that two collusive workers determine to
commit a cheat when discovering each other.

r
The probability that a non collusive worker determine to

commit a cheat when assigned a task.

v
(Verification Probability) The probability that a task
returning consistent results is verified by the verifier.

k
(Quiz Threshold) Number of quizzes a worker must

passed in order to obtain the trust of the master.

∆
(Survival Chance) The probability that a worker passes

all the k quizzes and earns trust of master.

CP
(Cheat Probability) The probability that a task returns a
bad result to the master and the master releases it to the

reducer.

AC
(Accuracy) The probability that a task returns a good
result to the master and the master releases it to the

reducer.

OH
(Overhead) The average number of execution launched

by the worker for each task.

VO
(Verification Overhead) The average number of

execution launched by the verifier for each task.

c. The replicate task is assigned to a non-collusive worker

(with probability m(1-c)), and it does not commit a
cheat(with probability 1-r). The probability is C = m(1-
c)(1-r);

d. The replicate task is assigned to a benign worker. The
probability is D = 1-m.

To survive, the k passed quizzes must be distributed

among the four scenarios above. Without losing generality,
for any case in which scenario a, b, c and d happens i, j, h
and k-i-j-h times, respectively, the probability of each

combination in this case is hjikhji
DCBA

−−− . For this case,

there are

 −−

 −

h
jik

j
ik

i
k

combinations, so the

probability of this case is

hjikhji
DCBA

h

jik
j
ik

i
k

khjiP
−−−

 −−

 −

=),,,(

By permutation, the survival chance of a collusive worker ∆
is therefore the summation probability of all possible cases:

 ∑∑∑
=

−

=

−−

=

=∆

k

i

ik

j

jik

h

khjiP
0 0 0

),,,((1)

With the survival chance, we can derive Cheat
Probability CP. The master releases a bad result to the
reducer only in one of the following three scenarios:
a. The task is assigned to two collusive workers. They both

survive in k quizzes and they commit a collusive cheat.
The probability in this case is m

2
c
2
pq∆

2
.

b. The task is assigned to two collusive workers. Any of

them fails to pass the k quizzes, so the task has to be
rescheduled. Knowing the Cheat Probability of a
rescheduled task as CP, we have the cheat probability as
m

2
c
2
(1-∆

2
)CP in this case.

c. The task is assigned to at least one non-collusive worker
and it commits a cheat. The probability of this case is
m(1-c)r. In this case, the task should be rescheduled, so
the probability is m(1-c)rCP.
Combining the three cases, we have the Cheat Probability

CP as:

CPrcmCPcmpqcmCP ⋅⋅−+∆−+∆=)1()1(
222222

Therefore,

)1()1(1 222

222

∆−−−−

∆
=

cmrcm

pqcm
CP (2)

Since AC = 1-CP, we have

)1()1(1
1

222

222

∆−−−−

∆
−=

cmrcm

pqcm
AC (3)

Overhead OH can be calculated with the same principle. In
our model, rescheduling happens in three cases:
a. The task is executed by two collusive workers and one

of them fails to pass the k quizzes. The probability of
this case is m

2
c
2
(1-∆

2
). The overhead is 2+OH, where 2

is for the replication and OH is the overhead caused by
rescheduling.

b. The task is assigned to at least one non-collusive worker
and it commits a cheat. The probability is m(1-c)r.
Similarly, the overhead is 2+OH.

c. For the other cases, the overhead is 2 since there’s no
reschedule needed. The probability is 1-m

2
c
2
(1-∆

2
)-m(1-

c)r.
Adding above overheads together, we have

))1()1(1(2

)2()1()2)(1(
222

222

rcmcm

OHrcmOHcmOH

−−∆−−+

+−++∆−=

Therefore, we have derived the Overhead:

)1()1(1

2
222

∆−−−−
=

cmrcm
OH (4)

Similarly, we can calculate the verification overhead.
Suppose the average verification overhead of each task is
VO. Consider the following cases:
a. The task is assigned to two collusive workers and one of

them fails to pass the k quizzes. The probability in this
case is m

2
c
2
(1-∆

2
).When the task is verified (with

probability v), the verification result will be directly
accepted by the master. The verification overhead is
m

2
c
2
(1-∆

2
)v. However, when the task is not verified

(with probability of 1-v), it will be rescheduled. Since
after reschedule, the average verification overhead is
VO, we have the verification overhead as m

2
c
2
(1-∆

2
)(1-

v)VO. Combining the two cases, we have the
verification overhead m

2
c
2
(1-∆

2
)v+ m

2
c
2
(1-∆

2
)(1-v)VO.

b. The task is assigned to at least one non-collusive worker

6

and it commits a cheat. The probability in this case is
m(1-c)r. Since task will be rescheduled in this case, the
verification overhead is m(1-c)rVO.

c. For the other cases, where the probability is (1- m
2
c
2
(1-

∆
2
)-m(1-c)r), the task will not be rescheduled but can be

verified with probability v. The verification overhead is
therefore (1-m

2
c
2
(1-∆

2
)-m(1-c)r)v.

The above three cases consists the verification overhead VO:

vrcmcm

VOrcmVOvcmvcmVO

))1()1(1(

)1()1)(1()1(
222

222222

−−∆−−+

⋅−+−∆−+∆−=

Solving above equation, we have

)1)(1()1(1

))1(1(
222 vcmrcm

rcmv
VO

−∆−−−−

−−
= (5)

 Apparently, verification overhead is useful in calculating the
workload of verifiers. Suppose a job consists of T tasks, the
verifiers’ workload is T*VO.

Fig. 3 shows the simulated relationship between quiz
threshold and accuracy based on (3) and (1). In this figure,
malicious node ratio is set to 0.1, 0.3 and 0.5, respectively.
Half of the malicious workers are collusive, they commit
collusive cheating with probability 0.5*0.5=0.25, and non-
collusive workers commit inconsistent cheat with probability
of 50%. We can see in this case, the accuracy increases
rapidly when the quiz threshold increases from 1 to 6. When
quiz threshold grows to 7, the accuracy reaches almost 100%.
Fig. 4 and Fig. 5 demonstrate the overhead and verification
overhead under the same configuration as Fig. 3. Here we set
verification probability v to 0.2. We can see both the
overhead and the verification overhead growth is very
modest when the quiz threshold is increasing.

When the collusive worker ratio c increases to 1, where
malicious workers are all collusive, malicious ratio m and
probability p became important factor in determining the
relationship of quiz threshold and accuracy. Fig. 6
demonstrates the relationship under different m. We notice
that with a constant p, different m needs almost the same
quiz threshold in order to achieve high accuracy. Fig. 7
demonstrates the relationship under different p. We observe
that p determines the quiz threshold in a subtle manner: to
achieve very high accuracy, the smaller the p is, the greater
the quiz threshold is needed. For example, when p is 1.0, five
quizzes can make the accuracy almost achieve 100%; when p
is 0.3, more than 10 quizzes are needed to guarantee such a

high accuracy. The intuition here is: when malicious workers
are more likely to cheat (with larger p), accuracy suffers
more without verification; at the same time however, they
are easier to detect once verification is used. Thus
verification tends to be more effective in improving the
accuracy. On the other hand, when the malicious workers are
more stealthy (cheating with smaller p), accuracy suffers less,
but it is also harder to improve by verification. Fortunately,
when the accuracy required is not very high, small number of
quiz threshold will satisfy. For example, when the accuracy
requirement is 98%, five quizzes will be enough for all three
values of p. The overhead and the verification overhead
corresponding to Fig. 7 are shown in Fig. 8 and Fig. 9,
respectively. Still the overhead with different p is no larger
than 2.5, and the verification overhead appears to be stable.

Based on the above analysis, we observe that p is an
essential factor in determining the quiz threshold. When p is
greater than 0.5, passing 7 quizzes will guarantee very high
accuracy for each worker (close to 100%). When p is less
than 0.5, to guarantee high accuracy, a higher quiz threshold
is needed.

IV. IMPLEMENTATION AND EVALUATION

We have modified Hadoop MapReduce 0.21.0 to
implement a prototype of VIAF. With this implementation,
we did a series of experiment. The experimental results have
been encouraging.

A. Implementation details

In Hadoop, each worker communicates with the master

via “heartbeats”. In each heartbeat, the worker reports task

update information to the master and requests new task to

execute. When a task is done, a task complete event is

passed to the master. The master will add such events to a

queue so that the reducer can fetch the result and continue

with the reduce task. When a worker is requesting new tasks,

the master will choose an unexecuted task from its queue

and assign it to the worker.
In our implementation, we modify Hadoop to implement

the algorithm of VIAF discussed in Fig. 2. Each worker has
to return MD5 hash code of the task result along with the
task completion event. Meanwhile, instead of directly adding
the events to the queue, we cache the event of each task until
both workers who submit the replicate task result have
passed k quizzes. Also, we modify the task assignment

0 5 10 15 20

0
.9
0

0
.9
2

0
.9
4

0
.9
6

0
.9
8

1
.0
0

QUIZ THRESHOLD k

A
C
C
U
R
A
C
Y

Accuracy vs Quiz Threshold

 c=0.5, p=0.5, q=0.5, r=0.5

m=0.1

m=0.3

m=0.5

Figure 3. Accuracy for miscellaneous workers

0 5 10 15 20

1
.0

1
.5

2
.0

2
.5

3
.0

QUIZ THRESHOLD k

O
V
E
R
H
E
A
D

Overhead vs Quiz Threshold

 c=0.5, p=0.5, q=0.5, r=0.5

m=0.1

m=0.3

m=0.5

Figure 4. Overhead for miscellanious workers

0 5 10 15 20

0
.1
9
0

0
.1
9
5

0
.2
0
0

0
.2
0
5

0
.2
1
0

QUIZ THRESHOLD k

V
E
R
IF
IC
A
T
IO
N
 O
V
E
R
H
E
A
D

Verification Overhead vs Quiz Threshold

 c=0.5, p=0.5, q=0.5, r=0.5, v=0.2

m=0.1

m=0.3

m=0.5

Figure 5. Verification Overhead for
miscellaneous workers

7

0 5 10 15 20

0
.8
0

0
.8
5

0
.9
0

0
.9
5

1
.0
0

QUIZ THRESHOLD k

A
C
C
U
R
A
C
Y

Accuracy vs Quiz Threshold

 c=1.0, p=0.5, q=1.0, r=0.0

m=0.1

m=0.3

m=0.5

Figure 6. Accuracy with

different m

0 5 10 15 20

0
.7
0

0
.7
5

0
.8
0

0
.8
5

0
.9
0

0
.9
5

1
.0
0

QUIZ THRESHOLD k

A
C
C
U
R
A
C
Y

Accuracy vs Quiz Threshold

 m=0.4, c=1.0, q=1.0, r=0.0

p=0.3

p=0.5

p=1.0

Figure 7. Accuray with different p

0 5 10 15 20

1
.5

2
.0

2
.5

3
.0

QUIZ THRESHOLD k

O
V
E
R
H
E
A
D

Overhead vs Quiz Threshold

 m=0.4, c=1.0, q=1.0, r=0.0

p=0.3

p=0.5

p=1.0

Figure 8. Overhead with

different p

0 5 10 15 20

0
.1
9
0

0
.1
9
5

0
.2
0
0

0
.2
0
5

0
.2
1
0

QUIZ THRESHOLD k

V
E
R
IF
IC
A
T
IO
N
 O
V
E
R
H
E
A
D

Verification Overhead vs Quiz Threshold

 m=0.4, c=1.0, q=1.0, r=0.0, v=0.2

p=0.3

p=0.5

p=1.0

Figure 9. Verification Overhead

with different p

function. Instead of randomly assigning the task, we
guarantee that replicated and rescheduled tasks are not
assigned to the same worker and that the verifier is only
assigned verification tasks.

B. Collusive worker model

In our experiment, we design the behavior of collusive
worker as follows: a collusive worker functions as both a
client and a server. As a client, when a task is assigned, it
will contact all its collusive group members to see if anyone
is running the same task. If getting affirmative response from
any partner (a server worker), they will negotiate whether to
cheat (actually, whether to cheat is determined by the server
worker, in our implementation, the collusion probability q is
set to 1). If not getting response, it will execute the task in a
benign way. Meanwhile, it will function as a server to
monitor if any other collusive worker contacts it and claims
running the same task. Once received such a message from
any client worker, it will determine whether to cheat and
instruct the client worker. Since the server worker usually
execute the task before the client worker, to keep consistent
return, the server worker usually needs to abort the current
work and start to generate a consistent bad result when
receiving a message.

C. Experiment and result analysis

We launch our experiments on a 2.93 GHz, 8-core Intel
Xeon CPU with 16 GB of RAM running VMware
Workstation 7.11. We deployed 11 virtual machines (512MB
of RAM and 40GB of disk each) to construct a MapReduce
environment. Each machine runs on Debian 5.0.6 “lenny”.
Out of the 11 nodes, one is running as both a master and a
benign worker; one is running as a verifier worker; four are
collusive workers in one collusive group implementing the
model in Section IV.A; and the remaining five nodes are
benign workers. All experiments use the Hadoop WordCount
application [18]. The input files are text files downloaded
from a free eBook project website [19]. The complete job
requires 400 mapping tasks and one reducing task with
standard MapReduce.

TABLE II shows the accuracy and overhead with
different quiz threshold. Here we set a verification
probability of 20%. In TABLE II, accuracy represents the
ratio of accepted correct results to overall accepted results
(400). From the table, we can see that without quiz test,

accuracy is only 87.2%, but with quiz tests the accuracy
rapidly improves. For example, a Quiz Threshold of 1 results
in a 99.42% accuracy.

Since our experiment environment only has collusive
workers, c is effectively 1.0. Besides, our implementation of
collusive workers sets p and q close to 1.0. Hence, the
experiment configuration at the beginning is close to the
theoretical model in Fig. 7. But we find the experiment result
is much better than the Fig. 7 in terms of accuracy. Such
discrepancy can be explained with Fig. 6: when other
parameters are constant, the smaller the m is, the higher
accuracy it will achieve. In our experiment environment,
collusive workers are eliminated after detection, which
makes the malicious ratio m decrease from 0.4 towards 0.
Hence, the accuracy presented in Fig. 7 is only a lower
bound. Similarly, with the decrease of m, the overhead
decreases. This explains why the experiment overhead is
lower than the simulated results in Fig. 8.

Introduction of verification in VIAF will delay the job
completion time, but our experiment shows that such delay is

TABLE II. EXPERIMENT RESULT WITH DIFFERENT QUIZ THRESHOLD

Quiz

Threshold
Accuracy Overhead Verification Overhead

0 87.20% 2.000 0

1 99.42% 2.045 22.00%

2 99.83% 2.074 23.58%

3 100% 2.053 23.00%

4 100% 2.162 23.58%

5 100% 2.046 21.75%

6 100% 2.111 22.58%

7 100% 2.027 19.83%

TABLE III. JOB EXECUTION TIME FOR DIFFERENT QUIZ THRESHOLD

Quiz

Threshold
Execution time

(s)

Execution time increase

compared with no quiz (%)

No quiz 429.070 ---------

1 475.064 10.72%

2 472.426 10.10%

3 473.149 10.27%

4 476.798 11.12%

5 460.029 7.22%

6 483.246 12.63%

7 473.030 10.25%

8

acceptable. According to the collusive worker model
described in Section IV.B, the collusive workers may take
longer time to return results compared to the benign workers.
However, delays due to such worker-specific behaviors can
be arbitrary and are not part of the overhead introduced by
our framework. So, our experimental environment only
includes benign workers in order to rule out the delay caused
by malicious workers. TABLE III shows the job execution
time under different Quiz Threshold. Compared with the
case in which no verification is applied, we can see that
introducing verification adds a small amount of job
completion delay. But such delay appears to be unrelated to
the quiz threshold setting.

V. RELATED WORK

A number of techniques such as replication, sampling,
and checkpoint-based solution have been proposed to
address cheating in several distributed computing contexts,
such as P2P systems, Grid Computing, and Cloud
Computing [8-15]. Quiz-based schemes such as [9] insert
quiz tasks with verifiable results to detect malicious workers.
In order to generate quizzes that are indistinguishable from
normal tasks, [20] proposes to use tasks of the given jobs
themselves as quiz questions. [21] employs a replication-
based scheme that allows the degree of redundancy to be
adaptively adjusted based on the dynamically-calculated
reputation as well as reliability of each worker.

Similar to VIAF, the LLFT middleware [22] for a cloud
computing or data center environment employs replication
techniques. However, LLFT is designed for tolerating fail-
stop faults for distributed applications, thus it cannot handle
Byzantine faults such as the collusion among malicious
workers in MapReduce.

VI. CONCLUSION AND FUTURE WORK

To guarantee high accuracy of MapReduce calculation,
we propose the VIAF (Verification based Integrity
Assurance Framework) to defeat both collusive and non-
collusive malicious mappers. We present the design and
implementation detail of such a framework, along with
theoretical analysis and experimental evaluations. Our
analysis and evaluations confirm that this framework can
ensure high accuracy while incurring acceptable overhead
and delay.

Although VIAF is a promising method to ensure
MapReduce computation integrity, it can be further
improved in the following directions. First, this paper is
based on the assumption that the reducer is trusted; how to
utilize VIAF to guarantee integrity without this assumption
remains an interesting question. Second, since verifiers are
precious resource, we can alleviate its workload further. For
example, we can cache the results of verification and reuse
verified tasks to test untrusted workers; then the verifier does
not have to re-compute the reused tasks.

VII. ACKNOWLEDGMENTS

This material is based upon work supported by the U.S.
Department of Homeland Security under grant Award
Number 2010-ST-062-000039. The views and conclusions
contained in this document are those of the authors and
should not be interpreted as necessarily representing the
official policies, either expressed or implied, of the U.S.
Department of Homeland Security.

REFERENCES

[1] Gone phishing. Twitter Blog. January 03, 2009.

[2] E. Knorr. Gmail follies and Google’s enterprise pitch. InfoWorld.

September 8, 2009.
[3] J. Stokes. T-Mobile and Microsoft/Danger data loss is bad for the

cloud. Ars technica. October 2009

[4] D. Raywood. The twitter hacking incident last week should be a call
to better security awareness and not about cloud storage. SC
Magazine. July 20, 2009.

[5] M. C. Ferrer. Zeus in-the-cloud. CA Community Blog. Dec. 9, 2009
[6] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan

Savage. Hey, you, get off of my cloud: exploringinformation leakage
in third-party compute clouds. In Proceedings of CCS’09.

[7] Y. Chen, V. Paxson, and R. Katz.What's New About Cloud

Computing Security? Technical Report UCB/EECS-2010-5,
Berkeley, 2010.

[8] W. Du, J. Jia, M. Mangal, and M. Murugesan, “Uncheatable grid

computing,”in Proceedings of the 24th International Conferenceon
Distributed Computing Systems (ICDCS’04), Washington, DC.

[9] S. Zhao, V. Lo, and C. GauthierDickey, “Result verification and trust

based scheduling in peer-to-peer grids,” in P2P ’05: Proceedings
ofthe Fifth IEEE International Conference on Peer-to-Peer

Computing.Washington, DC, USA.

[10] L. F. G. Sarmenta, “Sabotage-tolerance mechanisms for
volunteercomputing systems,” Future Generation Computer

Systems,vol. 18, no. 4, pp. 561–572, 2002.

[11] C. Germain-Renaud and D. Monnier-Ragaigne, “Grid result
checking,”in CF ’05: Proceedings of the 2nd conference on

Computing frontiers. New York, NY, USA: ACM, 2005, pp. 87–96.

[12] P. Domingues, B. Sousa, and L. Moura Silva, “Sabotage-tolerance
andtrust management in desktop grid computing,” Future Gener.

Comput.Syst., vol. 23, no. 7, pp. 904–912, 2007.

[13] P. Golle and S. Stubblebine, “Secure distributed computing in
acommercial environment,” in 5th International Conference

FinancialCryptography (FC). Springer-Verlag, 2001, pp. 289–304.

[14] P. Golle and I. Mironov, “Uncheatable distributed computations,”
inCT-RSA 2001: Proceedings of the 2001 Conference on Topics in

Cryptology.London, UK: Springer-Verlag, 2001, pp. 425–440.

[15] Wei Wei, Juan Du, Ting Yu, Xiaohui Gu, “SecureMR: A Service
Integrity Assurance Framework for MapReduce”, in Proceedings of

the 2009 Annual Computer Applications Conference.

[16] “MapReduce Tutorial”. http://hadoop.apache.org/mapreduce/docs/
current/mapred_tutorial.html

[17] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data

processing on large clusters. Commun. ACM, 51(1), 2008.
[18] “word count example” http://wiki.apache.org/hadoop/WordCount

[19] “Project Gutenberg” http://www.gutenberg.org/wiki/Main_Page

[20] P.Varalakshmi, S. Thamarai Selvi, K.Anitha Devi, C.Krithika,
RM.Kundhavai A Quiz-Based Trust Model with Optimized Resource

Management in Grid Computer Systems Architecture Conference,

2008. ACSAC 2008. 13th Asia-Pacific.
[21] Sonnek, J., Chandra, A., Weissman, J.B.: Adaptive reputation-based

scheduling on unreliable distributed infrastructures. IEEE Trans.
Parallel Distrib. Syst. 18(11), 1551–1564 (2007)

[22] Wenbing Zhao, P. M. Melliar-Smith and L. E. Moser. Fault Tolerance

Middleware for Cloud Computing, In 2010 IEEE 3rd International

Conference on Cloud Computing, July 2010, pp 67-74.

